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Abstract
We are developing a computer-aided diagnosis (CAD) system to classify malignant and benign lung
nodules found on CT scans. A fully automated system was designed to segment the nodule from its
surrounding structured background in a local volume of interest (VOI) and to extract image features
for classification. Image segmentation was performed with a three-dimensional (3D) active contour
(AC) method. A data set of 96 lung nodules (44 malignant, 52 benign) from 58 patients was used in
this study. The 3D AC model is based on two-dimensional AC with the addition of three new energy
components to take advantage of 3D information: (1) 3D gradient, which guides the active contour
to seek the object surface, (2) 3D curvature, which imposes a smoothness constraint in the z direction,
and (3) mask energy, which penalizes contours that grow beyond the pleura or thoracic wall. The
search for the best energy weights in the 3D AC model was guided by a simplex optimization method.
Morphological and gray-level features were extracted from the segmented nodule. The rubber band
straightening transform (RBST) was applied to the shell of voxels surrounding the nodule. Texture
features based on run-length statistics were extracted from the RBST image. A linear discriminant
analysis classifier with stepwise feature selection was designed using a second simplex optimization
to select the most effective features. Leave-one-case-out resampling was used to train and test the
CAD system. The system achieved a test area under the receiver operating characteristic curve (Az)
of 0.83±0.04. Our preliminary results indicate that use of the 3D AC model and the 3D texture features
surrounding the nodule is a promising approach to the segmentation and classification of lung nodules
with CAD. The segmentation performance of the 3D AC model trained with our data set was
evaluated with 23 nodules available in the Lung Image Database Consortium (LIDC). The lung
nodule volumes segmented by the 3D AC model for best classification were generally larger than
those outlined by the LIDC radiologists using visual judgment of nodule boundaries.
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I. INTRODUCTION
Lung cancer is the leading cause of cancer death for both men and women in the United States,
accounting for 28% of all cancer deaths, or an estimated 163 510 lives in 2005. More people
die from lung cancer than from colon, breast, and prostate cancers combined. While the five-
year survival rate for lung cancers is only 15%, if detected and treated at its earliest stage (stage
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I), the five-year survival rate increases to 47%.1 Unfortunately, most patients present clinically
with advanced stage disease. The lack of a generally accepted screening test to reduce lung
cancer mortality contributes to the poor prognosis of lung cancer. Furthermore, existing
diagnostic tests to evaluate lung nodules are insufficient, with many lung nodules classified as
indeterminate for malignancy. For this reason, approximately half of the indeterminate lung
nodules resected at surgery are benign.2 Reducing the number of biopsies for benign nodules
will reduce health care costs and patient morbidity.

The Early Lung Cancer Action Project (ELCAP) was initiated in 1992 to assess the usefulness
of annual low dose computed-tomography (CT) screening for lung cancer in a high-risk
population.3 Initial findings from the baseline screening of 1000 patients indicated that low
dose CT can detect four times the number of malignant lung nodules and six times more stage
I malignant nodules than chest radiography. These results have been confirmed by several
groups of investigators.4–10 These data suggested a strong potential for improving the
likelihood of detecting lung cancer at an earlier and potentially more curable stage with CT.
13 The ongoing National Lung Screening Trial funded by the National Cancer Institute is the
first multicenter, randomized controlled trial to evaluate the effectiveness of helical CT versus
chest radiography for lung cancer screening.

Although CT may be more sensitive than chest radiography for the detection of lung cancer,
potential impediments to the use of helical CT for lung cancer screening exist. For example,
the chance of false negative detection due to the large volume of images in each multidetector
CT examination is not negligible, the management of the large number of benign nodules or
false-positive results that are detected may limit the cost-effectiveness of screening CT, and
the follow up of nodules found on CT with serial CT examinations increases radiation exposure
to the population.10 One solution to address some of these issues may be computer-aided
diagnosis (CAD), which has been shown to increase the sensitivity of breast cancer detection
on mammography screening in clinical practice.11 Computer-aided detection may reduce false
negative detections, while computer-aided diagnosis (characterization) may increase the
discrimination between malignant and benign nodules.

CAD systems typically involve the steps of segmentation, feature extraction, and classification.
Various methods used in medical image segmentation such as thresholding,12 region growing,
13,14 and level sets15,16 have been evaluated. Segmentation of organs or other structures where
the general shape is known has been performed with atlas-based segmentation methods.17

While these methods may be effective for specific types of lesions and images, pulmonary
nodules present a challenging problem due to their variability in shape and anatomic connection
to neighboring pulmonary structures, such as blood vessels and the pleural surface.

Previous CAD development for CT focused mainly on automated detection.12,18–25 Recently
there has been more work on the classification of malignant and benign nodules. McNitt-Gray
et al. obtained 90.3% correct classification accuracy between 14 malignant and 17 benign cases.
26 Shah et al. achieved Az values between 0.68 and 0.92 with 48 malignant and 33 benign
nodules, using four different types of classifiers in a leave-one-out method. Features were
extracted from contours manually drawn on a single representative slice of each nodule.27

Armato et al. used an automated detection scheme, then manually separated nodules from non-
nodules for the classification step. They achieved an Az value of 0.79 using features such as
radius of sphere of equivalent volume, minimum and maximum compactness, gray-level
threshold, effective diameter, and location along the z axis.28 Kawata et al. used surface
curvatures and ridge lines as features for description of 62 cases including 47 malignant and
15 benign nodules, showing good evidence of separation between malignant and benign classes
in feature maps; no Az value was reported.29 Li et al. reported an Az of 0.937 for distinction
between 61 malignant and 183 benign nodules in a leave-one-out testing method, and an Az of
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0.831 for a randomly selected subset consisting of 28 primary lung cancers and 28 benign
nodules.30 Features used included diameter, contrast of segmented nodule, and those extracted
from gray-level histograms of pixels inside and outside the segmented nodule. Aoyama et al.
reported an Az of 0.846 for classifying 76 primary lung cancers and 413 benign nodules using
multiple slices(10 mm collimation and 10 mm reconstruction interval), which was a statistically
significant improvement over 0.828 when only using single slices.31 Suzuki et al. obtained an
Az of 0.882 by use of a massive training artificial neural network (MTANN) on a data set of
76 malignant and 413 benign nodules.32

We are developing an automated system for classification of malignant and benign nodules
extracted from CT volumes. Nodules were segmented from the image background using a
three-dimensional (3D) active contour (AC) method. Malignant and benign nodules were
differentiated using morphological and texture characteristics. The weights for the energy
terms in the AC model were optimized using the classification accuracy as a figure-of-merit.
Our initial experience in nodule classification is reported in this paper. For comparison, we
also analyzed the classification performance using radiologists’ subjective estimation of
likelihood of malignancy and a classifier designed with feature descriptors provided by
radiologists. The segmentation performance of the 3D AC model trained with our method was
evaluated with 23 nodules available from the Lung Image Database Consortium (LIDC).

