
FASTCHI: AN EFFICIENT ALGORITHM FOR ANALYZING GENE-
GENE INTERACTIONS

XIANG ZHANG1, FEI ZOU2, and WEI WANG1

1Department of Computer Science University of North Carolina at Chapel Hill
2Department of Biostatistics University of North Carolina at Chapel Hill

Abstract
Recent advances in high-throughput genotyping have inspired increasing research interests in
genome-wide association study for diseases. To understand underlying biological mechanisms of
many diseases, we need to consider simultaneously the genetic effects across multiple loci. The
large number of SNPs often makes multilocus association study very computationally challenging
because it needs to explicitly enumerate all possible SNP combinations at the genome-wide scale.
Moreover, with the large number of SNPs correlated, permutation procedure is often needed for
properly controlling family-wise error rates. This makes the problem even more computationally
demanding, since the test procedure needs to be repeated for each permuted data. In this paper, we
present FastChi, an exhaustive yet efficient algorithm for genome-wide two-locus chi-square test.
FastChi utilizes an upper bound of the two-locus chi-square test, which can be expressed as the
sum of two terms – both are efficient to compute: the first term is based on the single-locus chi-
square test for the given phenotype; and the second term only depends on the genotypes and is
independent of the phenotype. This upper bound enables the algorithm to only perform the two-
locus chi-square test on a small number of candidate SNP pairs without the risk of missing any
significant ones. Since the second part of the upper bound only needs to be precomputed once and
stored for subsequence uses, the advantage is more prominent in large permutation tests. Extensive
experimental results demonstrate that our method is an order of magnitude faster than the brute
force alternative.

1. Introduction
Disease association study analyzes genetic variation across a population consisting of
diseased and healthy individuals. The most abundant source of genetic variation in
mammalian genome is represented by single nucleotide polymorphisms (SNPs), which
account for heritable inter-individual differences in complex phenotypes. The allele
differences at these single base sites are usually represented as binary variables (e.g. inbred
mice) or ternary variables (e.g. human subjects). Recent advancement of the technologies
that enable genotyping a vast number of genetic polymorphism has made genome wide
association study possible. Initial reports on genome-wide searching for disease associated
genes are appearing in the literature 6,10,15.

Most existing analytical methods consider each genetic marker individually 20. In many
cases, however, the diseases are complex traits, that is, they are likely due to the interactions
among multiple genes 2,17. In order to understand their underlying biological mechanisms,
we need to consider simultaneously the joint effects of genotypes across multiple loci.
Various machine learning models have been adopted to study the interactions among genes,
such as neural networks 3,18 and classification and regression trees (CART)12,22. Under
the assumption that the number of SNPs is small, exhaustive algorithms that explicitly
enumerate all possible SNP combinations have been developed 7,13. Since these methods

NIH Public Access
Author Manuscript
Pac Symp Biocomput. Author manuscript; available in PMC 2009 August 18.

Published in final edited form as:
Pac Symp Biocomput. 2009 ; : 528–539.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

explicitly enumerate all possible SNP combinations, they are not suitable for genome-wide
association studies.

The number of SNPs in public datasets ranges from thousands to hundreds of thousands1,21.
The computational burden of searching for interactions among the large number of SNPs
often makes the complete genome wide association study intractable. SNP tagging 5,16 have
been widely used to reduce the number of SNPs to be analyzed. The goal of SNP tagging is
to select a subset of SNPs that can be used as proxies for all SNPs in the genome. The
tagged SNPs are then used in the association study. These methods are not complete because
some important SNPs may not be tagged.

The computational challenge of genome-wide association study is also caused by another
problem known as multiple testing problem. It can be described as the potential increase in
Type I error when statistical tests are performed multiple times. Let α be the significant
level for each independent test. If n independent comparisons are performed, the family-
wise error α′ is given by α′ = 1 − (1 − α)n. For example, if α = 0.05 and we test twenty null
hypotheses, then we have probability α′ = 1 − 0.9520 = 0.64 to get at least one spurious
result. Permutation testing has been the gold standard for assessing significance levels in
association studies using multiple markers. However, it is time consuming since the test
procedure needs to be repeated for every permutation. To make this process feasible, other
correction methods have been proposed 8,9. Some recent work 23 addresses the problem of
two-locus quantitative phenotype association mapping when large permutation tests are
needed. However, this method focuses on the case where the phenotypes are continuous
variables, hence is not readily applicable to case-control study of diseases.

