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Abstract

Oral diseases, including dental caries, periodontal disease, and tooth loss, affect the majority of the population and can

affect a person’s overall health. Raisins contain polyphenols, flavonoids, and high levels of iron that may benefit human

health. However, their oral health benefits are less well understood. We hypothesized that raisins contain antimicrobial

phytochemicals capable of suppressing oral pathogens associatedwith caries or periodontal diseases and thus benefit oral

health. Through antimicrobial assay-guided fractionation and purification, compounds identified with growth inhibition

against oral pathogens were oleanolic acid, oleanolic aldehyde, linoleic acid, linolenic acid, betulin, betulinic acid, 5-

(hydroxymethyl)-2-furfural, rutin, b-sitosterol, and b-sitosterol glucoside. Oleanolic acid suppressed in vitro adherence of

cariogenic Streptococcus mutans biofilm. When the effect of raisins and raisin-containing bran cereal on in vivo plaque

acidogenicity was examined in 7- to 11-y-old children, it was found that raisins did not reduce the plaque pH decline below

pH 6 over the 30-min test period. Compared with commercial bran flakes or raisin bran cereal, a lower plaque pH drop was

noted in children who consumed a raisin and bran flake mixture when no sugar was added (P, 0.05). Grape seed extract,

high in proanthocyanidins, positively affected the in vitro demineralization and/or remineralization processes of artificial

root caries lesions, suggesting its potential as a promising natural agent for noninvasive root caries therapy. Raisins

represent a healthy alternative to the commonly consumed sugary snack foods. J. Nutr. 139: 1818S–1823S, 2009.

Oral health and disease
Oral diseases and conditions, including dental caries, periodon-
tal disease, orofacial disorders, and tooth loss, affect more
persons than any other disease in the United States. Millions of
Americans suffer from these diseases and conditions of the oral
cavity that result in pain and suffering; difficulty in speaking,
chewing, and/or swallowing; and in extreme cases, death (1).
Next to the common cold, dental diseases are the major cause of
lost work or school days and have had a negative impact on

economic productivity and the learning ability of American
children (2). Oral diseases and/or disorders can affect a person’s
overall health (3). Recent research has shown that oral bacteria
may contribute to increased risk of heart attacks, strokes, and
lung disease and may be associated with premature childbirth in
some women (4,5).

Dental caries is a multi-factorial infectious disease that
depends on diet and nutrition, microbial infection, and host
response. Although the introduction of fluoride has resulted in
the reduction of dental caries, the latter is still the most common
infectious disease in humans and is especially prevalent in
children and people with xerostomia (dry mouth) (6). In adults,
the incidence of root caries was found to increase dramatically
with age. Thus, control of caries is of major importance in
dentistry and will continue to be for the foreseeable future. The
mutans group of streptococci (MS),4 found prominently in
dental plaque, have been strongly implicated as one of the
etiologic agents of dental caries in both humans and experi-
mental animals (7). Epidemiological data indicate that Strepto-
coccus mutans accounts for at least 90% of the isolates
associated with human caries, with Streptococcus sobrinus
being the second most common MS detected. The most
prominent virulence factors of MS include their acidogenicity,
aciduricity, and their ability to synthesize adherent glucans from
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dietary sucrose via glucosyltransferases, facilitating dental
plaque formation and its adherence to tooth surfaces (8).

Besides dental caries, gingivitis and periodontal disease affect
most of the adult population, with the prevalence of severe
disease increasing with age (3). Periodontal disease is a group of
chronic inflammatory diseases caused by specific anaerobic
Gram-negative bacteria that activate immunoinflammatory
mechanisms within the local periodontal tissues, leading to the
destruction of collagen and bone supporting the teeth (9).
Periodontitis occurs at greatly different rates in different
participants. The chronic forms of the disease are widespread
among the population, whereas the aggressive, destructive form
of the disease affects ~10% of the population, resulting in
serious tooth loss before old age (10).

Dental plaque has been implicated as the prime etiologic
factor in dental caries, gingivitis, and periodontal disease (11–
13). It is a complex bacterial biofilm community for which the
composition is governed by factors such as cell adherence,
coaggregation, and growth and survival in the environment (14).
Plaque bacteria utilize the readily fermentable carbohydrates on
tooth surfaces to produce acids that promote and prolong the
cariogenic challenge to teeth, leading to enamel demineraliza-
tion and tooth decay. The development and progression of
dental caries depends on the amount of food particles that
become trapped on the surfaces of teeth that may serve as ready
sources of fermentable carbohydrates, thereby promoting acid
production by plaque bacteria. This prolongs the cariogenic
challenge to the teeth, leading to enamel demineralization and
tooth decay. To date, mechanical plaque elimination with
assorted devices remains the primary and most widely accepted
means of maintaining good oral hygiene and controling plaque-
mediated diseases (15,16).