II. METHODS AND MATERIALS
A. Data sets

1. Clinical data set—We analyzed 96 lung nodules (44 malignant and 52 benign) from 58
patients. All cases were collected with Institutional Review Board approval. Of the 44
malignant nodules, 25 were biopsy-proven to be malignant, and 19 nodules were determined
to be malignant either through positive PET scans or known metastatic nodules from confirmed
cancers in other body parts. Of the 44 malignant nodules, 15 were primary cancers and 29 were
metastases. Of the 52 benign nodules, 10 were biopsy-proven and 42 were determined to be
benign by two-year follow-up stability on CT. Of the 96 nodules, 20 (21%) were juxta-pleural
and 12 (12.5%) were juxta-vascular as indicated by expert radiologists.

Each CT image was 512 × 512 pixels. The CT scans were acquired with either GE Lightspeed
CT/I (single-slice helical), QX/I (4 slice), Ultra (8 slice), or LightSpeed Plus (8 slice) scanners,
using imaging techniques of 120 kVp, 80–400 mA, and reconstructed slice interval of 1.25–5
mm. Linear interpolation was performed in the z direction to obtain isotropic voxels before
initial contour generation and segmentation to facilitate the implementation of the 3D
segmentation and feature extraction operations in the CAD system. The interpolation does not
recover the reduced spatial resolution in the z direction.

A user interface was developed for displaying the CT images and recording nodule locations
and ratings provided by radiologists. Two radiologists were trained in using the software and
giving ratings for the data set. Each case was read by one of these experienced thoracic
radiologists who marked volumes of interest (VOIs) that contained lung nodules. For each
nodule, a confidence rating of the likelihood of malignancy on a 5-point scale was provided,
5 being the most likely to be malignant. Electronic rulers were used to measure the longest
diameter of each nodule as seen on axial slices. The radiologists also recorded various feature
descriptors for each nodule, such as conspicuity, edge (smooth, lobulated, or spiculated/
irregular), and the presence of calcification. Each radiologist read approximately half of the
cases. The distribution of the longest diameters of the 96 nodules is shown in Fig. 1. The longest
diameter ranged from 3.9 to 59.8 mm, with a median of 13.3 mm and mean of 17.3 mm. Figure
2 shows the distribution of the malignancy ratings of the nodules by the radiologists. The
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malignancy ratings for benign and malignant nodules overlap substantially, confirming that
visual characterization of the nodules on CT images is not a simple task.

2. LIDC data set—The 23 nodules available to-date from the data set provided by the
LIDC33 were used for testing our 3D AC model. The LIDC database is intended to be a common
data set available to all researchers for development of CAD systems and for comparison of
their performance. The data set includes “gold standard” segmentation of each nodule by six
expert chest radiologists. Each radiologist performed one manual and two semi-automatic
markings of each nodule, resulting in a total of 18 boundaries for each. The 18 boundaries were
used to generate a probability map (pmap), which was scaled to a range of 0 to 1000. A boundary
of the nodule at a pmap threshold of 500, for example, is a contour that encloses all the voxels
with values greater than or equal to 500, which means that those voxels were considered to be
part of the nodule by more than 50% of the 18 “gold standard” segmentations. More information
about the database can be found on the LIDC website, where the images are also free for
download:
(http://imaging.cancer.gov/reportsandpublications/reportsandpresentations/firstdataset).

B. Initial contour determination
Our nodule segmentation method has two steps: estimation of an initial boundary by k-means
clustering and refinement of the boundary with a 3D active contour model. The VOI determined
by the radiologist may contain other pulmonary structures in addition to the nodule, such as
blood vessels or voxels that are outside the lung region (chest wall or mediastinum). A lung
region mask determined by our automated nodule detection system described in the
literature18 is first applied to the VOI to exclude the voxels belonging to the chest wall or the
pleura from further processing. Then a 3D weighted k-means clustering method34 based on CT
values is used for initial segmentation of the nodule from the other structures in the VOI. The
VOI is assumed to contain two classes: the lung nodule (including other tissue but excluding
the chest wall) and the background. Clustering is performed iteratively until the cluster centers
of the classes stabilize as described elsewhere.34 The voxels grouped into the nonbackground
class may or may not be connected. A 26-connectivity criterion is used to determine the various
connected objects in the 3D space and the largest one closest to the center is chosen as the
nodule. We can make this assumption because of the a priori knowledge that the VOI contains
a nodule and that this study is focused on classification, not on detection (determining whether
objects are true nodules).

The lung nodule segmented by clustering may be attached to blood vessels or other structures.
Once this main object is identified in the VOI, 3D morphological opening with a spherical
structuring element is applied to the object to trim off some connected vessels or structures.
The structuring element is chosen to be spherical in this application because nodules tend to
be spherical in shape, while non-nodule objects such as blood vessels tend to be cylindrical.
For each slice intersecting the object in the VOI, the radius of an equivalent circle with the
same area was found. The radius of the structuring element was chosen experimentally as the
average of the radii subtracted by 1. Equivalent radii of cross sections are used because the
partial volume effect makes some objects more cylindrical than they truly are, resulting in
structuring elements that are too large if volumes are used in the calculation. After
morphological opening, the boundary of the resulting object is used as the initial contour for
the active contour segmentation.

C. 3D active contour segmentation
1. The active contour model—Deformable contour models, particularly the AC model
introduced in the seminal paper by Kass et al.,35 are well-known tools for image segmentation.
Active contours are energy-minimizing splines guided by various forces, or energies. The
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internal energies impose constraints on the contour itself, while external energies push the
contour toward salient image features such as lines and edges. The contour is represented as a
vector v(s) = (x(s), y(s)), where s is the parameter arclength. The energy functional is defined
as

(1)

The  energy contains the various energy components that will be discussed later along
with the energies we contribute. Segmentation of the object using the AC is thus achieved by
minimizing .

