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ABSTRACT

We present a Moran-model approach to modeling general multiallelic selection in a finite population
and show how it may be used to develop theoretical models of biological systems of balancing selection
such as plant gametophytic self-incompatibility loci. We propose new expressions for the stationary
distribution of allele frequencies under selection and use them to show that the continuous-time Markov
chain describing allele frequency change with exchangeable selection and Moran-model reproduction is
reversible. We then use the reversibility property to derive the expected allele frequency spectrum in a
finite population for several general models of multiallelic selection. Using simulations, we show that our
approach is valid over a broader range of parameters than previous analyses of balancing selection based
on diffusion approximations to the Wright–Fisher model of reproduction. Our results can be applied to
any model of multiallelic selection in which fitness is solely a function of allele frequency.

NATURAL selection has long been a topic of interest
in population genetics, yet the stochastic theory of

genes under selection remains underdeveloped com-
pared to the theory of neutral genes. Due to the
interplay of stochastic and deterministic forces, models
of selection present analytical challenges beyond those
of neutral models, although a great deal of progress has
been made with models that use diffusion approxima-
tions to a Wright–Fisher model of reproduction.
Diffusion approximations with selection are, however,
sometimes difficult to employ and always require
assumptions about population parameters for tractabil-
ity. These limitations suggest that there may be value in
developing new methods of solving the problem of
selection in a finite population, and here we do so using
a Moran model of reproduction in place of the familiar
Wright–Fisher model. Our approach has two major
advantages over previous models: general applicability
to a wide variety of selection models and accuracy over
a broad range of parameter values. In this work, we
propose new expressions for the full stationary distri-
butions of allele frequencies under multiallelic selec-
tion, as well as expressions for average allele frequency
distributions.

We restrict our attention to exchangeable models of
selection, meaning that relabeling the alleles will not
change selective outcomes and thus that selection will
be a function of allele frequency rather than allele
identity. Many models of selection can be transformed
into frequency-dependent forms (Denniston and

Crow 1990), and some common models of selection
have the desired property of exchangeability. For
example, symmetric overdominant selection, in which
heterozygotes have a selective advantage over homozy-
gotes but the specific genotype of homozygote or
heterozygote has no further selective effect, can be
expressed as frequency-dependent selection on individ-
ual (exchangeable) alleles, although the direct selec-
tion is actually on diploid genotypes. Many other
proposed models of multiallelic balancing selection,
in which substantial variation is maintained by selec-
tion, can be viewed in this way. Such models have been
of particular interest because of the potential applica-
tion to highly multiallelic systems found in nature, such
as self-incompatibility (SI) loci in plants and the major
histocompatibility complex (MHC) loci in vertebrates,
and the desire to analyze these systems is a motivation
for the present work. We now review some of the
population genetic theory related to these systems.

Early in the history of population genetics, Wright

(1939) presented a somewhat controversial stochastic
model of gametophytic self-incompatibility (GSI) genes,
sparking much further theoretical and empirical work.
An analytic theory of multiallelic symmetric overdomi-
nance was developed along similar lines to this early
model (Kimura and Crow 1964; Takahata 1990) and
has been used as an approximation to the unknown
mode of selection in the MHC (Takahata et al. 1992).
Drawing insights from these first two applications, other
biological systems where balancing selection was posited,
including sex determination in honeybees (Yokoyama

and Nei 1979), fungal mating systems (May et al. 1999),
and heterokaryon incompatibility in fungi (Muirhead

et al. 2002), have also been modeled successfully using
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closely related approaches. Progress has been made in
using these models to address genealogical (Takahata

1990; Vekemans and Slatkin 1994) and demographic
(Muirhead 2001) questions, as well as extending
the models into more complex modes of selection
(Uyenoyama 2003) and reproduction (Vallejo-Marin

and Uyenoyama 2008).
Models of genetic variation under balancing selection

have traditionally been focused on specific systems,
such that extensions require entirely new analyses, and
have also included a number of simplifying assumptions
in the interest of mathematical tractability. For exam-
ple, the symmetric overdominance model has been
strongly criticized as an unrealistic approximation of
MHC evolution (Paterson et al. 1998; Hedrick 2002;
Penn et al. 2002; Ilmonen et al. 2007; Stoffels and
Spencer 2008), and yet it has proved difficult to make
finite-population models of any of the more realistic
frequency dependence schemes using the same ap-
proaches. A constraint on further progress is the fact
that the standard model of stochastic population
genetics, the Wright–Fisher model, is in fact quite
difficult to analyze.

The Wright–Fisher model of reproduction employs
nonoverlapping generations, so that for a diploid
population of size N, all 2N allele copies are chosen
simultaneously when forming a new generation of
individuals. While it is straightforward to describe this
reproduction scheme mathematically as a discrete-time
Markov chain, that chain unfortunately appears in-
tractable even in simple cases (Ewens 2004). Tradition-
ally, then, diffusion approximations have been used to
obtain quantities of interest, such as the equilibrium
expected number of alleles, allele frequency spectra,
and fixation probabilities and times. Diffusion approx-
imations are derived in the limit N /‘, but are
applicable to problems of finite N, provided that the
strengths of other forces such as mutation and selection
can be assumed to be weak, of O(N�1) (Ewens 2004).
Watterson (1977) derived such a diffusion approxi-
mation for multiallelic symmetric overdominance using
these assumptions. More recently, as interest in popula-
tion genetics has turned to problems of inference,
Grote and Speed (2002) considered sampling proba-
bilities under the diffusion approximation for symmet-
ric overdominance, while Donnelly et al. (2001) and
Stephens and Donnelly (2003) proposed computa-
tional methods for some asymmetric models.

Although strong selection can be modeled using
diffusion approximations by making the product of
the population size and the selection coefficient (Ns)
large, the assumption of weak selection is not in fact
appropriate for the canonical biological systems of
balancing selection. Specifically, selection coefficients
are defined by the differences in fitness (the expected
number of offspring) among individuals in the popula-
tion at a given time. These differences may be large in

systems such as GSI, where the fitness of a very common
allele may be very small while the fitness of other alleles
may be greater than one.

In an attempt to deal with the extremely strong
selection of gametophytic self-incompatibility, Wright’s
(1939) original model focused attention on the dynam-
ics of a single representative allele. He collapsed the
influence of all other alleles into a single summary
statistic: the homozygosity, F, which is a function of the
frequencies of all alleles, and which Wright (1939)
assumed to be constant. The analysis is essentially that of
a two-allele system, using a one-dimensional diffusion
analysis. This approach, while shown by simulation to be
very effective in the appropriate parameter range
(Ewens and Ewens 1966), received substantial criticism
on mathematical grounds (Fisher 1958; Moran 1962;
Ewens 1964b). Ewens (1964b), in particular, objected
to the use of diffusion theory for GSI, pointing out that
strong frequency-dependent selection violates the dif-
fusion requirement that both the mean and the variance
of the change in allele frequencies be small and of
O(N�1). Ewens (1964a) then applied Wright’s basic one-
dimensional diffusion approach to modeling symmetric
overdominance, but assumed that selection was weak
and of O(N�1) to stay within the strict limits of the
diffusion approximation.

Kimura and Crow (1964) and Wright (1966), on
the other hand, presented alternative one-dimensional
diffusion approximations to symmetric overdominance,
closer in spirit to Wright’s original model of GSI,
that did not make the weak-selection assumption.
Watterson (1977) was concerned about both the
inconsistencies of the approximations used in these
models and the treatment of F as a constant rather than
as a random variable dependent upon allele frequen-
cies. Using his own multiallelic diffusion approximation
for symmetric overdominance (Watterson 1977), he
derived an alternative (small-Ns) approximation to the
frequency of a single representative allele. We consider
this approximation, as well as the best-known one-
dimensional symmetric overdominance diffusion, the
strong-selection approximation of Kimura and Crow

(1964), in comparison with our alternative approach to
deriving allele frequency spectra under general multi-
allelic selection with exchangeable alleles.