In recent years, much attention has been focused on research
and education related to the identification of food components
and development of food products with disease-preventing and
health-promoting benefits of the “functional foods.” Numerous
naturally occurring components in foods and vegetables have
been shown to promote health and reduce risks for many
common diseases. Despite these advances, the general public
seems less aware of foods that promote oral health. It is thought
that plant-derived antimicrobial compounds may serve as
alternatives to the commonly used chemicals for dental plaque
and oral disease control. The hypothesis is that higher plants and
selected foods possess antimicrobial phytochemicals capable of
suppressing growth and virulence factors of oral pathogens,
thereby benefiting oral health. The author has developed
methodologies in her laboratory for the screening, fractionation,
and identification of oral antimicrobials from these sources
using an interdisciplinary research approach involving dentistry,
oral microbiology, and natural products chemistry (17–23). The
foods studied included honey, tea, cranberries, raisins, dried
plums, grape seeds, and others. Many of the active compounds
inhibited the growth, metabolism, virulence factors, acidoge-
nicity, and accumulation of dental plaque bacteria. Recently, the
effects of these phytochemicals on the in vitro remineralization
of dental caries lesions have also been investigated. The
following summarizes some of the studies related to grape
products and their potential oral health benefits.

Raisins and oral health
Raisins are dried grapes, fruits of Vitis vinifera L. (Vitaceae)
(24). Today, most raisins are produced from Thompson seedless
grapes, which were introduced to California in 1862 by William
Thompson (23). This variety is classified as a raisin-type grape

that produces a green, seedless fruit. While dominating raisin
production, it is also widely used for fresh consumption and for
making juice concentrate and wine as well (24,25). Several other
raisin grape varieties are used for raisins production, including
Muscat, Black Corinth, and Sultana. The US per capita annual
consumption of raisins is ~3.26 kg (25). Three types of raisins
are economically important in the US. Natural raisins are sun-
dried and account for the majority of the raisins produced and
consumed. Dipped raisins are dried artificially and have higher
moisture content than natural raisins. Golden raisins are treated
with sulfur dioxide to preserve the golden color (24).

As a popular snack food, raisins contain polyphenols,
flavonoids, iron, minerals, potassium, calcium, and certain B
vitamins that may benefit overall human health. Raisins are
cholesterol and fat free, rich in antioxidants, and a good source
of fiber (26). Raisins consist of ~60% sugars by weight and their
sweetness is contributed by mainly glucose and fructose, while
no sucrose is detected (27). As described previously, sucrose, the
main dietary sugar, serves as a substrate for the synthesis of
adherent glucans in human dental plaque, the etiologic agent of
tooth decay and gum disease (28). The various phytochemicals
reported in raisins include triterpenes (29), fatty acids (30,31),
flavonoids (32), amino acids (33), hydroxycinnamic acids (32),
and 5-hydroxy-2-furaldehyde (34). Although various in vitro
studies have been performed to investigate the mode of actions
of these phytochemicals and their effects on bodily functions,
much less attention has been paid to their effects on oral health
and disease prevention.