2. Parametric implementation of continuous splines—Using variational calculus or
dynamic programming to minimize the total energy of the parametric representation of a
continuous contour can result in instability and a tendency for points to bunch up together.36

Instead of a continuous contour representation, the AC optimization algorithm in this study
represents the contour by a set of vertices and uses a greedy algorithm to find the solution. The
neighborhood for vertex v(c), c = {1,2,…,N}, is examined at each iteration, where N is the total
number of polygon vertices. The vertex is then moved to the pixel with the minimum contour
energy Emin(v(c)). The process repeats until the number of vertices that moves is below a
threshold. The final contour is obtained by minimizing the cost function:

(2)

where E(c) is the energy at a pixel in the neighborhood of vertex v(c) = (x(c), y(c)), c∈{1,2,
…,N}. In this energy functional, the internal energies include homogeneity (hom), continuity
(cont), curvature (curv), 3D curvature (3Dcurv), and the external energies include gradient
(grad), 3D gradient (3Dgrad), balloon (bal), and mask (mask). The weight wj is a parameter
assigned to each energy j, where j represents one of the eight energies: hom, cont, curv, 3Dcurv,
grad, 3D grad, bal, and mask.

3. Two-dimensional energies—In this preliminary study, the energy terms other than 3D
curvature and 3D gradient are calculated on the x-y planes of the CT slices intersecting the
nodule. The vertices on each slice move in the x-y plane during the iteration. The continuity
of the segmented nodule area between different slices is constrained by the 3D curvature and
the 3D gradient terms which provide the 3D information in the current model.

A brief description of the two-dimensional (2D) energy components is given here. Details can
be found elsewhere in the literature.36–38 Homogeneity energy37 is a measure of how similar
the pixel intensities inside the contour are. The contour divides each region-of-interest (ROI)
into two regions: the area enclosed by the contour and the background excluding the chest wall.
We seek to minimize the intensity variation within each region while maximizing the difference
of the mean intensities between the two regions. The homogeneity energy is therefore
calculated as the ratio of the within-regions sum of squares to the between-region sum of
squares of the gray levels in the two regions. The continuity energy maintains regular spacing
between the vertices of the contour. If the points could move in the neighborhood without this
constraint, then they might move toward one another, leading to the ultimate collapse of the
contour. The continuity energy is calculated as the deviation of the length of line segment
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between two vertices from the average line segment length over all vertices. The curvature
energy smoothes the contour by discouraging small angles at vertices. There are many ways
of estimating curvature, as investigated by Williams and Shah.36 In our implementation, the
second-order derivative along the contour is approximated by finite differences. If v(c) is a
point on the contour as depicted in Fig. 3, then the second-order derivative at v(c) is |v(c−1)
−2v(c) +v(c+1)|, which is used as the curvature energy. If the angle where two segments meet
at a vertex is small, then this term will be large; conversely, when the angle is large, a low
energy value results.

The balloon energy prevents the contour from collapsing onto itself, which is a well-known
phenomenon for AC segmentation.39 The normal direction n(c) to the contour is defined as
the average of the normals to the two sides of the polygon that meet at vertex v(c). Let v′(c)
be the new position where vertex v(c) moves to in the neighborhood. The balloon energy can
then be calculated as the cosine of the angle between n(c) and v′ (c)−v(c). The weight wbal
determines whether the contour expands in the normal direction or the direction opposite to
the normal. If the weight is negative, then a point moving farther along the normal direction
will lower the energy, thus expanding the contour.

The gradient energy attracts the contour to object edges. To calculate the gradient magnitude,
the image is first smoothed with a low-pass filter, chosen experimentally to be a Gaussian filter,
F(x, y) = e−(x2+y2)/σ2, with σ = 300 µm. The partial derivatives are found in the vertical and
horizontal direction, and the magnitude of the resulting vector is computed. The energy is
defined as the negative of the gradient magnitude, so object edges with high gradient
magnitudes will attract the contour. For image I(x, y), the gradient energy is calculated as

(3)

where ** denotes 2D convolution, and ∇⃗ is the partial derivative gradient operator.

4. New energies
a. 3D gradient: The 3D gradient energy is defined in a similar way to the 2D gradient energy.
The 2D gradient magnitude image shows the edges of the object in the 2D image, but the 3D
gradient magnitude image reveals the surface of the object, thus giving better shape information
of the nodule. The 3D image containing the nodule is first smoothed with a 3D low-pass
Gaussian filter:

(4)

The energy is calculated in a similar way to the 2D method:

(5)

b. 3D curvature: We introduced the 3D curvature energy to take advantage of the information
in the z direction, which we found to improve segmentation results over 2D energies alone.
40 This energy is an extension of the curvature constraint idea in 2D, where the energy is
calculated using the two nearest neighbor vertices. In 3D, the energy for each vertex is
calculated with the nearest points on the contours above and below the current contour. With
this energy, the 2D contour at a given slice will thus be constrained by the adjacent contours
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above and below. This prevents one contour from varying substantially from other contours
and results in an overall smoothness in the z-direction.

To calculate this energy for vertex vi(c) of the contour on the ith slice, the closest points to
vi(c) on the contours in the slices above and below i are determined. Let vi+1(ci+1) and
vi−1(ci−1) denote the closest points to vertex c on slices (i+1) and (i−1), respectively. Since
these points are defined to be lying on the contours, they may be on the lines between vertices
and are not necessarily the vertices that move during deformation of other slices. Note that the
index of the point on the contour of the (i+1)th and (i−1)th slices may not be the same as c and,
in fact, they may not be vertices of the contours. As described earlier, we used two new indices
with subscripts, ci−1 and ci+1, to denote that these are different indices on the respective
contours. The 3D curvature energy is represented by an approximation to the second derivative
of the contour in the z direction,

(6)

c. Mask energy: Nodules attached to the pleura (juxta-pleural nodules) present a challenge to
segmentation. Both nodules and normal body tissues have a similar range of Hounsfield Units
(HU). Region growing or thresholding methods will fail to segment nodules, because the
pleura, chest wall, or mediastinum may be included in the contour. Gradient-based methods
will not be able to detect the edge of the nodule either, as there is no well-defined boundary
between nodule and normal tissues. Kostis41 proposed connecting the two points of highest
curvature (where the boundary of the pleura meets that of the nodule) and estimating the
curvature of the wall boundary. That method may not be sensitive enough to local concavities,
due to anatomic or pathological variations.

We have designed a mask energy to meet this challenge. The mask energy is a function of the
distance from a vertex on the AC contour of the nodule to the lung boundary. This is calculated
for each vertex that moves beyond the lung boundary (in the pleura or thoracic wall) during
each iteration of the energy-minimizing procedure. An accurate lung boundary is therefore
required for determining the mask energy. We will describe in the following our methods for
finding the initial lung boundary and the subsequent local refinement used to produce an
accurate boundary.