Theoretically well studied, the chi-square test has been widely used in association studies
11. In this paper, we examine the computational aspect of the chi-square test. We present an
efficient algorithm, FastChi, and show that the standard chi-square test can be applied in the
genome-wide scale for two-locus association study even when large permutation tests are
performed. Different from the algorithms applying heuristics, tagging SNPs, or adopting
other correction methods, FastChi is an exhaustive algorithm. It guarantees to find the
optimal solution. Yet, FastChi does not need to explicitly compute the chi-square value for
every SNP pair. It utilizes an upper bound of the two-locus chi-square test value, which is
the sum of two terms: one based on the single-locus chi-square test, and the other based on
the pair-wise SNP genotypes. Using this bound, a large portion of the SNP-pairs are pruned
without performing the tests. Due to space limitation, in this paper, we mainly focus on the
case where the SNPs are binary variables which are encoded using {0, 1}. We also have
similar results for the case where the SNPs are ternary variables, which will be discussed in
Section 5.

2. Problem Definition
Let {X1, X2, ⋯, XN} be the set of all biallelic SNPs , and Y be the binary phenotype of
interest (e.g., disease or non-disease). For any SNP Xi (1 ≤ i ≤ N), we represent its chi-
square test value with Y as χ2(Xi, Y). For any SNP-pair Xi and Xj, the chi-square test value
is denoted as χ2(XiXj, Y). We formalize the problem as follows. Given the set of N SNPs
and a phenotype Y for a set of M individuals, let Y′ = {Y1, Y2, ⋯ YK} be the set of K
permutations of Y. There are two possible cases:

(1) For a single pass association study, i.e., no permutation correction needed: find all
SNP-pairs (XiXj) such that χ2(XiXj, Y) ≥ θ.

(2) If there are multiple phenotype permutations: for each Yk ∈ Y′, find all SNP-pairs
(XiXj) such that χ2(XiXj, Yk) ≥ θ,(1 ≤ k ≤ K).

ZHANG et al. Page 2

Pac Symp Biocomput. Author manuscript; available in PMC 2009 August 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Our problem formalization can also be applied in other problem settings. For example, it is
easy to modify this problem definition to find the top-k SNP-pairs that have the largest chi-
square test values among all SNP-pairs. In this scenario, θ would be a dynamic value, i.e.,
the k-th largest chi-square test value identified by the algorithm so far.

3. The FastChi Algorithm
We first present the upper bound of the two-locus chi-square test value in Section 3.1. Then
we show how our algorithm FastChi utilizes the upper bound to achieve efficient two-locus
chi-square testing. In Section 3.2, we describe the method for a single phenotype Y. In
Section 3.3, we discuss how FastChi performs under permutation procedure.

3.1. The Upper Bound
Let A, B, C, D represent the following events respectively: Y = 0 ⋀ Xi = 0; Y = 0 ⋀ Xi = 1;
Y = 1 ⋀ Xi = 0; Y = 1 ⋀ Xi = 1. Let Eevent and Oevent denote the expected value and
observed value of an event. T1, T2, S1, S2,ℛ1, and ℛ2 represent the formulas shown in
Table 1. We have the upper bound of χ2(XiXj, Y) stated in Theorem 3.1. The derivation of
the upper bound is omitted due to space limitation.

Theorem 3.1.—(Upper bound of χ2(XiXj, Y))

3.2. A Single Phenotype
It is obvious that, if the upper bound of χ2(XiXj, Y) is less than θ, there is no need to
calculate the exact value of χ2(XiXj, Y), which is guaranteed to be smaller than θ. We now
discuss this idea in further detail.

For every Xi (1 ≤ i ≤ N), let AP (Xi) = {(XiXj)|i+1 ≤ j ≤ N} be the SNP-pairs with Xi being
the SNP of lower index value. For all SNP-pairs in AP (Xi), the phenotype Y and SNP Xi do
not vary, thus OA, OB, OC and OD are constants for all SNP-pairs in AP(Xi). The number of
individuals, M, is also a constant. Thus, in the upper bound, T1S1 and T2S2 are constants.
Moreover, χ2(Xi, Y) is a constant for a given Xi, and θ is given too. Therefore, ℛ1 and ℛ2
are the only variables that depend on Xj and may vary for different SNP-pairs (XiXj)∈
AP(Xi). Thus for a given Xi, we can treat equation χ2(Xi, Y) + T1S1ℛ2 + T2S2ℛ2 = θ as a
straight line in the 2-D space of ℛ1 and ℛ2.