To avoid the approximations required to employ
Wright–Fisher/diffusion-based methods, we turn to an
alternative model of reproduction in a finite popula-
tion: the overlapping-generations model of Moran

(1962). In the Moran model, a single allele copy dies
and another reproduces in each time step, rather than
all 2N allele copies simultaneously being replaced by
offspring each generation. As in the Wright–Fisher
model, this reproduction scheme is represented math-
ematically by a Markov chain. Unlike the Wright–Fisher
model, however, the Moran model can sometimes yield
tractable, exact solutions to the underlying Markov
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chain, without the need to resort to diffusion approx-
imations. We exploit this trait to develop a new
stochastic theory of multiallelic selection with minimal
dependence on assumptions about population param-
eter values. Our method has the additional benefit
of being flexible: it can accommodate any exchange-
able model of multiallelic selection and either of two
general models of parent-independent mutation, the
infinite-alleles and k-allele models of mutation. Our
Moran-model predictions agree well with the results of
Wright–Fisher simulations.

MODEL

We consider a general model of multiallelic selection,
using a continuous-time Moran model of reproduction
to incorporate random genetic drift. We explore in
detail an infinite-alleles model of mutation, with selec-
tion at either death (viability selection) or reproduction
(fecundity selection) and where selection depends only
on the frequency of an allele, rather than its identity.
In appendix b, we present complementary results for a
k-allele mutation model, also with two possible modes of
exchangeable selection.

Structure of the Moran-model Markov chain: A
single step in the Moran model corresponds to the
death of one allele copy and the reproduction of one
copy, possibly the same one chosen to die. Mutation may
also occur during reproduction. Selection may be
introduced at either point, and because it may be more
convenient to use one or the other in specific biological
situations, we formally develop separate models for
selection at death and selection at reproduction. Re-
gardless of when selection acts, we consider one step of
the Moran model as consisting of one death event,
followed by one reproduction/mutation event. The
relative per-copy death rate of an allele in i copies is
denoted mi, and the relative per-copy reproduction rate
of an i-copy allele is denoted li. These determine the
rates at which allele copies are chosen to die (in the
selection-at-death version of the model) and to re-
produce (in the selection-at-reproduction version), re-
spectively. For death or reproduction events not
affected by selection, allele copies are chosen to die or
reproduce with equal probability regardless of type.

We imagine a diploid population of size N, so that
there are a total of 2N allele copies in the population.
Under the infinite-alleles model of mutation, every new
mutation produces a novel allele, and we assume that
the probability that an allele copy mutates to a novel
allele is u per reproduction event. The state of a
population is recorded in a vector, X ¼ {X1, X2, . . . ,
X2N}, where Xi denotes the number of alleles present in i
copies. Thus,

P2N
i¼1 iXi ¼ 2N . We are interested in the

state of the population at stationarity and consider both
the full stationary distribution p(X) ¼ Pr[X1 ¼ x1, X2 ¼

x2, . . . , X2N ¼ x2N] and the expected values both of the
random variables Xi, 1 # i # 2N, and of the products XiXj

for all i and j. The vector of expected numbers of alleles
in each frequency class corresponds to the average allele
frequency spectrum, f(x)dx, a classic object of popula-
tion genetic theory usually obtained using diffusion
approximations.

To analyze evolutionary dynamics, we construct a
continuous-time Markov chain on X, the state vector
describing the population. A single transition in this
Markov chain corresponds to a single step of the Moran
model, death followed by reproduction/mutation. The
underlying Markov chain is complicated, in part be-
cause the number of possible transitions that can be
experienced by a particular X vector is very large.
However, these transitions can be categorized into 10
distinct types depending on their effects on X (Table 1).
To obtain the rate of a particular transition, we consider
the two events in a step, death and reproduction,
independently. For example, if in one step a copy from
a 4-copy allele were picked to die, and a copy from a 10-
copy allele were picked to reproduce (without muta-
tion), this would represent a transition of type 5 with i¼
4 and j ¼ 10. The population will then have gone from
state X¼ {x1, x2, x3, x4, . . . , x10, x11, . . . , x2N } to state X9¼
{x1, x2, x3 1 1, x4� 1, . . . , x10� 1, x11 1 1, . . . , x2N}. In the
selection at death model, the rate of such a transition
occurring, given X, is

m44x4
10x10

2N
ð1� uÞ;

and the equivalent rate in the selection at reproduction
model is

4x4

2N
l1010x10ð1� uÞ:

With the 10 possible transition types and their effects
on X as a complete description of the dynamics of
the Markov chain, it is possible to derive equilibrium
properties of the system, including stationary distribu-
tions and average allele frequency spectra. We are able
to obtain exact results for these quantities using the
reversibility property of the Moran model with multi-
allelic selection, which we now prove.

Stationary distributions and reversibility: Based on a
product form of the stationary distribution of allele
counts as in Moran (1962), e.g., see p. 134, we posit that
the equilibrium distributions, p(X), of the population
state vector under infinite-alleles mutation are of the
form

pdðx1; x2; . . . ; x2N Þ ¼ Cd

Y2N

i¼1

1

xi !

2Nu

1� u

1

m1

Yi

m¼2

m � 1

mmm

" #xi

ð1Þ

when selection occurs at death and
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prðx1; x2; . . . ; x2N Þ ¼ Cr

Y2N

i¼1

1

xi !

2Nu

1� u
l0

Yi

m¼2

ðm � 1Þlm�1

m

" #xi

ð2Þ
when selection occurs at reproduction. The normali-
zation constants, Cd and Cr, are unknown functions of
selection and population parameters. These probabil-
ity distributions are difficult to work with directly, in
part because of the unknown constants, but they can be
verified as correct, and used to show that their re-
spective Markov chains are reversible, by a simple
proof. With reversibility, at stationarity we have

pðX ÞqðX ; X 9Þ ¼ pðX 9ÞqðX 9; X Þ; ð3Þ

where q(i, j) is the rate of transition from state i to state
j in the chain. If our posited p-distributions satisfy
all such relationships, the stationary distributions are
verified, and the processes are reversible; see Theorem
1.3 in Kelly (1979).

Using Table 1, we can group transitions into classes
that change X in similar ways: type 1 and type 4 alter
the counts in three adjacent elements, types 6 and 8
both alter x1 and two adjacent elements, types 7 and
9 alter x1 and x2, and type 5 transitions alter two pairs
of (nonoverlapping) adjacent elements, xi�1 and xi, and
xj and xj11. Each one-step transition can be undone by
another one-step transition within the same class. For
example, a type 1 transition with i ¼ 6 is reversed by a
type 4 transition with i ¼ 5, and a type 6 transition with
j ¼ 5 is reversed by a type 8 transition with i ¼ 6.