The first step is to determine the boundary of the pleura. Because of different CT scanning
parameters, the k-means clustering technique with CT voxel value as the feature is used to
segment the lung regions from the thorax in each CT slice instead of a simple threshold. The
extracted lung regions are represented by polygons marking the lung boundaries. This process
provides the initial lung boundaries in the entire slice. More details on this process may be
found in the literature.18

The initial lung boundaries are a general outline of the lungs, but they may not be sensitive
enough to exactly delineate the boundary between a nodule and the pleural surface. If the
estimated lung boundary is not close enough to the actual boundary, it may even trim off part
of a juxtapleural nodule. To refine the boundary between a juxtapleural nodule and the pleural
surface, we use k-means clustering34 within each VOI to determine the mean and standard
deviation of the voxel values considered to be background (lung regions). Any voxels originally
considered part of the pleura, chest wall, or mediastinum that fall within 3 s.d. of this range
will have their membership changed to be that of the lung region. The threshold of 3 s.d. was
chosen experimentally based on the separation between the distributions of voxel values of the
nodules and the lung regions in the training samples. As depicted in Fig. 4, an indentation was
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created as the refined boundary included more of the area originally considered chest wall into
the lung region.

An indentation detection18 technique is used to fill in that indentation. This method detects an
indentation by means of distance ratios. For every pair of points P1 and P2 along the lung
boundary, three distances are calculated. Distances d1 and d2 are distances between P1 and
P2 measured by traveling along the boundary in the counterclockwise and clockwise directions,
respectively. The third distance de is the Euclidean distance between P1 and P2. The ratio is
calculated:

(7)

If the ratio is greater than a threshold, then an indentation is assumed, and it is filled by
connecting the points P1 and P2 with a straight line. Re was chosen to be 1.5 in our previous
study.18 Figure 4 shows an example how the boundary improves as a result of this method.

This boundary marks where the lung region is. If a vertex of the nodule contour v(c) moves to
a position v′(c) that falls outside of the lung region into the chest wall, the mask energy is
calculated as

(8)

where b(c) is the point on the lung boundary closest to v(c). Instead of outright forbidding the
nodule contour to grow into the chest wall, this energy allows for the fact that the lung boundary
may not be completely accurate. The contour may grow into the chest wall, but it will be
penalized the further away from the chest wall boundary it grows.

D. Feature extraction
Gurney42 has provided likelihood ratios for various characteristics that may be useful for
discriminating malignant from benign nodules. Other features to discriminate malignant from
benign nodules have been described by Erasmus.43 We seek to quantify the characteristics of
nodules by mathematical feature descriptors. The accuracy of the segmentation is important
for extraction of some of the features. There is no single feature that can accurately determine
whether a nodule is benign or malignant. For example, features such as the presence of
calcification may be a strong indicator that a nodule is benign. However, it has been reported
that 38%–63% of benign nodules are noncalcified,43–45 and in the study by Swensen et al.,9
up to 96% benign nodules were noncalcified.

From the segmented nodule boundary, we extracted a number of morphological features
including volume, surface area, perimeter, maximum diameter, and maximum and minimum
CT value (HU) inside the nodule. We also extracted statistics from the gray-level intensities
of voxels inside the nodule including the average, variance, skewness, and kurtosis of the gray-
level histogram.

In addition to features that can be derived from the inside of the nodule, the tissue texture
around the margin of the nodule is also important. The growth of malignant tumors tends to
distort the surrounding tissue texture, while benign nodules tend to have smooth surfaces with
more uniform texture around them. To derive these features from the texture around the nodule,
the rubber band straightening transform (RBST) is first applied to planes of voxels surrounding
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the nodule. The run-length statistics (RLS) texture features are then extracted from the
transformed images, as described in the following.

E. Rubber band straightening transform (RBST)
The RBST was introduced by Sahiner et al.46 for analysis of the texture around mammographic
masses on 2D images. The RBST image is obtained by traveling along the boundary of the
nodule, transforming the band of pixels surrounding the nodule into a rectangular image. In
this way, spicules that grow out radially from an object may be transformed as approximately
straight lines in the y direction.

The RBST maps a closed path at an approximately constant distance from the nodule boundary
of the original image to a row in the transformed image, as depicted in Fig. 5. The difference
between the RBST and the transformation from Cartesian to polar coordinates is that the
irregular or jagged lesion boundary will be transformed to a straight line in the horizontal
direction, whereas in a Cartesian to polar transformation, only a circle of constant radius will
be transformed to a horizontal straight line.

With 3D CT scan data, the texture around the whole nodule needs to be extracted. We apply
the RBST to the original CT slices to extract texture in the axial planes. To adequately sample
the texture in all directions, we slice the nodule with two additional sets of planes: by
considering the nodule as a globe, one set contains the longitude lines that run through the
north and south poles (z direction in a CT scan), and the other through the east-west poles. In
each set, four oblique planes (45° apart) slice evenly along the lines of longitude on the nodule
surface. The RBST is applied to a band of voxels surrounding the nodule on each of the oblique
planes. Each RBST image is then enhanced by Sobel filtering in both the horizontal and vertical
directions. Texture features based on run-length statistics are extracted from the Sobel-filtered
RBST images.

RLS texture features were introduced by Galloway47 to analyze the number of runs of a gray
level in an image. A run-length matrix p(i, j) stores information of the number of runs with
pixels of gray-level i and run length j. In this study, the 4096 gray levels are binned into 128
levels before the run-length matrix is constructed to improve the statistics in the matrix.
Galloway designed five RLS features extracted from p(i, j) to describe the gray level patterns
in the image: Short Runs Emphasis (SRE), Long Runs Emphasis (LRE), Gray-Level
Nonuniformity (GLN), Run Length Nonuniformity (RLN), and Run Percentage (RP).
Dasarathy and Holder proposed four more features48 which are based on the idea of joint
statistical measures of the gray levels and run length: Short Run Low Gray-Level Emphasis
(SRLGE), Short Run High Gray-Level Emphasis (SRHGE), Long Run Low Gray-Level
Emphasis (LRLGE), and Long Run High Gray-Level Emphasis (LRHGE). Mathematical
expressions for these RLS texture features are given in Appendix A. We extract these nine
RLS texture features from each of the Sobel-filtered RBST images. Each feature is averaged
over the slices in each of the three groups (axial x-y plane, north-south longitudinal planes, and
east-west longitudinal planes), providing 3D texture information around the nodule.