Identification of antimicrobial compounds in raisins
against oral pathogens
The antimicrobial compounds present in raisins capable of
suppressing growth and/or virulence properties of oral pathogens
have been fractionated and identified (23). Thompson seedless
raisins were chosen in the study because the hexane-soluble
fraction of the crude methanol extract demonstrated growth
inhibitory activity against 2 oral pathogens, the cariogenic S.
mutans and the periodontopathic Porphyromonas gingivalis.
Through bioassay-guided fractionation of hexane- and ethyl
acetate-soluble partitions of V. vinifera, antimicrobial com-
pounds were isolated and identified. All of the compounds were
previously reported from species in the family Vitaceae. The
substances, oleanolic acid (1) (35), oleanolic aldehyde (2) (36),
linoleic acid (3) (37), linolenic acid (4) (37), betulin (5) (38),
betulinic acid (6) (39), 5-(hydroxymethyl)-2-furfural (7) (40),
rutin (8) (41), b-sitosterol (42), and b-sitosterol glucoside (43),
were identified by comparing their physical and spectroscopic
datawith those of published values. The results in this studywere
in general in agreement with expected chemotaxonomic pattern
for a member of Vitaceae. After their purification, the triterpe-
noids (1-2 and5-6), linoleic acid (3), linolenic acid (4), betulin (5),
betulinic acid (6), 5-(hydroxymethyl)-2-furfural (7), rutin (8),
and the derivatives (1a–f) were tested for antimicrobial activity
against S. mutans and P. gingivalis. Compounds 1, 2, 7, 1d, 1e,
and 1f were inhibitory to the growth of P. gingivalis, with
minimum inhibitory concentration values ranging from 0.0035
to 0.488mg/mL. Compounds 1, 2, 7, 8, 1a, 1e, and 1f were active
against S. mutans (0.0078–0.0625 mg/mL). Among these, com-
pounds 1, 2, 7, and8were either equally ormore potent than their
respective crude extract of origin. The hexane and ethyl acetate
extracts weremore potent than the chloroform,methanol, and 1-
butanol extracts. The differential antimicrobial activity observed
against P. gingivalis suggests that compounds 2, 7, 1d, 1e, and 1f
may benefit periodontal health.
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Earlier in vitro studies have shown that oleanolic acid (1)
inhibited insoluble glucan synthesis of mutans streptococci in
the oral cavity (44–46). Several pharmacological properties of
oleanolic acid have been demonstrated: antiinflammatory,
antitumor, hepatoprotective, cytotoxic, antidiabetogenic, an-
tibacterial, and anti-HIV activities (45). It was observed that
oleanolic acid inhibited the in vitro biofilm formation of S.
mutans (data not shown). Studies to elucidate the mechanism
of actions of the bioactive compounds from raisins are cur-
rently underway.

Raisins and their effect on in vivo dental plaque
acidogenicity in children
The development and progression of dental caries depends on
both their frequency of consumption of cariogenic carbohy-
drates and on the amount of food particles that become trapped
on the surfaces of teeth. Both of these serve as ready sources of
fermentable carbohydrates that promote acid production by
plaque bacteria. When plaque is not removed, the prolonged
cariogenic challenge (pH below the threshold of 5.5) leads to
enamel demineralization and tooth decay. However, the fre-
quency of consumption of cariogenic carbohydrates plays a
much larger role in caries progression than the amount of food
particles trapped on the surfaces of teeth (47).

Raisins have been shown to possess a moderate to high
cariogenic potential in laboratory rats (48). Dental plaque pH
studies in humans categorized raisins as acidogenic (49–51).
Some health professionals believe that sweet and sticky foods
such as raisins are more cariogenic because they are difficult to
clear off the tooth surfaces (52). Studies have shown that sticky
foods are not necessarily all retentive and may be cleared
relatively fast from the oral cavity. Oral clearance properties
vary markedly among individuals and depend on factors such as
salivary flow, metabolism by microorganisms, and degradation
by plaque and salivary enzymes (53). Kashket et al. (54) found
no correlation between stickiness and retention of foods on
teeth. They also reported a poor correlation between the
consumer ratings of stickiness of foods and their actual clearance
rates from tooth surfaces. Among the foods evaluated, raisins
were almost completely cleared from tooth surfaces 5 min after
chewing and swallowing.

The sweetness of raisins makes them a popular additive to
snack foods and cereals, among which raisin bran cereal is a
good example. Studies have shown that bran flakes were
acidogenic and contributed to high levels of total carbohydrate
in saliva (55,56). Utreja et al. (57) investigated the effects of
raisins and raisin bran cereal on in vivo plaque acidogenicity in
young children. The underlying hypothesis was that raisins or
raisin-containing cereals without added sugar were not more
acidogenic than cereal without raisins in lowering the plaque pH
of young children. When raisins were mixed with bran flakes
without additional sugar, the combination is no more acidogenic
than bran flakes alone.

Twenty healthy children between the ages of 7–11 y
participated in this randomized, controlled, cross-over study.
The Institutional Review Board, Office for the Protection of
Research Subjects of the University of Illinois at Chicago
approved this study. Informed consent and assent to participate
were obtained for each participant prior to the start of the study.
The author enrolled all participants and assigned to them
identifier codes in accordance with the Institutional Review
Board guidelines. The order in which participants consumed the
test foods was determined by a computer-generated randomized
sequence.