From now on, we use ℛ1(XiXj) and ℛ2(XiXj) to represent the specific values of ℛ1 and ℛ2
for the SNP-pair (XiXj). The following proposition specifies the values that ℛ1(XiXj) and
ℛ2(XiXj) can take.

Proposition 3.1—If there are m 0's and (M – m) 1's in Xi, then for any (XiXj) ∈ AP(Xi),

the possible values that ℛ1(XiXj) can take are: . The possible

values that ℛ2(XiXj) can take are: .

Therefore, for all (XiXj) ∊ AP (Xi), in the 2-D space of ℛ1 and ℛ2, (ℛ1(XiXj),ℛ2(XiXj))
falls in the region [0, 1]×[0, 1]. The line χ2(Xi, Y)+ T1S1ℛ1 + T2S2ℛ2 = θ divides this
region into two parts: one above the line and one below it. Among the SNP-pairs in AP (Xi),
we only need to perform the test for those ones whose (ℛ1(XiXj), ℛ2(XiXj)) values are

ZHANG et al. Page 3

Pac Symp Biocomput. Author manuscript; available in PMC 2009 August 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

above the line, i.e., whose upper bounds are greater than the threshold θ. We refer to such
SNP-pairs as candidate SNP-pairs.

Example 3.1—Suppose that there are 32 individuals, half alleles of Xi are 0's, and half are
1's. Thus, for the SNP-pairs in AP (Xi), the possible values of ℛ1(XiXj) (and ℛ2(XiXj)) are

. Figure 1(a) shows the 2-D space of ℛ1 and ℛ2. The
blue stars represent the values that (ℛ1(XiXj),ℛ2(XiXj)) can take. The line χ2(Xi, Y) +
T1S1ℛ1 + T2S2ℛ2 = θ is also plotted in the figure. The candidate SNP-pairs are those
whose (ℛ1(XiXj),ℛ2(XiXj)) values are in the shaded region. The ones whose
(ℛ1(XiXj),ℛ2(XiXj)) values fall below the line can be pruned without any further test.

To efficiently retrieve the candidates, SNP-pairs (XiXj) in AP(Xi) are grouped by their
(ℛ1(XiXj),ℛ2(XiXj)) values and indexed in a 2D array, referred to as Array(Xi).

Example 3.2—Following Example 3.1, Figure 1(b) shows the 9 × 9 array, Array(Xi),
whose entries represent the possible values of (ℛ1(XiXj),ℛ2(XiXj)) for SNP-pairs (XiXj) ∊
AP(Xi). The ℛ1(XiXj) (ℛ2(XiXj)) value of each column (row) is noted beneath (left to)
each column (row). Each entry of the array is a pointer to the SNP-pairs having the
corresponding (ℛ1(XiXj),ℛ2(XiXj)) values.

In order to find the candidates SNP-pairs whose upper bounds are greater than θ, we start
from the right most column of the array, i.e., the entries having the largest ℛ1(XiXj) value.
We scan this column from the top (entries with larger ℛ2(XiXj) values) towards the bottom
(entries with smaller ℛ2(XiXj) values). If an entry satisfies the inequality χ2(Xi, Y)
+T1S1ℛ1+T2S2ℛ2 ≥ θ, then the SNP-pairs indexed by it are the candidates subject to the
chi-square tests. Once we reach an entry violating the inequality, we stop searching the
current column, since the remaining entries in the column will not satisfy the inequality. We
then move to the top entry of the column left to it and repeat the same scanning process.
This whole process terminates when (1) we finish examining all columns or (2) we reach a
column whose top entry does not satisfy the inequality.

Example 3.3—Continuing with Examples 3.1 and 3.2, the entries numbered from 1 to 14
in Figure 1(b) are the ones visited by the scanning process. The numbers show the order in
which the entries are visited. Only the SNP-pairs indexed by shaded entries need to be
evaluated by chi-square tests. The SNP-pairs indexed by the blank entries, including the
entries on the boundary can be safely pruned.

3.3. Permuting the Phenotype
Let Y′ = {Y1, Y2, ⋯ , YK} be the K permutations of the phenotype Y. The upper bound in
Theorem 3.1 can be easily incorporated in the algorithm to handle the permutations: For any
(XiXj) ∊ AP (Xi), its (ℛ1(XiXj),ℛ2(XiXj)) value does not change over different
permutations. That is, for every SNP Xi, the indexing structure Array(Xi) is independent of
permutations in Y′. Thus, for each Xi, once we get Array(Xi), it can be reused in all
permutations.