F. Feature selection and classification
Many different features may be extracted from a nodule, but not all of them are effective in
differentiating the malignant and benign nodules. To identify effective features to be used in
the linear discriminant classifier, we employed stepwise feature selection using F-statistics.
49 The F-statistics is used to evaluate the significance of the change in a feature selection
criterion, which is chosen to be the Wilks lambda (ratio of the within-class sum of squares to
the total sum of squares of the two class distributions) in this study, when a feature is entered
into or removed from the feature pool. Simplex optimization50 is utilized to determine the best
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combination of thresholds (Fin, Fout, tol) that gives the highest figure-of-merit (FOM), the area
under the ROC curve (Az), where Fin is the F-to-enter, and Fout is the F-to-remove threshold.
The tol threshold sets how correlated the features can be for selection.

G. Training and testing
A leave-one-case-out resampling scheme was used for training the segmentation energy
weights and feature selection. In a given cycle, one case that included all CT scans from the
same patient was left out to be used as the test case while the other cases were used for training.
The collection of the test results from all of the left-out cases after the leave-one-case-out cycles
were completed was evaluated by ROC analysis.51 Two simplex optimizations were
embedded: one in the determination of segmentation weights, and the other in the selection of
features. Simplex optimization was used to determine the set of weights that would result in
the highest Az from the feature selection and classification step. A schematic of the training
and testing process is shown in Fig. 6 and the process is described in the following.

Step 1: Initialize with a set of weights for the 3D AC.

Step 2: Generate the boundaries based on the weights, and then extract features from the
boundaries.

Step 3: Perform simplex optimization for feature selection using a leave-one-case-out
resampling scheme for both feature selection and classifier weight determination. The simplex
searches for the Fin, Fout, and tol thresholds that provide the highest test Az from a linear
discriminant classifier with the selected features as predictor variables to differentiate the
malignant and the benign classes.

Step 4: Determine a new set of AC weights using the test Az as the FOM for the simplex
optimization of AC segmentation.

Step 5: Go back to Step 2 and the subsequent steps to determine Az for the new weights. The
iteration continues until simplex converges to the best Az or a predetermined number of
iterations is performed.

In the leave-one-case-out loop for feature selection (Step 3), we also used an alternative FOM,
the partial area index  (TPF above 0.9) for the feature selection process. The use of  as
the FOM would select features that maximize the specificity at the high sensitivity region,52

which is often more important than having a classifier with high average sensitivity over the
entire specificity range. The classifier designed with the  is compared with that designed
with Az.

H. Comparison with LIDC first data set
The performance of the trained 3D AC segmentation program was evaluated with the nodules
in the independent LIDC data set. We used the set of 3D AC weights that provided the highest
test Az in the leave-one-case-out training and test process using our data set as described earlier.
The 3D AC weights were then fixed and applied to the LIDC nodules.

To quantify performance, we propose to use an overlap measure in combination with a
percentage volume error measure. Let A denote the object segmented using the 3D AC method
and L denote the gold standard reference object. Let VA be the volume of the object A, and
VL the volume of the object L, which is the volume of the LIDC object calculated at a specified
pmap threshold in this study. The overlap measure is the ratio of the intersection of volumes
relative to the volume of the gold standard reference object:
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(9)

Alternatively, one may use an overlap measure that is defined as the ratio of the intersection
of volumes relative to the union of the volumes of the segmented and gold standard reference
objects:

(10)

where | · | denotes cardinality. These measures are extensions to the 3D volume from the 2D
area overlap measures.38,53 In the expressions of the overlap measures, each of the volumes
can be considered as the set of voxels comprising the volume.

Overlap1(A,L) or Overlap2(A,L) can provide one measure of the 3D AC performance relative
to the “gold standard” object but neither of them gives a complete description. Overlap1(A,L)
represents the fraction of the gold standard object that is included in the segmented object,
though there is no indication as to what fraction, if any, of the segmented object is outside the
gold standard object. Overlap2(A,L) represents the fraction of overlap relative to the union, but
does not provide information on how large a fraction of the gold standard object is actually
included in the segmented object and whether the nonoverlap volume is contributed by the
segmented object or by the gold standard.

To complement the information, we calculated the percentage volume error, Verr, defined in
Eq. (11) as the difference between the volumes of the segmented object VA and the gold standard
object VL, relative to VL:

(11)

From the two measures, Overlap1(A,L) and Verr, one can derive a number of useful performance
metrics, as detailed in Appendix B, that quantify the number of voxels correctly and incorrectly
segmented as a part of the object, using the gold standard object as a reference.

I. Classification with radiologist’s feature descriptors and malignancy ratings
For comparison, we analyzed the accuracy of a classifier designed with features that were
provided by the radiologists to describe the nodule characteristics. When the radiologists
identified the nodule locations in each CT scan, they provided descriptors of the nodule
characteristics including: (1) the longest diameter, (2) perpendicular diameter to the longest
diameter, (3) conspicuity, (4) edge (smooth, lobulated, or spiculated/irregular), (5) presence
or absence of calcification, (6) presence or absence of cavitation (7) presence or absence of
fat, (8) attenuation (solid/mixed/ground glass opacity), (9) nodule location (the lobe of the
lung), and (10) location (juxtavascular, juxtapleural). These descriptors were treated as input
features to design a linear discriminant classifier. Again, leave-one-case-out resampling was
used for stepwise feature selection and classifier weight determination. Simplex
optimization50 was employed to find the features that resulted in the highest test Az.
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The radiologists also provided a malignancy rating on a 5-point scale for each nodule based
on subjective impression from the CT images (Fig. 2). We applied ROC analysis to the
malignancy rating and estimated the Az. This Az value was also compared to the test Az obtained
by the computer classifier.

III. RESULTS
A. Feature selection and classification based on 3D AC

Table I shows the comparison of classification accuracy obtained with different methods. The
test ROC curves for the various classifiers are shown in Fig. 7. When  was used as the FOM
in the leave-one-case out scheme described earlier, the training Az was 0.88 ± 0.03 and the test
Az and  were 0.78 ± 0.05 and 0.35, respectively. When Az was used as the FOM, the training
Az was 0.87 ± 0.04 and the test Az was 0.83 ± 0.04, with  of 0.30. The difference between
using  and Az as FOM was not significant (p = 0.15), as estimated by the CLABROC program.
54 The distribution of classifier scores for Az as FOM is shown in Fig. 8. An average of 4.1
features was selected. Four of the most frequently selected features along with the number of
times selected out of 58 leave-one-case out cycles are:

1. (1) Long-range low gray-level emphasis on the axial planes (58).