We can use these four transition classes to present
a set of detailed balance equations (3) for the process at
stationarity, and we use those balance equations to
validate our posited stationary distributions and verify
reversibility for the infinite-alleles mutation models in
appendix a. We also present similar reversibility argu-
ments for a k-allele model of mutation, in appendix b.
There we derive both stationary distributions analogous
to (1) and (2) and average allele frequency spectra for

TABLE 1

Transition types in the infinite-alleles model of mutation

Event (single time step in a Moran model) Effect on X Rate (death selection) Rate (reproduction selection)

1 xi dies, xi�2 reproduces, no mutation x9i�2 ¼ xi�2 � 1 mi ixi
ði�2Þxi�2

2N ð1� uÞ ixi

2N li�2ði � 2Þxi�2ð1� uÞ
(i . 2) x9i�1 ¼ xi�1 1 2

x9i ¼ xi � 1

2 xi dies, xi�1 reproduces, no mutation — mi ixi
ði�1Þxi�1

2N ð1� uÞ ixi

2N li�1ði � 1Þxi�1ð1� uÞ
(i . 1)

3 xi dies, xi (same) reproduces, no mutation — mi ixi
i

2N ð1� uÞ ixi

2N li ið1� uÞ

4 xi dies, xi (different) reproduces, no mutation x9i�1 ¼ xi�1 1 1 mi ixi
iðxi�1Þ

2N ð1� uÞ ixi

2N li iðxi � 1Þð1� uÞ
(i . 1) x9i ¼ xi � 2

x9i11 ¼ xi11 1 1

5 xi dies, xj reproduces, no mutation x9i�1 ¼ xi�1 1 1 mi ixi
jxj

2N ð1� uÞ ixi

2N lj jxjð1� uÞ
(i . 1, j 6¼ i, i � 1, i � 2) x9i ¼ xi � 1

x9j ¼ xj � 1

x9j11 ¼ xj11 1 1

6 x1 dies, xj reproduces, no mutation x91 ¼ x1 � 1 m1x1
jxj

2N ð1� uÞ x1

2N lj jxjð1� uÞ
(j 6¼ 1) x9j ¼ xj � 1

x9j11 ¼ xj11 1 1

7 x1 dies, x1 (different) reproduces, no mutation x91 ¼ x1 � 2 m1x1
x1�1
2N ð1� uÞ x1

2N l1ðx1 � 1Þð1� uÞ
x92 ¼ x2 1 1

8 xi dies, anything reproduces, mutation x91 ¼ x1 1 1 miixiu
ixi

2N l02Nu

(i . 1) x9i�1 ¼ xi�1 1 1

x9i ¼ xi � 1

9 x2 dies, anything reproduces, mutation x91 ¼ x1 1 2 m22x2u 2x2

2N l02Nu

x92 ¼ x2 � 1

10 x1 dies, anything reproduces, mutation — m1x1u x1

2N l02Nu

The effects of each of the 10 transition types on X ¼ {x1, x2, . . . , x2N } and their rates under the two modes of selection.
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that mutation model, as we now do for infinite-alleles
mutation.

Average allele frequency spectra: We begin our
derivation of average allele frequency spectra with an
identity,

X2N

j¼1

jxj

2N
¼ 1;

which is true for every state vector X ¼ {x1, x2, . . . , x2N }.
Then, we have

xi ¼
X2N

j¼1

jxj

2N
xi :

Using a stationary distribution p(X) and taking expect-
ations at equilibrium, this becomes

X
X

xipðX Þ ¼
X

X

X2N

j¼1

jxj

2N
xipðX Þ

E ½Xi � ¼
X2N

j¼1

j

2N
E ½XiXj �: ð4Þ

We derive the equilibrium expected values E[Xi] by first
finding the expectations of the products E[XiXj] and
then applying the equation above. The approach we use
is to consider again the detailed balance equations and
take expectations at stationarity, yielding a relatively
simple system of equations relating the E[Xi]’s and
E[XiXj]’s. This system of equations can then be solved
numerically.

Selection at death: The first balance equation uses
transitions of type 1 and type 4. The total expected rate
of type 1 transitions at stationarity is

X
X

pdðX Þmi ixi
ði � 2Þxi�2

2N
ð1� uÞ

¼ E ½XiXi�2�mi

iði � 2Þ
2N

ð1� uÞ

and the total reverse rate of corresponding type 4
transitions (that would on average exactly undo the
type 1 transitions above) isX

X

pdðX Þmi�1ði � 1Þxi�1
ði � 1Þðxi�1 � 1Þ

2N
ð1� uÞ

¼ E ½Xi�1ðXi�1 � 1Þ�mi�1

ði � 1Þ2
2N

ð1� uÞ:

With reversibility these total rates are equal so that

E ½XiXi � ¼ E ½Xi �1
mi11

mi

i � 1

i

i 1 1

i
E ½Xi�1Xi11�; ð5Þ

giving us our first expression for the relationship of the
random variables Xi�2, Xi�1, and Xi. Two more such
expressions are necessary and are derived from two
more balance equations. Balancing two type 5 transi-
tions and taking expectations gives

mi

ij

2N
E ½XiXj �ð1� uÞ

¼ mj11

ði � 1Þðj 1 1Þ
2N

E ½Xi�1Xj11�ð1� uÞ;

where i . 1, j 6¼ i, i � 1, i � 2, so that

E ½XiXj � ¼
mj11

mi

ði � 1Þ
i

ðj 1 1Þ
j

E ½Xi�1Xj11�; i , j : ð6Þ

The last necessary pair required equates a type 6
transition and a type 8 transition for

mi iE ½Xi �u ¼ m1

ði � 1Þ
2N

E ½X1Xi�1�ð1� uÞ;

for i . 1, and thus

E ½X1Xi � ¼
mi11

m1

ði 1 1Þ
i

2Nu

1� u
E ½Xi11�; i . 1: ð7Þ

Combining Equations 5–7, we have

E ½XiXj � ¼
i 1 j

ij

2Nu

1� u

Yi

r¼1

mj1r

mi�r11

 !
E ½Xi1j �; i , j ð8Þ

E ½XiXi � ¼ E ½Xi �1
2

i

2Nu

1� u

Yi

r¼1

mi1r

mi�r11

 !
E ½X2i �: ð9Þ

From the identity (4) and Equations 8 and 9, we arrive
finally at an expression for the average allele frequency
spectrum under infinite-alleles mutation and selection
at death:

E ½Xi � ¼
XMinði;2N�iÞ

j¼1

i 1 j

ið2N � iÞ
2Nu

1� u

Yj

r¼1

mi1r

mj�r11

 !
E ½Xi1j �

1
X2N�i

j¼Minði;2N�iÞ11

i 1 j

ið2N � iÞ
2Nu

1� u

Yi

r¼1

mj1r

mi�r11

 !
E ½Xi1j �:

ð10Þ
While not a closed-form solution, this suffices to calculate
numerically the vector of E[Xi] values. We first calculate
all terms recursively relative to E[X2N] and then normal-
ize by

P2N
i¼1 iE ½Xi � ¼ 2N . Note that once we have com-

puted expectations E[Xi], we can also compute Var[Xi]
and Cov[XiXj], through use of (8)–(10). In addition,
we can use the last element of the vector, E[X2N], to
obtain the normalization constant Cd of the stationary
distribution pd(X), using E½X2N � ¼

P
X x2N pdðX Þ ¼

pdð0; . . . ; 0; 1Þ. With this, we now have a fully specified
stationary distribution (1) for the Markov chain.

