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Abstract

α-Chloroaldehyde bisulfite adducts were successfully employed in chiral NHC-catalyzed hetero-
Diels–Alder reactions with various oxodienes under biphasic reaction conditions with high levels of
enantioselectivity. This new protocol makes possible enantioselective additions from commercially
available chloroacetaldehyde sodium bisulfite and demonstrates that this unique class of catalysts
readily tolerates aqueous conditions.

Enantioselective hetero-Diels–Alder reactions provide a versatile and convergent approach to
the construction of chiral heterocycles.1 In recent years, significant progress has been achieved
in the development of efficient chiral metal and organic catalysts for enantioselective hetero-
Diels–Alder reactions.2,3 Their great synthetic utility continues to drive further interest in
improved protocols and expanded substrate scope. Of particular need are reactions in which
the starting materials are readily accessible, and low catalyst loadings can be employed while
still maintaining high levels of enantioselectivity.

We have recently reported the first chiral N-heterocyclic carbene (NHC) catalyzed hetero-
Diels–Alder reaction, via the catalytic generation of chiral enolates that serve as dienophiles.
4,5 We have also extended the dienophile precursors from electron-deficient enals to α-
chloroaldehydes,6 which can be readily prepared from the corresponding aldehydes.7
However, α-chloroaldehydes are sensitive to moisture and oxygen,8a and their preparation and
storage require precautions. Furthermore, α-chloroacetaldehyde, which would provide entry
into challenging but synthetically important enantioselective acetate additions,9 is difficult and
unsafe to obtain in pure form.8b In this communication, we document efficient solutions to
both of these challenges through the use of α-chloroaldehyde bisulfite salts under biphasic
conditions (eq 1). This new protocol both extends the scope and operational simplicity of NHC-
catalyzed enantioselective hetero-Diels–Alder reactions and demonstrates that this unique
class of catalysts readily tolerates aqueous conditions.10
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(1)

At the outset of our studies, we investigated a number of α-chloroaldehyde surrogates,
including hemiacetals, bromopyruvic acid, and the α-chloroaldehyde bisulfite adducts. Among
these starting materials, the α-chloroaldehyde bisulfite adducts were particularly attractive as
they were bench-stable solids that could be readily prepared by the addition of aqueous sodium
bisulfite to a solution of the appropriate aldehydes.11b Their use as substrates, however, would
necessitate the use of aqueous conditions to decompose the bisulfite adducts to the
corresponding aldehydes in the presence of the NHC catalyst.11,12

To test the feasibility of our approach, we selected inexpensive, commercially available
chloroacetaldehyde sodium bisulfite 2 as a precursor of chloroacetaldehyde for the NHC-
promoted reactions with two representative oxodienes: 4-oxoenoate 3a and β,γ-unsaturated α-
ketoester 4a (Scheme 1). We screened a number of reaction conditions before selecting biphasic
conditions employing 1.0 M K2CO3 as the inorganic base and EtOAc as the organic solvent
for further development. These studies established the feasibility of using the bisulfite adducts
as starting materials but confirmed our fears of epimerization. The use of 3a as the oxodiene
provided product 5a only in 31% ee, while the use of 4a afforded adduct 6a in >99% ee.4b

We reasoned from these results that the low enantioselectivity observed for 5a was due to
epimerization of the annulation product. Notably, this product contains a readily epimerizable
stereocenter by virtue of the β,γ-unsaturated ester and lacks adjacent substitution, which had
been present in all of the examples from our prior work. To improve the enantiomeric excess
of the product 5a, we investigated the effect of reaction conditions including inorganic bases
and organic solvents (Table 1). Although the use of either a weaker base (NaHCO3, entries 1
and 2) or a nonpolar solvent (entry 3) suppressed epimerization, the combination of
NaHCO3 and toluene afforded the product only in 75% ee. In contrast, those of 1.0 M
K2CO3 and toluene minimized the epimerization (entries 4 and 5) at the expense of diminished
yields. Some of the product loss was traced to hydrolysis, and improved yields could be
obtained simply by employing the more stable ethyl ester (entries 6 and 7). Notably, these
conditions also allowed us to lower the catalyst loading to 1 mol % of chiral triazolium
precatalyst1.

The scope of these conditions for NHC-catalyzed Diels–Alder reactions with
chloroacetaldehyde bisulfite salt 2 with various oxodiene substrates is shown in Table 2. This
survey demonstrated that this biphasic process accommodated various substrates 3b–e (entries
1–4) including aromatic and aliphatic substitution. Except for entry 2, all of the substrates
screened afforded the desired 4,6-disubstituted dihydropyran-2-ones with good
enantioselectivity, albeit slightly diminished by epimerization. As expected, the β,γ-
unsaturated α-ketoesters 4a and 4b furnished the corresponding products in good yields and
with excellent enantioselectivity. The absolute configuration of the products was determined
by single-crystal X-ray analysis of the product (R)-ethyl 6-(4-bromophenyl)-2-oxo-3,4-
dihydro-2H-pyran-4-carboxylate (Table 2, entry 2).13 Interestingly, the sterically hindered 4-
oxoenolate 7, which did not react with any α-chloroaldehydes in our previous investigations,
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afforded bicyclic product 8 with excellent enantioselectivity when catalyzed by 5 mol % of
1.

In addition to allowing direct use of the commercially available chloroacetaldehyde bisulfite
adduct, we also sought to utilize these conditions to simplify the preparation, handling, and
reactions of substituted α-chloroaldehydes. After some experimentation, we identified reliable
conditions for the conversion of common α-chloroaldehydes to the bench-stable, solid bisulfite
adducts (see Supporting Information).11b We were pleased to find that the reaction conditions
optimized for the chloroacetaldehyde bisulfite salt were directly applicable to these substrates.
Biphasic reactions with either substituted 4-oxoenolates (entries 1–7) or β,γ-unsaturated α-
ketoesters (entry 8 and 9) provided the Diels–Alder products in good chemical yields and
excellent enantioselectivity.14

In all cases, only 1 mol % of chiral triazolium precatalyst 1 was employed. The absolute
configuration was determined by X-ray analysis of an enantiomerically pure sample of (3S,
4S)-ethyl 3-benzyl-6-(4-bromophenyl)-2-oxo-3,4-dihydro-2H-pyran-4-carboxylate (Table 3,
entry 2, see Supporting Information).15

In summary, we have developed a catalytic enantioselective method for hetero-Diels–Alder
reactions that employs easily available, bench-stable α-chloroaldehyde bisulfite salts as starting
materials. This enantioselective, biphasic hetero-Diels–Alder reaction represents the first
enantioselective NHC-catalyzed reaction that is demonstrably water-tolerant. It provides an
innovative solution to enantioselective additions of acetate equivalents using the inexpensive,
commercially available bisulfite adduct of chloroacetaldehyde, thereby interfacing with
ongoing efforts to employ commodity chemicals in lieu of preactivated or protected reactants.
16 This approach also extends the scope of enantioselective NHC-catalysis and provides a more
convenient and operationally simple protocol for NHC-catalyzed Diels–Alder reactions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Scheme 1.
NHC-Catalyzed Hetero-Diels–Alder Reactions with Chloroaldehyde Sodium Bisulfite 2
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