2. (2) Run-length nonuniformity in the north-south oblique planes (56).

3. (3) Maximum CT number: (55).

4. (4) Long-range high gray-level emphasis on the axial planes (54).

This indicates that similar features were consistently selected over the different leave-one-case-
out cycles, even though a different case was left out each time.

B. Comparison with radiologist’s feature descriptors and malignancy ratings
For classification using the radiologist-provided feature descriptors of the nodules, on average
only one feature, the longest diameter, was consistently selected with Az as the FOM. The test
Az was 0.80 ± 0.05 with  of 0.24. The difference in Az between the classifier based on
radiologist-provided feature descriptors and the computer classifier did not achieve statistical
significance (p = 0.40). When  was used as the FOM, the test Az and  was 0.82 ± 0.04
and 0.32, respectively (p = 0.48). Using the radiologists’ malignancy ratings (Fig. 2) as input
to the ROC analysis resulted in an Az of 0.84 ± 0.04, with an  of 0.33. The performance of
the computer classifier was comparable to that from radiologists’ assessments of the likelihood
of malignancy (p = 0.98).

C. Segmentation evaluation on LIDC data set
The 3D AC model with weights trained by the nodules in our data set, as described earlier, was
tested on the 23 LIDC nodules. The mean and median overlap measures for the “gold standard”
volumes defined at various thresholds (from 100 to 1000 in steps of 100) of the probability
map (pmap) are shown in Fig. 9(a). For a given nodule, the number of voxels included within
a pmap threshold, i.e., the common volume that radiologists agreed to be a part of the nodule,
decreased as the pmap threshold increased. There were eight nodules with no voxels at pmap
threshold of 1000 because there were no common voxels that all 18 segmentations agreed to
be part of the nodule. These nodules were excluded in the calculation of Overlap1(A,L) and the
percentage volume error at pmap threshold of 1000 because the values would be undefined.
The average and median were calculated with the remaining nodules. As seen in Fig. 9(a), the
mean of Overlap1(A,L) increases from 0.62 to 0.95 as the pmap increases. The median of the
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Overlap1(A,L) follows a similar trend as the mean, increasing from 0.64 to 1.0. The relatively
high values of Overlap1(A,L) and its increasing trend with increasing pmap value indicate that
a substantial fraction of the voxels that all radiologists marked as a part of the nodule was
consistently included in the AC segmented volume. The mean of Overlap2(A,L) ranges from
0.07 to 0.63, with the maximum at a pmap threshold of 400. The median of Overlap2(A,L)
follows a similar trend as the mean with a range from 0.009 to 0.67, reaching a maximum at
the pmap threshold of 300. The small values of Overlap2(A,L) result from the overestimation
of the volumes by AC segmentation, which is also shown by the percentage volume errors.

The percentage volume error relative to the radiologists’ manually segmented nodule volumes
was calculated using Eq. (11) and plotted in Fig. 9(b). The average percentage volume error
was lowest at a pmap threshold of 300, with a mean of 2% and a median of 10%. The volume
error increased rapidly as the pmap threshold increased because the number of common voxels
decreased. At pmap thresholds greater than 800, there were very few common voxels from the
radiologists’ outlines so that the percentage volume error exceeded 500%. The high value of
Overlap1(A,L) indicated that most of these common voxels were included in the computer-
segmented volumes. The relationship between the percentage volume error and the nodule
volume calculated at the pmap threshold of 500 is plotted in Fig. 10. The threshold of 500 was
chosen since at least half of the contours provided by radiologists enclosed these voxels to be
a part of the true nodule.

IV. DISCUSSION
There is no ground truth for lesion boundaries in medical images. The most commonly used
gold standard is subjective manual segmentation by radiologists. The LIDC studied intra- and
inter-observer variability in manual segmentation of lung nodules by experienced thoracic
radiologists.33 It found large variabilities among radiologists due to the difficulty in defining
the boundaries of ill-defined nodules, a task that even experienced radiologists are not required
to perform clinically. The LIDC has provided a data set of 23 nodules, each with a probability
map (“pmap” image) derived from 18 boundaries manually outlined by six expert thoracic
radiologists (each providing one manual and two semiautomatic segmentations). The
probability map can be used as the “gold standard” boundaries for evaluation of segmentation
by computer methods. For our data set of nodules, we did not attempt to obtain a gold standard
because even experienced radiologists have no standardized method for defining nodule
boundaries. To reduce inter- and intraobserver variation, it will be necessary to have multiple
radiologists segment each nodule multiple times, as done by the LIDC. This approach will be
impractical to perform within one institution, since even a small data set like the one used in
this study contained over 950 CT slices that intersected the nodules.

It is difficult to analytically find a set of energy weights that would provide effective
segmentation for all nodules. The difficulty can be attributed to (i) energy calculations required
for the linear cost function in Eq. (2) being highly nonlinear, (ii) lung nodules growing in many
different irregular shapes, and (iii) boundaries between nodule and lung regions varying from
very distinct to very fuzzy. One empirical method of determining the weights could be manually
segmenting the lung nodules and training the contour weights to fit these case samples, using
an overlap measure or distance measure as an FOM in the optimization process. However,
since there are large inter-and intraobserver variabilities even among experienced thoracic
radiologists as to what constitutes accurate segmentation, our overall goal is not to conform
the segmented objects to subjectively estimated boundaries. Rather, the features extracted from
the generated boundaries should provide accurate classification between malignant and benign
nodules. We therefore used the Az or  of the feature selection step as the FOM to guide the
search for the best weights in the 3D AC model. This approach not only takes into consideration
classification accuracy during segmentation, it also has the advantage of eliminating the need
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for manually drawing the nodule boundaries by radiologists for all the training samples.
Nevertheless, it would be interesting in a future study to examine how well the classifier
performs if features are extracted from manually drawn contours provided by radiologists in
comparison to classification by automated segmentation as described in this study.

We examined the segmentation of the nodules in the LIDC data set by our 3D AC model trained
with Az as a FOM. The average and median overlap measures at various thresholds and the
percentage volume errors based on the LIDC pmap give an indication of segmentation
performance. The average percentage volume errors at the pmap threshold below about 500
were in the range of −20.4% to 6.2%. The average percentage volume error at the pmap
threshold of 500 was 85.7%.