The FastChi algorithm is described in Algorithm 1. For each Xi, FastChi first indexes (XiXj)
∊ AP(Xi) using Array(Xi). Then it finds the set of candidate SNP-pairs Cand(Xi,Yk) by
accessing Array(Xi) for every phenotype permutation Yk. The candidates in Cand(Xi,Yk) are
then evaluated for their chi-square test values. The candidates whose chi-square test values
are greater than or equal to θ are reported by the algorithm.

ZHANG et al. Page 4

Pac Symp Biocomput. Author manuscript; available in PMC 2009 August 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Algorithm 1.
FastChi1

Time complexity—The complexity to build the indexing structure for all SNPs is
O(N2M). The worst case for accessing all Array(Xi) for all permutations is O(KNM2). Let C
= σi,k |Cand(Xi,Yk)| be the total number of candidates. The time complexity of FastChi is
O(N2M+KNM2+CM). Note that the time complexity of the brute force approach is
O(KN2M). The number of SNPs N is the dominant factor here.

Space complexity—The dataset size is O((N + K)M). The size of the Array(Xi) is O(M2

+ N). For each Xi, once the evaluation process is over for all permutations, Array(Xi) can be
cleared from the memory. Therefore, the space complexity of FastChi is O((N + K)M) +
O(M2 + N). Since M is usually much smaller than N, this space complexity is linear to the
dataset size.

4. Experimental Results
We present extensive experimental results on evaluating the performance of FastChi.
FastChi is implemented in C++. The experiments are performed on a 2.4 GHz PC with 1G
memory running WindowsXP system.

The SNP dataset used in the experiments is extracted from a set of combined SNPs from the
140k Broad/MIT mouse dataset 21 and 10k GNF 1 mouse dataset. This merged dataset has
156,525 SNPs for 71 mouse strains. The missing values in the dataset are imputed using
NPUTE 14. The default setting of the experiments are as follows: the phenotypes are
random permutations of binary variable with half 0's and half 1's, #individuals = 32,
#SNPs=8k, #permutations=20. There are 60,970 unique SNPs for these 32 mice strains. To
find the appropriate threshold value, we permute the phenotypes 1000 times. Figure 2 shows
the distribution of the maximum chi-square test values of the 1000 permutations. Using a
critical significance level of 1%, we set the default threshold value of θ to be 32.

Note that these experimental settings are chosen to demonstrate the performance gain and
enhanced scalability offered by FastChi over the brute force approach. In real utility, one
may use larger SNP panels and/or more permutation tests. The performance of FastChi is
expected to follow the same trends presented in the remainder of this section.

FastChi v.s. the brute force approach
As far as we know, FastChi is the first algorithm addressing the problem of how to scale up
the complete two-locus Chi-square test involving large permutation test. For comparison, we

ZHANG et al. Page 5

Pac Symp Biocomput. Author manuscript; available in PMC 2009 August 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

show the runtime of FastChi versus the runtime of the brute force approach. The
implementation of the brute force approach includes the computation of two-locus chi-
square test for every SNP pairs. Figures 3(a) to 3(d) show the running time comparison
under various parameter settings. The numbers below the runtime line of FastChi indicate
the ratio of the runtime of the brute force approach and the runtime of FastChi. Figure 3(a)
shows that the runtime of FastChi dramatically decreases as θ increases. FastChi offers 3.9
fold speedup when θ = 26 and 16.3 fold speedup when θ = 34. Figure 3(b) shows that
FastChi is an order of magnitude faster than the brute force approach. Figure 3(c) shows that
the runtime of FastChi increases as the number of individuals increases. This is because
more SNPs-pairs are expected to have larger chi-square values when the number of
individuals increases. Their upper bounds will also increase accordingly. In practice, it is
reasonable to set higher threshold values for the datasets containing more individuals. Figure
3(d) shows that FastChi is consistently an order of magnitude faster than the brute force
approach in permutation tests.

Pruning effect of the upper bound
Figure 4(a) shows the fraction of SNP-pairs pruned under different thresholds. The pruning
ratio is averaged over 20 random phenotype permutations. The datasets contain half cases
(diseased individuals) and half controls (healthy individuals). A large portion of the SNP-
pairs are pruned even when the threshold is low. Figure 4(b) show the pruning ratio of the
SNP-pairs when the case/control ratio varies, while the total number of individuals is fixed.
Clearly, the pruning effect reaches the maximum power when there are 16 cases and 16
controls, which demonstrates that FastChi is more suitable for balanced study.

