Skip to main content
. Author manuscript; available in PMC: 2010 Apr 1.
Published in final edited form as: Int J Med Inform. 2008 Oct 19;78(Suppl 1):S34–S42. doi: 10.1016/j.ijmedinf.2008.09.001

Table 3.

Comparison of QT prolongation identified by NLP in ECG impressions to automated QTc by ECG machine

QT prolongation queries
ECG machine calculations
Regular expression NLP QTc >400 QTc >450 QTc >500 QTc >550

ECGs matching criteria 2,413 2,364 35813 11,630 2,260 428
True positives 2,370 2,364 2358 2301 507 108
False negatives 3 9 15 72 1866 2265
False positives 43 0 33,455 9,329 1,753 320
True negatives 41,908 41,945 8,490 32,616 40,192 41,625

Sensitivity 0.999 0.996 0.994 0.970 0.214 0.046
Specificity 1.000 1.000 0.202 0.778 0.958 0.992
Positive predictive value 0.982 1.000 0.066 0.198 0.224 0.252
Negative predictive value 1.000 1.000 0.998 0.998 0.956 0.948

F-measure 0.990 0.998 0.124 0.329 0.219 0.077