Selection at reproduction: Analysis for this model pro-
ceeds along a very similar line to that for the previous
model. The rates of the 10 types of transitions in this
model are listed in the last column of Table 1, and
reversibility of the process is formally verified in appen-

dix a. We can use the same fundamental relation (4) for
the expectations and again focus on using the detailed
balance equations to derive expressions for the cross-
product expectations. Using the same informative pairs
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of transitions as before and the transition rates for this
model (Table 1), we find

E ½XiXj � ¼
i 1 j

ij

2Nu

1� u

Yi

r¼1

li�r

lj1r�1

 !
E ½Xi1j �; i , j ð11Þ

E ½XiXi � ¼ E ½Xi �1
2

i

2Nu

1� u

Yi

r¼1

li�r

li1r�1

 !
E ½X2i � ð12Þ

and

E ½Xi � ¼
XMinði;2N�iÞ

j¼1

i 1 j

ið2N � iÞ
2Nu

1� u

Yj

r¼1

lj�r

li1r�1

 !
E ½Xi1j �

1
X2N�i

j¼Minði;2N�iÞ11

i 1 j

ið2N � iÞ
2Nu

1� u

Yi

r¼1

li�r

lj1r�1

 !
E ½Xi1j �

ð13Þ

so that we may calculate E[Xi] values as before.

RESULTS

Comparison to results from diffusion theory and
simulations: We compare results from our approach to
those from existing stochastic models of balancing
selection, beginning with the well-studied case of sym-
metric overdominance. Watterson (1977) assumed
very weak selection to derive his multidimensional
diffusion approximation to symmetric overdominance.
In this case, weak means that the fitness advantage of
heterozygotes, s, is O(N�1). Analysis of the full diffusion
model is impractical, and Watterson (1977) provided
the following approximation for the expected one-
dimensional allele frequency spectrum under an infin-
ite-alleles model of mutation,

fðxÞ � ux�1ð1� xÞu�1

3

�
1 1

sx½2� ð2 1 uÞx�
ð1 1 uÞ

1
s2x

2ð1 1 uÞ2ð2 1 uÞð3 1 uÞ
3 ½�8u 1 xð24 1 32u 1 4u2Þ

� x2ð1 1 uÞð48 1 24u 1 4u2Þ

1 x3ð1 1 uÞð24 1 22u 1 8u2 1 u3Þ�
�
;

which is valid for small s¼ 2Nes, where Ne is the effective
population size, and u ¼ 4Neu. f(x)dx is defined as the
equilibrium number of alleles expected in the fre-
quency class (x, x 1 dx) and is equivalent to our vector
of E[Xi] values with an appropriate dx. We have kept
multiple terms in the Taylor expansion above to
improve the accuracy of the approximation.

Kimura and Crow (1964) assumed strong selection
to obtain a different, one-dimensional, diffusion ap-
proximation for multiallelic symmetric overdominance
and infinite-alleles mutation:

fðxÞ � Ce�sðx�F Þ2�uxx�1:

u and s are as before, except that in this model s
represents the decrease in fitness of homozygotes. The
random variable F is the homozygosity of the population
(the sum of squared allele frequencies), which Kimura

and Crow (1964) assumed to be a constant at equilib-
rium under strong selection. When evaluating Kimura

and Crow’s (1964) diffusion, instead of using one of
the available closed-form approximations for the two
unknown constants C and F (requiring additional
assumptions), we used Mathematica 7.0 (Wolfram

2008) to numerically integrate the equationsð1

0
xfðxÞdx ¼ 1

and ð1

0
x2fðxÞdx ¼ F ;

solving simultaneously for C and F. The intent was to
provide a solution that was minimally dependent on
approximations beyond the assumptions inherent
in the strong-selection, one-dimensional diffusion ap-
proach itself.

To assess the accuracy of the Moran model approach
developed here, relative to the Wright–Fisher model
diffusions above, we performed extensive individual-
based simulations of Wright–Fisher populations with
symmetric overdominant selection and infinite-alleles
mutation. The simulations use a discrete-time, non-
overlapping generation framework, with reproduction
and selection implemented as follows. In each genera-
tion, tentative new diploid individuals are created by
drawing two allele copies in a multinomial draw from
the previous generation’s gamete pool (with each allele
copy given a chance to mutate to a novel allele with
probability u). The individual created is given a fitness
value according to its genotype and is accepted or
rejected as a member of the next generation according
to the value of a random number drawn and compared
to the fitness value. The process is repeated for all N
individuals in each generation. Simulations were begun
with triallelic populations and run for at least 100,000
generations, at which point allele frequencies were
recorded. To ensure that the data were being sampled
at stationarity, allele number and homozygosity were
recorded at regular time points during the run. All sets
of simulations appeared to have reached stationarity for
average allele number and homozygosity by generation
20,000.

Comparisons between the Moran model and the
Wright–Fisher model must account for the factor of
2 difference in timescale that results from differences
in the distributions of the numbers of offspring per
individual between these two modes of reproduction
(Feldman 1966). All comparisons among the two
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Wright–Fisher diffusions, the Moran model prediction,
and the simulation results adjust for this difference, as
well as for the slight differences in the selection model
between the two diffusion approximations. In all cases
the N reported is the N of the Moran model, so that, for
example, the corresponding Wright–Fisher simulation
would be of a population of size N/2. The s reported is
the s of the following Moran model implementation of
symmetric overdominance.

Symmetric overdominant selection in the Moran
model is easily imposed through death-step selection.
Allele copies in heterozygotes die at rate 1, and allele
copies in homozygotes die at rate 1 1 s. Assuming
Hardy–Weinberg proportions, a copy of an allele whose
population frequency is i/2N will find itself in a
homozygote with probability i/2N and in a heterozygote
with probability 1 � i/2N. This leads to

mi ¼ 1 1� i

2N

� �
1 ð1 1 sÞ i

2N

¼ 1 1 s
i

2N
:

The s used here is equivalent to the s of the Kimura–
Crow diffusion model.

Figure 1 shows three comparisons between the simu-
lations and the various analytic predictions for average
allele frequency spectra. In Figure 1A (where N ¼ 2000,
s ¼ 0.001, and u ¼ 10�5) selection is relatively weak (s ¼
2) and Watterson’s weak-selection diffusion (dotted line)
tracks closely with the simulations (solid line, average of
10,000 iterations). The Moran model solution (thick
dots) also tracks the simulations, while the Kimura–Crow
strong-selection diffusion (dashed line) does not. In
Figure 1C (where N ¼ 2000, s ¼ 0.01, and u ¼ 10�5),
selection is strong (s ¼ 20) and the Watterson diffusion
no longer performs well, while the Kimura–Crow diffu-
sion does. Again, the Moran model also accurately
predicts the outcome of simulations. Figure 1B shows
an intermediate situation (N¼ 2000, s¼ 0.005, u¼ 10�5)
in which neither diffusion approximation is able to
predict the results of the simulations, but the Moran
model predicts simulation behavior very accurately.

Application to two specific types of selection: Plant
self-incompatibility: GSI is a genetic system by which some
plant species ensure outcrossing. A compatible mating
can result when there are no alleles in common at the
incompatibility locus (S locus) between haploid pollen
(male gamete) and diploid stigma (female reproductive
structure). For example, if a plant has diploid genotype
AiAj at the S locus, its stigmas will express that diploid
genotype and the ovules of the plant may be fertilized only
by pollen bearing a different allele Ak, k 6¼ i, j. Pollen
expressing Ai or Aj landing on an AiAj stigma will trigger an
incompatibility reaction, so that no zygote will be formed.