The sudden increase in the values of Overlap1(A,L) and the percentage volume error at pmap
threshold of 500 was caused by the way that the boundary voxels were marked in the LIDC
data set. These boundary voxels were assigned a value of 32 767 in the pmap without the
original voxel values given. In our calculation of nodule volume, we included the boundary
voxels to be part of the volume for pmap <500, i.e., treating the voxel values of the boundary
voxels as 499. For nodule volumes at pmap threshold of greater than or equal to 500, the
boundary voxels would be outside the nodule volume. This resulted in a large transition in the
nodule volume at pmap threshold of 500, especially for small nodules, as shown in Fig. 9.

For 17 of the 23 (74%) nodules, the percentage volume error was below 100%. Three nodules
had large errors. One had ground-glass opacity texture, while the other two had low contrast
between the nodule and lung. Two of those were small (with longest diameters of 4.32 and
4.98 mm based on the gold standard boundaries), while the images are very noisy for the larger
one. Representative slices through the center of the three lung nodules are shown in Fig. 11.
These nodules contributed most to the high volume percentage error, due to incorrect
segmentation of the attached blood vessels or due to incorrect expansion of the active contour
beyond the faint edges.

The 3D AC segmentation energy weights that provided the best features and Az for nodules in
our clinical data set therefore agrees to a certain extent with the boundaries perceived by
radiologists in the LIDC data set. If the purpose of the segmentation is to simulate radiologists’
manual segmentation at a chosen pmap threshold, the 3D AC model should be trained with a
set of nodules with gold standard boundaries at the same threshold. The 3D AC weights
optimized in this manner will likely provide segmented boundaries for test nodules in better
agreement with the manual boundaries than the current training. As discussed earlier, whether
the boundaries that are in agreement with experienced radiologists’ manual segmentation will
provide higher classification accuracy than our current segmentation method remains to be
investigated. This study can be pursued when the LIDC data set is large enough to provide
both training and testing samples for malignant and benign nodules.

It is generally defined and accepted that solitary pulmonary nodules are less than 3 cm in longest
diameter,55,56 but the data set used in this study included 14 masses greater than 3 cm, two of
which were benign. Although one motivation for CAD tools is to assist radiologists with less-
obvious (smaller) indeterminate nodules, we intend to train a CAD system that can analyze a
reasonably broad range of different types of nodules and masses. We therefore included all
types of nodules that we collected in the data set. We extracted morphological and gray level
features in addition to texture features to be used in the input feature pool for design of our
classification system. However, the stepwise feature selection with simplex optimization
selected mainly texture features. This indicates that features such as the size or shape of nodules
may not be as discriminatory, likely because benign objects, such as those caused by
inflammatory processes, also result in nodules of varying sizes and shapes. On the other hand,
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the texture around benign nodules may not be the same as that caused by a malignant growth.
In these cases, texture information would be more discriminatory than shape descriptors.
Another indication of this is that the longest diameter feature was the one selected most
consistently out of the radiologist-extracted feature space, but the same feature was not selected
in the combined morphological and texture features extracted by the computer from the 3D
AC boundaries. Combinations of texture features seemed to provide better discrimination, even
though the longest diameter is a relatively discriminatory feature as evidenced by the Az of
0.75 using this feature alone. Thus, we believe that the inclusion of nodules greater than 3 cm
in longest axis would provide the texture information important for training, not necessarily
for size or shape, and that the trained CAD system may be used for analysis of nodules or
masses over a reasonably broad range of sizes because its performance does not depend on the
size of the nodule or masses.

There were nodules for which the classifier did not perform well. One example is shown in
Fig. 12. This nodule was malignant, but the classifier gave a score indicating a low likelihood
of malignancy. This nodule was embedded and located between branching blood vessels near
the lung hilum, which resulted in poor segmentation [Overlap1(A,L) measure of 0.67 and 78%
volume error]. Furthermore, the texture features extracted from this nodule would not be a
good indicator of spiculation or malignant growth, because the blood vessels occupied much
of the surrounding tissue volume. Even though our segmentation method is fairly robust with
juxtavascular nodules, an embedded nodule among large pulmonary vessels presents a difficult
case. Improved segmentation methods utilizing information such as vessel tracking to remove
vessels and new features will have to be investigated in future studies.

We are improving our current method by expanding our data set and analyzing the classification
performance of different types of nodules. For example, nodules from primary lung cancer
may have different characteristics than metastatic nodules, although both types would be
considered malignant. Our long-term goal is to aid the differentiation of malignant and benign
nodules detected in screening, making identification of primary lung cancer of prime
importance. Thus, training classifiers that are specific to the features of primary lung cancer
may improve the performance of the classifier in the screening population.

Another aspect of our current system that needs improvement is the method to determine which
object is the nodule in the VOI. Currently we choose the largest object close to the center, since
the VOIs were marked by radiologists. However, if a combined detection and classification
system is to be developed in the future, the VOI may not center at the automatically detected
object, and the object may not be the largest one in the VOI. More intelligent methods for
differentiating nodules from other normal lung structures in the VOI segmented by clustering
will have to be investigated.

Although the use of leave-one-case-out validation results is a commonly accepted approach in
CAD literature because of the difficulty of collecting a large enough database for training,
validation, and independent testing, it is prudent to keep in mind that the performance of the
CAD system may not be considered generalizable to the patient population until its
performance is verified with a truly independent test set that is not seen by the CAD system or
the trainer during the developmental process. Our test results show comparable performance
between CAD and radiologists’ assessment of the likelihood of malignancy of the nodules. In
a clinical situation, radiologists may be able to utilize other information such as patient history
and clinical data, in addition to image data, to assess the likelihood of malignancy. An advanced
CAD system may also merge all available information into a diagnostic recommendation. At
the current stage, we focus on optimizing the use of image data to extract diagnostic information
to avoid the masking of the image information by other dominant risk factors such as smoking
history or age. Further, CAD is not intended to be used as a stand-alone diagnostic tool. After
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an effective classifier is designed, it is necessary to determine whether radiologists would
improve their classification of lung nodules with CAD.

V. CONCLUSION
Our results demonstrate that 3D AC can segment lung nodules automatically. Automated
feature extraction from the segmented boundary and classification can achieve an accuracy
comparable to that of an experienced radiologist. The computer classifier thus has the potential
to provide a second opinion to radiologists for assessing the likelihood of malignancy of a lung
nodule. When the 3D AC trained with our clinical data set was applied to the LIDC data set,
the segmented volumes by the computer algorithm were in general larger than those manually
segmented by the radiologists. It remains to be investigated whether the 3D AC model trained
using gold standard boundaries at a given threshold such as those provided by the LIDC
database can achieve higher classification accuracy than that achieved with our current
approach. Comparison of the two approaches will be pursued when a large data set is available
in the LIDC database.
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Appendix

APPENDIX A

RLS FEATURES
The Gallaway run-length features are described in the following, where p(i, j) is the run-length
matrix that stores information on the number of runs with pixels of gray-level i and run length
j. M is the number of gray levels, N is the number of runs, nr is the total number of runs, and
np is the number of pixels in the image.