The foods used in this study were: 1) raisins; 2) commercial
bran flakes; 3) a commercial raisin bran cereal (cRB); and 4) an
experimental raisin bran cereal (eRB). All commercial products
were purchased from the Jewel-Osco department store. A 10-g
serving of cRB contained 7 g of bran flakes and 3 g of raisins
from the prepackaged commercial cereal. eRB was prepared in
the laboratory by mixing 7 g of commercial bran flakes and 3 g
of raisins. No sugar was added. Sucrose and sorbitol (10%
solution) were used as positive and negative controls, respec-
tively. Sugar profiles of bran flakes, raisins, cRB, and eRB were
determined by GC (Covance Laboratories) as described by
Mason and Slover (58).

All children participated in testing once per week when they
either consumed a test food (without milk) or rinsed with a sugar
solution. All participants thus consumed 4 test foods and rinsed
with 2 solutions during the study period. At each visit, they were
asked to chew and ingest 10 g of a test food in 2min or rinse with
10 mL of a solution for 1 min. The in vivo plaque pH of the
participant was measured at baseline to determine the resting
pH and at time intervals of 2, 5, 10, 15, 20, and 30 min after
either eating 1 of the 4 test foods or rinsing with a control
solution. In vivo plaque pH was measured with a touch
microelectrode (NMPH3 Dental Beetrode, World Precision
Instruments) and a glass reference electrode (DRIREF-5, World
Precision Instruments) (59). The measuring electrode was
inserted in interproximal plaque just below the contact area in
the upper left and right maxillary premolar regions. The
individual mean of pH from the 2 sites was tabulated, following
which the mean of the all the participants for each food group
was calculated for each time point. Comparisons were
performed between the various foods at individual time points
using ANOVA and the Scheffé post hoc test (SPSS 15.0 for
Windows) (57).

Results obtained from this study showed that the mean
resting plaque pH of the 20 participants at 0 min ranged from
6.34 to 6.42. Consumption of bran flakes resulted in a steady
drop in plaque pH, reaching a maximum between 5 and 10 min
(pH 5.89 and 5.99), and remained at 6.23 6 0.28 at the end of
30 min, which lower than the 6.466 0.31 (P, 0.001) observed
30 min after rinsing with sucrose.

When participants consumed raisins, the mean plaque pH
dropped from 6.406 0.30 to 6.016 0.32 at 10 min, followed by
a gradual recovery toward baseline pH at 30 min. Consuming
raisins and bran flakes without added sugar (eRB) resulted in a
plaque pH decline to 6.19 6 0.28 in 10 min, followed by a
steady increase to 6.35 6 0.29 at 30 min. Therefore, consump-
tion of raisins, or mixing raisins and bran flakes without sugar
(eRB), did not reduce plaque pH below 6 during the 30-min
testing period. Moreover, consumption of eRB promoted a
lower plaque pH decrease beyond 10 min compared with bran
flakes alone (P , 0.001).

Although the carbohydrate profile of raisins revealed 68%
sugars (6.84 g in 10 g), the highest among all test foods, they
were less acidogenic than cRB, bran flakes, and 10% sucrose
solution, i.e. the mean plaque pH did not fall below 6 after
consumption by participants. we concluded that that raisins,
albeit sweet, were less retentive on tooth surfaces and were
rapidly cleared after chewing. This concurs with the findings of
Kashket et al. (54) that raisins were poorly retained, similar to
apples, bananas, and white bread and were rapidly cleared 5 min
after chewing and swallowing. Raisins, when added to bran
flakes without additional sugar, may enhance the clearance rate
of the chewed bran particles from the tooth surfaces, thus
rendering eRB less acidogenic than bran flakes alone.
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Upon consuming a cRB, a decline in plaque pH began at
2 min and remained below 6 for the remainder of the 30-min
testing period. The pH decline during this period was lower than
in the sucrose, eRB, bran flakes, or raisin groups (P , 0.001).
Based on sugar profile analysis, the cRB was found to contain
higher total sugar than the eRB. During preparations of the test
food samples, it was observed that the raisins in the cRB were
covered with visible sweet-tasting white granules whose identity
was unknown. According to a manufacturer, coating of raisins is
routinely carried out to prevent clumping and to improve the
appearance of the product. The sweet granules on the surfaces of
raisins may be a readily fermentable sugar source for acid
production by plaque bacteria. In addition, the combination of
starch from the bran flakes might also have added to the rapid
drop in plaque pH over most of the testing period after
consumption of cRB. Ribeiro et al. (60) have reported that
starch in combination with sucrose, as in many processed foods
today, can be highly acidogenic.