This type of mechanism, in a Moran model frame-
work, naturally suggests selection at the reproduction

step. We approximate GSI by assuming that selection
occurs only through the male part and that the re-
productive success of an allele copy in pollen (relative to
the success of a copy in a female gamete) is directly
proportional to the frequency of diploid plants not
containing that allele. Because all plants are hetero-
zygotes under GSI, the frequency of plants containing
an allele in frequency i/2N is simply i/N. Thus, we can
approximate the reproductive rate of an allele copy in
frequency i/2N by

Figure 1.—Correspondence between Moran and diffusion
predictions and accuracy of predictions as assessed by simula-
tions (averaged over 10,000 iterations). Dotted line, Watter-
son diffusion; dashed line, Kimura–Crow diffusion; thick
dots, Moran solution; solid line, simulations. Symmetric over-
dominant selection is shown. Moran model parameters: (A) N¼
2000, s ¼ 0.001, u ¼ 10�5; (B) N ¼ 2000, s ¼ 0.005, u ¼ 10�5;
(C) N ¼ 2000, s ¼ 0.01, u ¼ 10�5.
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li ¼ 1
1

2

� �
1 1� i

N

� �
1

2

� �
¼ 1� i

2N
: ð14Þ

This approximation lacks some of the notable features
of GSI. In particular, it does not require an overall
number of alleles $3 (as required for a functional GSI
system), and it does not restrict the allele frequencies to
be #0.5 (which follows directly from the observation
that all individuals in a GSI system must be hetero-
zygotes). Nevertheless, this simple formulation per-
forms well as judged by simulations.

The simulations shown in Figures 2 and 3 are again of
Wright–Fisher (nonoverlapping generations) repro-
duction with an appropriate population size conversion
and in this case are individual-based simulations of
gametophytic plant self-incompatibility under an infin-
ite-alleles model of mutation. GSI was simulated by the
following scheme: a diploid female parent and haploid
pollen were picked randomly from the population and
tested for compatibility. If they were compatible, a new
zygote was generated from the possible gamete combi-
nations; if incompatible, the pollen was discarded and a
new pollen gamete picked until a compatible mating
was achieved. Mutation to novel alleles occurred with
probability u per gamete per generation.

Figure 2 shows the average allele frequency spectrum
predicted using the Moran approximation (14) for a
population size of N ¼ 2000 and mutation rate of u ¼
10�6 and compares it to the average spectrum obtained
from forward simulations (25,000 iterations) and to the
Wright–Fisher model diffusion prediction. The diffu-
sion prediction was calculated following Uyenoyama’s

(2003) implementation of Wright’s model. Specifically,
the effective number of common alleles (n) was ob-
tained by solving

1 ¼ nu

n � uðn � 1Þðn � 2Þ e
2Nen=ðn�1Þðn�2Þ�u=2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

2Neðn=ðn � 1ÞÞ1 u

r

3
n � 2

n
ð1 1 2uðn � 1Þ=nÞ

� �Nen=ðn�1Þ1 u=2

numerically and then substituting the resulting value of
n into the appropriate expression for f(x),

fðxÞ ¼ ue2Nen2x=ðn�1Þðn�2Þð1� 2xÞNen=ðn�1Þ1u=2�1x�1

(Uyenoyama 2003; Vallejo-Marin and Uyenoyama

2008).
Figure 3 compares the total number of alleles pre-

dicted by both the Moran approach and the diffusion
approximation to simulation results. To compute the
total number of alleles predicted by the diffusion ap-
proximation, we integrate f(x)dx over the allowable
allele frequency range. Figure 3 shows that, in general,
the Moran approximation tends to slightly underesti-
mate the total number of alleles produced by simula-
tions (100 iterations for each point, box-and-whisker
plot) unless the mutational input is extremely high, while
the diffusion prediction follows a reverse pattern. Both
estimates, however, fall within the ranges commonly seen
in simulations for all parameter sets examined.

Figure 2.—Accuracy of self-incompatibility approximation
assessed by simulation: average allele frequency spectrum.
Solid line, Moran solution using (14) for N ¼ 2000, u ¼
10�6; dashed line, diffusion approximations for gametophytic
self-incompatibility, Ne ¼ 1000, u¼ 10�6; dots, individual-based
simulations of a population (averaged over 10,000 indepen-
dent iterations) with Wright–Fisher reproduction (nonover-
lapping generations) and gametophytic self-incompatibility,
Ne ¼ 1000, u ¼ 10�6.

Figure 3.—Accuracy of self-incompatibility approximation
assessed by simulation: allele number. Shaded triangles, ex-
pected total number of alleles from the Moran solution for
N ¼ 1000 and mutation rates u ¼ 10�6, 10�5, 10�4, and 10�3;
shaded stars, expected total number of alleles from the
Wright–Fisher model diffusion approximation with Ne ¼
500 and the appropriate mutation rates. Simulation results,
from individual-based forward simulations of a Wright–Fisher
population (Ne¼ 500) with gametophytic self-incompatibility,
are represented by box-and-whisker diagrams.
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A model of threshold frequency dependence: The Moran
treatment of multiallelic selection is versatile and allows
the study of any model in which the mode of selection is
solely due to the frequency of an allele. Figure 4 shows
the expected allele frequency spectrum for a very simple
model of frequency dependence, in which selection
depends on a critical threshold frequency. In this exam-
ple, selection is applied at the reproduction step, such that

li ¼
1:0 if i

2N , 0:1;
0:98 otherwise:

�
ð15Þ

The expected allele frequency spectrum is shown for this
selection model (Figure 4, shaded line; see right-hand
axis), with N ¼ 1000 and infinite-alleles mutation rate
u¼ 10�5. The analytic prediction from the Moran model
approach is represented by the solid line, and forward
simulations (average of 25,000 iterations) are shown by
dots. Simulations in this case were of a discrete-time
Moran model of reproduction, where in each time step
one allele copy was picked to die and one to reproduce
and possibly mutate, as in the preceding analytic model.
To run discrete-time simulations, we converted the
reproduction rates given by (15) into per-time step
probabilities, dividing by the total reproduction rateP

ixili . The analytic prediction provides an accurate
description of the consequences of this simple selection
model. Analysis of additional complex selection models
is equally straightforward with the analytic approach
described above, limited only by the requirement that it
must be possible to express an allele’s fitness as a
function of its frequency, independent of allele identity.

DISCUSSION

The Moran approach to modeling multiallelic selec-
tion has some immediate advantages over previous

methods based on diffusion analyses of Wright–Fisher
models. Moran models can sometimes yield exact
solutions where Wright–Fisher models cannot; in this
case, the solution obtained is exact for a continuous-time
model and appears to be an excellent approximation
for discrete-time models such as those implemented in
the Wright–Fisher model simulations. The exact solu-
tions accurately portray the expected state of a popula-
tion at equilibrium under selection across a range of
parameters and modes of selection. The diffusion
approximations based on the Wright–Fisher model, on
the other hand, can falter when parameter values are
outside their applicable ranges and have been developed
only for a few well-studied modes of multiallelic selec-
tion. Thus, although the diffusion approximations
perform very well within their allowable parameter
values, and with careful attention should yield accurate
results, the Moran approach may be generally prefer-
able. Additional simulations (not shown) demonstrate
that the k-allele version of the Moran model with multi-
allelic selection (appendix b) performs as well as the
infinite-alleles version that is the focus of the diffusion
comparisons, representing another extension of the
applicability of the approach.

The traditional diffusion approximations have one
significant practical advantage over the Moran ap-
proach, in that the solutions, once obtained, tend to
be easier to work with analytically. For example, while
the expressions for the expected allele frequency
spectra are exact in the continuous-time multiallelic
Moran model, they are expressed as a system of equa-
tions, rather than closed-form expressions as is possible
for some of the one-dimensional diffusion approxima-
tions. Moreover, the number of calculations required to
obtain results from the Moran solution grows rapidly
with population size N, making study of very large
population sizes tedious and potentially vulnerable to
inaccuracies due to machine precision limits. Neverthe-
less, despite these difficulties resulting from the large
size of the state space in an exact model, we believe that
the disadvantages are outweighed by the advantages of
having a more fully described stochastic model.