Computational cost of each component of FastChi
FastChi has three major components: building the indexing structure Array(Xi) for every
SNP Xi, accessing Array(Xi) to find the candidate SNP-pairs whose upper bounds are
greater or equal to the threshold, and performing chi-square tests on these candidates. Figure
5 shows the runtime of these three components when the number of SNPs increases. We
also plot the runtime of the brute force approach for reference, which is the top line. Note
that the runtimes in this figure are for a single permutation. As we can see, the most time
consuming component of FastChi is building the index structures. Yet, its runtime is about
1/5 of the time required to perform the two-locus chi-square tests on all SNP pairs in one
permutation. Note that when the number of permutations is large, the cost on building the
index structures is negligible since they only need to be built once and can be reused in all
permutations. Thus the performance gain of FastChi is more prominent for large
permutation tests.

5. Discussion
In this paper, we present the FastChi algorithm for genome-wide two-locus chi-square test.
FastChi is an exhaustive method which guarantees to find the optimal solution. It utilizes an
upper bound of the two-locus chi-square test value to prune a majority of the SNP-pairs. The
upper bound developed in this paper can be easily incorporated in the algorithm for SNP-
pair pruning and candidates retrieval. By eliminating redundant computation of the invariant
units in each permutation, FastChi is even more effective than the brute force method in
large permutation tests.

So far, we have described the method for given θ. The main goal of permutation test is to
find threshold θ for a given family-wise error α′. FastChi can be easily modified for this
task: For each permutation Yk, we use a parameter θk (initially 0) to track the largest chi-

ZHANG et al. Page 6

Pac Symp Biocomput. Author manuscript; available in PMC 2009 August 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

square value identified so far by the algorithm. The non-decreasing θk is then used as the
threshold to prune the search space when the remaining SNP-pairs are examined.

FastChi can also benefit the two-stage genome-wide association study. The idea of the two-
stage approache 4,19 is to first select a subset of important SNPs according to some criteria.
Then in the second step, an exhaustive search is performed to find the interactions among
the selected SNPs. FastChi can dramatically speed up the interaction analysis procedure in
the second step. A much larger number of SNPs can now be selected in the first step for the
subsequent interaction analysis.

In this paper, we mainly focus on the biallelic SNPs. For the heterozygous case (where SNPs
are encoded using {0, 1, 2}), we can also derive a similar upper bound. Let A, B, E, C, D, F
represent the following events respectively: Y = 0 ∧ Xi = 0; Y = 0 ∧ Xi = 1; Y = 0 ∧ Xi = 2;
Y = 1 ∧ Xi = 0; Y = 1 ∧ Xi = 1; Y = 1 ∧ Xi = 2. The upper bound for χ2(XiXj, Y) is:
χ2(XiXj, Y) ≤ χ2(Xi, Y) + T1S1ℛ0 + T2S2ℛ1 + T3S3ℛ2. In the upper bound,

, where a ∊ {0,
1, 2}, T1 = L/(OA + OC), T2 = L/(OB + OD), T3 = L/(OE + OF), (where L = M2/[(OA + OB +

OE)(OC + OD + OF)]), .

In our future work, we will investigate association study involving more than two SNPs
following the same principle discussed in this paper.

References
1. http://www.gnf.org/

2. Carlson CS, Eberle MA, Kruglyak L, Nickerson DA. Mapping complex disease loci in whole-
genome association studies. Nature. 2004; 429

3. Curtis D, North BV, Sham PC. Use of an artificial neural network to detect association between a
disease and multiple marker genotypes. Ann. Hum. Genet. 2001; 65:95–107. [PubMed: 11415525]

4. Evans DM, Marchini J, Morris AP, Cardon LR. Two-stage two-locus models in genome-wide
association. PLoS Genet. 2006; 2:e157. [PubMed: 17002500]

5. Halperin, E.; Kimmel, G.; Shamir, R. Tag snp selection in genotype data for maximizing snp
prediction accuracy; Proceedings of the International Conference on Intelligent Systems for
Molecular Biology; 2005.