Based on data obtained from this study, the ranking of study
test foods in promoting plaque acidogenicity was: cRB . bran
flakes. raisins. eRB. Raisins represent a healthy alternative to
the commonly consumed sugary snack foods. Further studies to
evaluate the long-term effect of raisin consumption on plaque
microflora and acidogenicity are warranted.

Grape seed extract and dental health
Root caries is especially prevalent among the elderly population
due to gingival recession and the exposure of susceptible root
surface (61). Approximately 8% of the population are expected
to acquire one or more new root caries lesions yearly in North
America (62). During root caries development, the dentin
mineral is dissolved by acid produced from oral bacterial
biofilm and the demineralized dentin matrix is further degraded,
allowing bacteria to infiltrate the intertubular area (63). Dentin
is a complex mineralized tissue composed of ~70% mineral,
20% organic component, and 10% fluid (64). The organic
matrix of dentin consists of ~90% fibrillar type I collagen, while
the remaining 10% is composed of noncollagenous proteins
such as phosphoproteins and proteoglycans (64,65). The pres-
ervation and stability of dentin collagen may be essential during
the remineralization process, because it acts as a scaffold for
mineral deposition. It has also been suggested that the presence
of an organic matrix may reduce the progression of erosion in
dentin (66,67). One of the important strategies regarding
preventive therapies for root caries is to promote remineraliza-
tion of demineralized dentin (68–71).

Proanthocyanidin (PA) is a naturally occurring plant metab-
olite widely available in fruits, vegetables, nuts, seeds, flowers,
and bark (72). Commonly used as natural antioxidants and free-
radical scavengers, PA has been proven to be safe in various
clinical applications and as dietary supplements (27,73). Grape
seed extract (GSE) is a rich source of PA, which has been
reported to strengthen collagen-based tissues by increasing
collagen cross-links (74). PA from cranberries inhibited the
surface-adsorbed glucosyltransferases and acid production by S.
mutans (75). Studies have also shown that PA increased collagen
synthesis and accelerated the conversion of soluble collagen to
insoluble collagen during development (76,77). PA-treated
collagen matrices were demonstrated to be nontoxic and resisted
enzyme digestion in vitro and in vivo (78). Xie et al. (79)
performed a study to examine the effect of GSE on the
remineralization and demineralization of the collagen-rich root
tissue of human teeth.

To evaluate the effect of GSE on the remineralization of
artificial root caries, an in vitro pH-cycling model was used (79).
Teeth fragments obtained from the cervical portion of the root
were stored in a demineralization solution for 96 h at 378C to
induce artificial root caries lesions. The fragments were then
divided into 3 treatment groups: 6.5% GSE, 1000 mg/L fluoride
(NaF), and an untreated control. The demineralized samples
were pH-cycled through treatment solutions, acidic buffer, and
neutral buffer for 8 d at 6 cycles/d. The samples were
subsequently evaluated using a microhardness tester, polarized
light microscopy, and confocal laser scanning microscopy. Data
were analyzed using ANOVA and Fisher’s tests (P , 0.05).

Results obtained from this study showed that fluoride
treatment inhibited further demineralization of existed artificial
root lesions and increased the microhardness value of lesions.
Treatment with GSE was also found to increase the microhard-
ness of the lesions compared with the untreated control group
(P , 0.05). Polarized light microscopy data revealed a signif-
icantly thicker mineral precipitation band on the surface layer of
the GSE-treated lesions, which was further confirmed by con-
focal laser scanning microscopy. The data supported the fact
that GSE positively affected the demineralization and/or remin-
eralization processes of artificial root caries lesions, most likely
through a different mechanism than that of fluoride (79). GSE
may contribute to mineral deposition on the superficial layer of
the lesion and may also interact with the organic portion of the
root dentin through PA-collagen interaction, thereby stabilizing
the exposed collagen matrix. GSE may be a potential adjunct or
alternative to fluoride in the treatment of root caries during
minimally invasive therapy. Further investigation is warranted.

Other articles in this supplement include (80–86).
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