One biological system that could benefit from having
a more complete stochastic description of allele dynam-
ics is plant self-incompatibility, in which analysis has
been hindered by the complexity of the selection mode.
The good fit between the GSI simulations and our
simple Moran model parameterization may be initially
surprising, particularly in light of the realization that our
parameterization (14) is algebraically equivalent to a
simple model of overdominance with complete homo-
zygote infertility. It has been pointed out (Vekemans and
Slatkin 1994) that such a model underestimates the
strength of selection in an SI system, and Wright’s more
complicated analytic model of relative pollen success
(Wright 1939) has thus been favored in the study of
GSI. Cases with low mutational input (Nu>1) show the

Figure 4.—‘‘Threshold’’ frequency-dependent selection.
The fitness function (through differential rate of reproduc-
tion) is plotted on the right axis (shaded line). On the left
axis is the Moran model prediction for average allele fre-
quency spectrum at equilibrium (solid line) and simulation
results (dots, average of 25,000 independent runs). N ¼
1000, u¼ 10�5. The simulations are of a population reproduc-
ing according to a Moran model.
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expected apparently weaker selection of the Moran
model approximation compared to full GSI simulations,
through a smaller total number of alleles maintained
(Figure 3) at higher frequency (Figure 2). The weakness
of mutation is also evident in the lack of a low-frequency
class in Figure 2. At higher mutational inputs (Nu . 1),
however, the Moran model actually overestimates the
total number of alleles maintained by selection, appar-
ently overestimating selection. A closer examination
reveals that the discrepancy is due to the substantial
number of alleles in the lowest (1-copy) frequency class
in the Moran model, a frequency class that does not
exist in simulations due to the transformation N ¼ 2Ne.
Overall, however, the difference between simulation
and either of the two analytic predictions is small. In
fact, the average allele frequency spectrum obtained via
the Moran approach seems to provide as good a match
to simulations as does the diffusion prediction based on
the more complicated (and biologically accurate) GSI
approximation of Wright.

We explain this initially puzzling result by pointing
out that the simulation method used (repeated pollen
trials against a chosen female plant) is intuitively quite
close to the Moran formulation of selection (females
reproduce at rate one, males reproduce according to
their probability of finding a compatible female plant).
This is the standard simulation method for GSI (Mayo

1966; Yokoyama and Nei 1979; Vekemans and Slatkin

1994; Uyenoyama 1997; Schierup 1998; Schierup et al.
2000; Muirhead 2001), chosen in part via biological
intuition (Mayo 1966). The standard simulation meth-
od has been an accepted way to model the complex
selection in GSI; our results suggest that the simple
Moran approach (or the algebraic equivalent, complete
infertility of homozygotes) is an equally acceptable
analytic model, at least for considering the quantities
derived here, allele number and average allele fre-
quency spectrum. The relationships among simula-
tions, the Moran model analytic predictions, and the
Wright–Fisher diffusion analytic predictions are not
constant across all population parameters, however,
indicating a need for caution in the use of any analytic
approach. Here again, however, the Moran model
approach may be preferred because, with its limited
set of approximations, it is relatively easy to isolate the
causes of any discrepancies from simulations and to
predict and account for other discrepancies in other
parameter ranges.

The exact Moran approach for multiallelic selection
may be helpful in studying other difficult systems of
selection. Through its generality, it opens up a large
number of selection models that were inaccessible (or,
at least, unaccessed), using traditional diffusion meth-
ods. An example is the fitness function shown in Figure
4, which while itself is quite simple (a threshold model
with two alternative reproduction rates) yields a surpris-
ingly complex expected allele frequency distribution.

As simple as this fitness model is, the work required to
develop an appropriate diffusion approximation to its
dynamics would be considerable, and simple adjust-
ments to the model would require additional analysis.
With the Moran model approach, due to reversibility, we
have immediate access to the stationary distribution of
allele frequencies, the equilibrium allele frequency
spectrum, and related quantities for any exchangeable
selection model, i.e., in which fitnesses depend only on
allele frequencies.

The Moran model approach has been shown to
provide a useful means of modeling a wide variety of
fitness schemes, in particular those relevant to highly
multiallelic systems of balancing selection. The ap-
proach is minimally dependent on approximations and
thus, unlike alternative methods, can be applied regard-
less of the values of population parameters such as the
strength of selection, mutation rate, and effective pop-
ulation size. In addition to generating accurate expres-
sions for the average allele frequency spectrum, using
the Moran model yields fully specified expressions for
p(X), the joint allele frequency spectrum, independent
of the diffusion assumptions used to derive the standard
results for multiallelic selection (first developed by
Wright 1949). The expressions are general for any
model of exchangeable multiallelic selection with par-
ent-independent mutation, as are our proofs of revers-
ibility of the underlying processes. We also obtained
exact transition probabilities for all possible one-step
transitions from a given population state X under any
model of exchangeable selection. It is hoped that these
results, by giving us a reasonably detailed picture of this
class of complex stochastic processes, may prove useful in
extending the analysis of multiallelic selection to prob-
lems of ancestral inference, which has previously been
restricted to a limited number of models of selection.

We are greatly indebted to Rick Durrett for many helpful comments
and for suggesting a product form of the stationary distribution of
allele frequencies that improved the work immensely. This work was
supported by a Career Award (DEB-0133760) to J.W. from the National
Science Foundation.
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APPENDIX A: REVERSIBILITY, INFINITE-ALLELES MODEL

To simplify notation, let

ai ¼
2Nu

1� u

1

m1

Yi

m¼2

m � 1

mmm

ðA1Þ

bi ¼
2Nu

1� u
l0

Yi

m¼2

ðm � 1Þlm�1

m
ðA2Þ

so that for our posited stationary distributions we have

pdðX Þ ¼ Cd

Y2N

i¼1

a
xi
i

xi !
ðA3Þ

and

prðX Þ ¼ Cr

Y2N

i¼1

b
xi
i

xi !
: ðA4Þ

We begin by considering the selection at death stationary distribution. If the stationary distribution is correct, and the
process is reversible, then
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pdðX ÞqðX ;X 9Þ ¼ pdðX 9ÞqðX 9; X Þ
pdðX Þ
pdðX 9Þ ¼

qðX 9; X Þ
qðX ; X 9Þ : ðA5Þ

Let ei be the unit vector with xi ¼ 1 and all other elements 0. From the transition types in Table 1, there are four
possible detailed balances, with new population vectors X9 given by

X 9 ¼ X � ei�2 1 2ei�1 � ei ; i . 2;

X 9 ¼ X 1 ei�1 � ei � ej 1 ej11; i 6¼ 1; j 6¼ i; i � 1; i � 2;

X 9 ¼ X � e1 � ej 1 ej11; j 6¼ 1;

X 9 ¼ X � 2e1 1 e2:

To further simplify notation in evaluating the detailed balances, let fdðxiÞ ¼ axi

i =xi !. Then, for the first detailed balance
in the selection at death model, we have

pdðX Þ
pdðX 9Þ ¼

fdðxi�2Þ
fdðxi�2 � 1Þ

fdðxi�1Þ
fdðxi�1 1 2Þ

fdðxiÞ
fdðxi � 1Þ

¼ ai�2

xi�2

ðxi�1 1 1Þðxi�1 1 2Þ
a2

i�1

ai

xi

¼ mi�1ði � 1Þðxi�1 1 2Þði � 1Þðxi�1 1 1Þ
mi ixiði � 2Þxi�2

¼ qðX 9;X Þ
qðX ;X 9Þ : ðA6Þ

The last line holds because this balance equation equates two events, ‘‘death of an i-copy allele and reproduction of an
(i� 2)-copy allele (no mutation),’’ which has transition rate q(X, X9)¼miixi((i� 2)xi�2)(1� u), and ‘‘death of an (i� 1)-
copy allele and reproduction of a different (i� 1)-copy allele (no mutation),’’ with rate q(X9, X)¼ mi�1(i� 1)(xi�1 1 2)
((i � 1)(xi�1 1 1)/2N)(1 � u).