6. Herbert A, et al. A common genetic variant is associated with adult and childhood obesity. Science.
2006; 312:279–284. [PubMed: 16614226]

7. Nelson MR, Kardia SL, Ferrell RE, Sing CF. A combinatorial partitioning method to identify
multilocus genotypic partitions that predict quantitative trait variation. Genome Research. 2001;
11:458–470. [PubMed: 11230170]

8. Nicodemus KK, Liu W, Chase GA, Tsai Y-Y, Fallin MD. Comparison of type i error for multiple
test corrections in large single-nucleotide polymorphism studies using principal components versus
haplotype blocking algorithms. BMC Genet. 2005; 6(Suppl 1):S78. [PubMed: 16451692]

9. Nyholt DR. Simple correction for multiple testing for single-nucleotide polymorphisms in linkage
disequilibrium with each other. Am. J. Hum. Genet. 2003; 74(4):765–769. [PubMed: 14997420]

10. Ozaki K, et al. Functional snps in the lymphotoxin-alpha gene that are associated with
susceptibility to myocardial infarction. Nat. Genet. 2002; 32

11. Pagano, M.; Gauvreau, K. Principles of Biostatistics. Duxbury Press; Pacific Grove, CA: 2000.

12. Province MA, Shannon WD, Rao DC. Classification methods for confronting heterogeneity. Adv.
Genet. 2001; 42:273–286. [PubMed: 11037327]

13. Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH. Multifactor-
dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in

ZHANG et al. Page 7

Pac Symp Biocomput. Author manuscript; available in PMC 2009 August 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.gnf.org/

sporadic breast cancer. American Journal of Human Genetics. 2001; 69:138–147. [PubMed:
11404819]

14. Roberts A, McMillan L, Wang W, Parker J, Rusyn I, Threadgill D. Inferring missing genotypes in
large snp panels using fast nearest-neighbor searches over sliding windows. ISMB. 2007

15. Roses A. The genome era begins. Nat. Genet. 2003; 33(Supp2):217.

16. Sebastiani P, Lazarus R, Weiss ST, Kunkel LM, Kohane IS, Ramoni MF. Minimal haplotype
tagging. PNAS. 2003; 100(17)

17. Segr D, DeLuna A, Church GM, Kishony R. Modular epistasis in yeast metabolism. Nat. Genet.
2005; 37:77–83. [PubMed: 15592468]

18. Sherriff A, Ott J. Applications of neural networks for gene finding. Adv. Genet. 2001; 42:287–297.
[PubMed: 11037328]

19. Storey J, Akey J, Kruglyak L. Multiple locus linkage analysis of genomewide expression in yeast.
PLoS Biology. 2005; 8:e267. [PubMed: 16035920]

20. Thomas, DC. Statistical methods in genetic epidemiology. Oxford Univeristy Press; Oxford: 2004.

21. Wade CM, Daly MJ. Genetic variation in laboratory mice. Nat. Genet. 2005; 37:1175–1180.
[PubMed: 16254563]

22. Zhang H, Bonney G. Use of classification trees for association studies. Genet. Epidemiol. 2000;
19:323–332. [PubMed: 11108642]

23. Zhang X, Zou F, Wang W. Fastanova: an efficient algorithm for genome-wide association study.
KDD. 2008

ZHANG et al. Page 8

Pac Symp Biocomput. Author manuscript; available in PMC 2009 August 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 1.
Applying the upper bound

ZHANG et al. Page 9

Pac Symp Biocomput. Author manuscript; available in PMC 2009 August 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 2.
Distribution of the maximum chi-square test values

ZHANG et al. Page 10

Pac Symp Biocomput. Author manuscript; available in PMC 2009 August 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 3.
Comparisons between FastChi and the brute force approach

ZHANG et al. Page 11

Pac Symp Biocomput. Author manuscript; available in PMC 2009 August 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 4.
Pruning effect of the upper bound

ZHANG et al. Page 12

Pac Symp Biocomput. Author manuscript; available in PMC 2009 August 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 5.
Computational cost of each component of FastChi

ZHANG et al. Page 13

Pac Symp Biocomput. Author manuscript; available in PMC 2009 August 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

ZHANG et al. Page 14

Table 1

Notations used in the upper bound

Symbols Formulas

T 1
M 2

(OA + OB)(OA + OC)(OC + OD)

S 1 max{OA
2, OC

2}

ℛ 1 min{ OXj=1

OXj=0
∣ X i = 0 ,

OXj=0

OXj=1
∣ X i = 0 }

T 2
M 2

(OA + OB)(OB + OD)(OC + OD)

S 2 max{OB
2, OD

2}

ℛ 2 min{ OXj=1

OXj=0
∣ X i = 1 ,

OXj=0

OXj=1
∣ X i = 1 }

Pac Symp Biocomput. Author manuscript; available in PMC 2009 August 18.