Short Runs Emphasis (SRE):

(A1)

Long Runs Emphasis (LRE):

(A2)

Gray-Level Nonuniformity (GLN):

(A3)

Run Length Nonuniformity (RLN):
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(A4)

Run Percentage (RP):

(A5)

Dasarathy and Holder presented four more features.48 These are based on the idea of joint
statistical measures of the gray levels and run length.

Short Run Low Gray-Level Emphasis (SRLGE):

(A6)

Short Run High Gray-Level Emphasis (SRHGE):

(A7)

Long Run Low Gray-Level Emphasis (LRLGE):

(A8)

Long Run High Gray-Level Emphasis (LRHGE):

(A9)

APPENDIX B

SEGMENTATION PERFORMANCE METRICS
By combining the overlap measure Overlap1(A,L) in Eq. (9) and the percentage volume error
(Verr) in Eq. (11), one can define a number of performance metrics that quantify the number
of voxels correctly and incorrectly segmented as a part of the object, using the gold standard
object as a reference.

True positive fraction (TPF): the fraction of the voxels that are in the gold standard object and
are included in the segmented object:

(B1)
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False positive ratio (FPR): the ratio of the voxels that are in the segmented object but not in
the gold standard object, relative to the gold standard object:

(B2)

False negative fraction (FNF): the fraction of the voxels that are in the gold standard object
but not included in the segmented object:

(B3)

Nonoverlapping volume ratio (NOVR): the ratio of voxels in the gold standard object and in
the segmented object that do not overlap, relative to the gold standard object:

(B4)

The equations above use Overlap1(A,L), but the conventional overlap measure in Eq. (10) can
also be expressed in terms of Overlap1(A,L) and NOVR:

(B5)

Therefore, the two measures Overlap1(A,L) and Verr provide a complete description of the
segmentation performance. As an example, we have plotted the metrics described above in
Fig. 13 as derived from the average Overlap1(A,L) and Verr values for the LIDC nodules shown
in Fig. 9.

From Eq. (B5), it is seen that Overlap1(A,L) can be expressed in terms of Overlap2(A,L):

(B6)

and thus Overlap2(A,L) in conjunction with Verr can also provide similar performance metrics
defined above, although the relationships are more involved. These analyses indicate that it is
important to include the percentage volume error as a complement to either of the overlap
measures.
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Fig. 1.
Distribution of the longest diameters of the lung nodules in the data set, as measured by
experienced thoracic radiologists on the axial slices of the CT examinations.
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Fig. 2.
Confidence ratings for the likelihood of a nodule being malignant (1 = most likely benign, 5
= most likely malignant) by experienced thoracic radiologists.

Way et al. Page 23

Med Phys. Author manuscript; available in PMC 2009 August 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
The vertices of the polygon and positions used in the active contour model.
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Fig. 4.
An example demonstrating the correction of lung segmentation from the pleural surface. From
left to right: the initial pleural boundary, indentation created along the lung boundary after local
refinement, and corrected lung boundary after indentation is filled.

Way et al. Page 25

Med Phys. Author manuscript; available in PMC 2009 August 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
The rubber band straightening transform (RBST). Top Left: A ROI containing a nodule. Top
Right: The active contour boundary from which the RBST image is extracted. Bottom: The
RBST image that will be Sobel-filtered, from which run-length statistics may be extracted. The
black area of the RBST image corresponds to the pixels where the chest wall is masked out.
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Fig. 6.
Flow chart showing the simplex optimization process for selection of weights in the 3D AC
model and classifier design.
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Fig. 7.
ROC curves comparing the different results for optimization using Az as FOM. Computer Az
= 0.83, Rad features Az=0.80, Rad likelihood Az = 0.84.
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Fig. 8.
Test discriminant scores of lung nodules from the leave-one-case-out segmentation training
and testing method.
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Fig. 9.
Overlap measures (a) and volume percentage errors (b) at different pmap thresholds for testing
of the 3D AC segmentation using the 23 LIDC nodules. The error bars indicate 1 s.d. from the
average (only one side shown for clarity). Two overlap measures are shown: Overlap1(A,L)
relative to the gold standard volume and Overlap2(A,L) relative to the union of the segmented
volume and the gold standard volume. Note the increasing volume error as the pmap threshold
increases because the LIDC-defined nodule volume decreases with increasing pmap threshold
values. A pmap value of 1000 means the intersection of all 18 LIDC manually and
semiautomatically drawn contours by radiologists. Eight of the nodules contain no voxels in
the intersection at pmap of 1000 so that the average and the median were calculated from the
remaining 15 nodules.
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Fig. 10.
Percentage of volume error relative to the volume (in log scale) enclosed within the contour
defined by a pmap threshold of 500 for each of the 23 LIDC test nodules. One small juxta-
vascular nodule had a volume error of 743% because the blood vessel was erraneously
segmented.
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Fig. 11.
Representative slices (not to scale) from difficult-to-segment LIDC nodules: (a) small, faint
juxtavascular nodule (longest diameter 4.32 mm), (b) small nodule (longest diameter 4.98 mm),
and (c) juxtavascular (longest diameter 11.92 mm) low contrast nodule in noisy image.
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Fig. 12.
An example of a nodule which was difficult to segment because it was embedded in thick blood
vessels, leading to inaccurate classification. (a) axial slice through the nodule, and (b) 3D
volume containing the nodule.
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Fig. 13.
The performance metrics TPF, FPR, FNF, and NOVR derived from the average
Overlap1(A,L) and Verr measures shown in Fig. 9.
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TABLE I
Comparison of classification performance of the classifiers, in terms of Az and  obtained from leave-one-case-out
testing. The classifiers were designed with different feature sets or different FOMs during simplex optimization.

Az as FOM
Az

0.9 as FOM

Methods Az
Az

0.9 Az
Az

0.9

Computer classifier 0.83±0.04 0.30 0.78±0.05 0.35

Feature descriptors by radiologist 0.80±0.05 0.24 0.82±0.04 0.32

Likelihood of malignancy by
radiologist

0.84±0.04 0.33
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