We have three remaining detailed balances to verify for the selection at death model. Substituting as before into
(A5), we have for the second balance equation, for i 6¼ 1, and j 6¼ i, i � 1, i � 2, X9 ¼ X 1 ei�1 � ei � ej 1 ej11,

pdðX Þ
pdðX 9Þ ¼

fdðxi�1Þ
fdðxi�1 1 1Þ

fdðxiÞ
fdðxi � 1Þ

fdðxjÞ
fdðxj � 1Þ

fdðxj11Þ
fdðxj11 1 1Þ

¼ ðxi�1 1 1Þ
ai�1

ai

xi

aj

xj

ðxj11 1 1Þ
aj11

¼
mj11ð j 1 1Þðxj11 1 1Þði � 1Þðxi�1 1 1Þ

mi ixi jxj

¼ qðX 9;X Þ
qðX ;X 9Þ ; ðA7Þ

where the two events are ‘‘i-copy dies, j-copy reproduces, no mutation,’’ with rate q(X, X9)¼ miixi( jxj/2N)(1 � u), and
‘‘( j 1 1)-copy dies, (i� 1)-copy reproduces, no mutation,’’ with rate q(X9, X)¼mj11( j 1 1)(xj11 1 1)((i� 1)(xi�1 1 1)/
2N)(1 � u).

The third balance uses, with X9 ¼ X � e1 � ej 1 ej11 and j 6¼ 1,
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pdðX Þ
pdðX 9Þ ¼

fdðx1Þ
fdðx1 � 1Þ

fdðxjÞ
fdðxj � 1Þ

fdðxj11Þ
fdðxj11 1 1Þ

¼ a1

x1

aj

xj

xj11 1 1

aj11

¼
mj11ð j 1 1Þðxj11 1 1Þ2Nu

m1x1jxjð1� uÞ

¼ qðX 9; X Þ
qðX ; X 9Þ ; ðA8Þ

with the two events, ‘‘1-copy dies, j-copy reproduces, no mutation,’’ having rate q(X, X9) ¼ m1x1( jxj/2N)(1 � u), and
‘‘( j 1 1)-copy dies, mutation,’’ with rate q(X9, X) ¼ mj11( j 1 1)(xj11 1 1)u.

The fourth detailed balance has X9 ¼ X � 2e1 1 e2, yielding

pdðX Þ
pdðX 9Þ ¼

fdðx1Þ
fdðx1 � 2Þ

fdðx2Þ
fdðx2 1 1Þ

¼ a1

x1

a1

ðx1 � 1Þ
ðx2 1 1Þ

a2

¼ m22ðx2 1 1Þ2Nu

m1x1ðx1 � 1Þð1� uÞ

¼ qðX 9; X Þ
qðX ; X 9Þ ; ðA9Þ

where the two events are ‘‘1-copy dies, different 1-copy reproduces, no mutation,’’ with rate q(X, X9)¼ m1x1((x1� 1)/
2N)(1 � u), and ‘‘2-copy dies, mutation,’’ with rate q(X9, X) ¼ m22(x2 1 1)u. And

prðX ÞqðX ; X 9Þ ¼ prðX 9ÞqðX 9; X Þ

prðX Þ
prðX 9Þ ¼

qðX 9;X Þ
qðX ;X 9Þ ðA10Þ

to verify the stationary distribution and reversibility of the process.
For the first balance equation, we have for selection at reproduction,

prðX Þ
prðX 9Þ ¼

frðxi�2Þ
frðxi�2 � 1Þ

frðxi�1Þ
frðxi�1 1 2Þ

frðxiÞ
frðxi � 1Þ

¼ bi�2

xi�2

ðxi�1 1 1Þðxi�1 1 2Þ
b2

i�1

bi

xi

¼ ði � 1Þðxi�1 1 2Þli�1ði � 1Þðxi�1 1 1Þ
ixili�2ði � 2Þxi�2

¼ qðX 9;X Þ
qðX ;X 9Þ ðA11Þ

with q(X9, X) and q(X, X9) as before, with transition rates appropriate for selection at reproduction.
For the second balance equation,

prðX Þ
prðX 9Þ ¼

frðxi�1Þ
frðxi�1 1 1Þ

frðxiÞ
frðxi � 1Þ

frðxjÞ
frðxj � 1Þ

frðxj11Þ
frðxj11 1 1Þ

¼ ðxi�1 1 1Þ
bi�1

bi

xi

bj

xj

ðxj11 1 1Þ
bj11

¼ ð j 1 1Þðxj11 1 1Þli�1ði � 1Þðxi�1 1 1Þ
ixilj jxj

¼ qðX 9; X Þ
qðX ; X 9Þ : ðA12Þ
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The third balance equation gives

prðX Þ
prðX 9Þ ¼

frðx1Þ
frðx1 � 1Þ

frðxjÞ
frðxj � 1Þ

frðxj11Þ
frðxj11 1 1Þ

¼ b1

x1

bj

xj

xj11 1 1

bj11

¼ ð j 1 1Þðxj11 1 1Þl02Nu

x1jlj xjð1� uÞ

¼ qðX 9; X Þ
qðX ; X 9Þ ; ðA13Þ

and for the final detailed balance, we have

prðX Þ
prðX 9Þ ¼

frðx1Þ
frðx1 � 2Þ

frðx2Þ
frðx2 1 1Þ

¼ b1

x1

b1

ðx1 � 1Þ
ðx2 1 1Þ

b2

¼ 2ðx2 1 1Þl02Nu

x1l1ðx1 � 1Þð1� uÞ

¼ qðX 9; X Þ
qðX ; X 9Þ : ðA14Þ

This completes the reversibility proof for the infinite-alleles model with selection at reproduction and validates the
posited stationary distribution (2).

APPENDIX B: k-ALLELE MUTATION

Stationary distributions and reversibility: We now consider the case of k-allele mutation. In this model, there are k
possible allelic types, and the probability of mutation to a particular type is u/k, independent of the ‘‘parental’’ type, for
each reproduction event. Analysis of the k-allele model is similar to that of the infinite-alleles model, with some important
departures. The population state vector X now includes a term x0, representing the number of the k possible alleles not
present in the population (i.e., those having zero copies). There are, as in the infinite-alleles models, 10 basic types of
transitions possible from a given X vector, but because of the different role of mutation, these transitions are not the same
as in the previous model. Because of the more consistent role of mutation in affecting alleles in different frequency
classes, there are fewer special cases among the transitions that change the population state. We need to consider only two
detailed balances: one in which death and reproduction occur to copies in nonoverlapping frequency classes (affecting
i, i� 1, j, and j 1 1, i 6¼ 0 and j 6¼ i, i� 1, i� 2) and one in which reproduction and death affect a common frequency class,
similar to paired transitions 1 and 4 in the infinite-alleles model. Formally, the two X9 vectors we must consider are

X 9 ¼ X 1 ei�1 � ei � ej 1 ej11; i 6¼ 0; j 6¼ i; i � 1; i � 2

and

X 9 ¼ X � ei�2 1 2ei�1 � ei ; i . 1:

We again suggest expressions for the stationary distributions,

pkdðx0; x1; . . . ; x2N Þ ¼ Ckd

Y2N

i¼0

1

xi !

Yi

m¼1

ððm � 1Þ=2N Þð1� uÞ1 u=k

mmm

" #xi

ðB1Þ

for selection at death and

pkrðx0; x1; . . . ; x2N Þ ¼ Ckr

Y2N

i¼0

1

xi !

Yi

m¼1

lm�1ðððm � 1Þ=2N Þð1� uÞ1 u=kÞ
m

" #xi

ðB2Þ

for selection at reproduction, where Ckd
and Ckr

again represent normalization constants. Reversibility can be verified
by the same methods as before, using these stationary distributions and appropriate transition rates. Our simplifying
notation is, for the k-allele model,
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ai ¼
Yi

m¼1

Rm�1

mmm

ðB3Þ

bi ¼
Yi

m¼1

lm�1Rm�1

m
; ðB4Þ

where we have defined Ri as

Ri ¼
i

2N
ð1� uÞ1 u

k
: ðB5Þ

We also use fd(xi) and fr(xi) as before in the infinite-alleles model.
For the first balance equation we have, with X9 ¼ X 1 ei�1 � ei � ej 1 ej11,

pkdðX Þ
pkdðX 9Þ ¼

fdðxi�1Þ
fdðxi�1 1 1Þ

fdðxiÞ
fdðxi � 1Þ

fdðxjÞ
fdðxj � 1Þ

fdðxj11Þ
fdðxj11 1 1Þ

¼ ðxi�1 1 1Þ
ai�1

ai

xi

aj

xj

ðxj11 1 1Þ
aj11

¼
mj11ð j 1 1Þðxj11 1 1Þðxi�1 1 1ÞRi�1

mi ixixjRj

¼ qðX 9; X Þ
qðX ; X 9Þ : ðB6Þ

Here the forward event is ‘‘an i-copy allele dies, and a new copy of a j-copy allele is created (through reproduction
or mutation),’’ with rate q(X, X9) ¼ miixixjRj, and the reverse event is ‘‘a ( j 1 1)-copy allele dies, and a new copy of an
(i � 1)-copy allele is created (through reproduction or mutation),’’ with rate q(X9, X) ¼ mj11(j 1 1)(xj11 1 1)
(xi�1 1 1)Ri�1.

For the second balance, X9 ¼ X � ei�2 1 2ei�1 � ei, and with selection at death,

pkdðX Þ
pkdðX 9Þ ¼

fdðxi�2Þ
fdðxi�2 � 1Þ

fdðxi�1Þ
fdðxi�1 1 2Þ

fdðxiÞ
fdðxi � 1Þ

¼ ai�2

xi�2

ðxi�1 1 1Þðxi�1 1 2Þ
a2

i�1

ai

xi

¼ mi�1ði � 1Þðxi�1 1 2Þðxi�1 1 1ÞRi�1

mi ixixi�2Ri�2

¼ qðX 9; X Þ
qðX ; X 9Þ : ðB7Þ

The events here are ‘‘i-copy dies, and an (i � 2)-copy is created (through reproduction or mutation),’’ with rate q(X,
X9) ¼ miixixi�2Ri�2, and ‘‘(i � 1)-copy dies, and a (different) (i � 1)-copy is created (through reproduction or
mutation),’’ with rate q(X9, X) ¼ mi�1(i � 1)(xi�1 1 2)(xi�1 1 1)Ri�1.

This completes the reversibility proof for selection at death with k-allele mutation. The proof for the selection at
reproduction case is similar, using the same balance equations. We have, for the first balance equation,

pkrðX Þ
pkrðX 9Þ ¼

frðxi�1Þ
frðxi�1 1 1Þ

frðxiÞ
frðxi � 1Þ

frðxjÞ
frðxj � 1Þ

frðxj11Þ
frðxj11 1 1Þ

¼ ðxi�1 1 1Þ
bi�1

bi

xi

bj

xj

ðxj11 1 1Þ
bj11

¼ ð j 1 1Þðxj11 1 1Þli�1ðxi�1 1 1ÞRi�1

ixilj xjRj

¼ qðX 9; X Þ
qðX ; X 9Þ : ðB8Þ

For the second balance equation we have
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pkrðX Þ
pkrðX 9Þ ¼

frðxi�2Þ
frðxi�2 � 1Þ

frðxi�1Þ
frðxi�1 1 2Þ

frðxiÞ
frðxi � 1Þ

¼ bi�2

xi�2

ðxi�1 1 1Þðxi�1 1 2Þ
b2

i�1

bi

xi

¼ ði � 1Þðxi�1 1 2Þli�1ðxi�1 1 1ÞRi�1

ixili�2xi�2Ri�2

¼ qðX 9; X Þ
qðX ; X 9Þ ; ðB9Þ

verifying the posited stationary distributions and reversibility in the Moran model of selection at reproduction under a
k-allele model of mutation.

Average allele frequency spectra: To obtain the equilibrium expectations for X, we begin again with the identity (4),

E ½Xi � ¼
X2N

j¼1

j

2N
E ½XiXj �;

and focus on finding expressions for the cross-products E[XiXj]. Using the transitions in the first detailed balance
above and taking expectations gives us, for the selection at death case,

mi iE ½XiXj �Rj ¼ mj11ð j 1 1ÞE ½Xj11Xi�1�Ri�1; i . 0; j 6¼ i; i � 1; i � 2

so that, for i , j

E ½XiXj � ¼
j 1 1

i

mj11

mi

Ri�1

Rj
E ½Xi�1Xj11�: ðB10Þ

We also have from the other set of detailed balances that

mi iE ½XiðXi � 1Þ�Ri ¼ mi11ði 1 1ÞE ½Xi11Xi�1�Ri�1

for i . 1 or

E ½XiXi � ¼ E ½Xi �1
i 1 1

i

mi11

mi

Ri�1

Ri
E ½Xi�1Xi11�: ðB11Þ

Combining (B10) and (B11), we have

E ½XiXj � ¼
Yi

r¼1

j 1 r

i � r 1 1

mj1r

mi�r11

Ri�r

Rj1r�1

 !
E ½X0Xi1j �; i , j ðB12Þ

E ½XiXi � ¼ E ½Xi �1
Yi

r¼1

i 1 r

i � r 1 1

mi1r

mi�r11

Ri�r

Ri1r�1

 !
E ½X0X2i �; ðB13Þ

leading to

E ½Xi � ¼
XMinði;2N�iÞ

j¼1

j

2N � i

Yj

r¼1

i 1 r

j � r 1 1

mi1r

mj�r11

Rj�r

Ri1r�1

 !
E ½X0Xi1j �

1
X2N�i

j¼Minði;2N�iÞ11

j

2N � i

Yi

r¼1

j 1 r

i � r 1 1

mj1r

mi�r11

Ri�r

Rj1r�1

 !
E ½X0Xi1j �: ðB14Þ

These expressions are more complex than in the infinite-alleles case, and it appears that in addition to the problem
of finding the set of 2N 1 1 E[Xi] elements, we have also set ourselves the task of first finding the set of E[X0Xi]
elements. These tasks, however, can be accomplished simultaneously. We first note that
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x0 ¼ k �
X2N

j¼1

xj ;

and therefore

x0xi ¼ kxi �
X2N

j¼1

xixj :

Then, taking the usual equilibrium expectations,

E ½X0Xi � ¼ kE ½Xi � �
X2N

j¼1

E ½XiXj �: ðB15Þ

We then have

E ½X0Xi � ¼ ðk � 1ÞE ½Xi �

�
XMinði;2N�iÞ

j¼1

Yj

r¼1

i 1 r

j � r 1 1

mi1r

mj�r11

Rj�r

Ri1r�1

 !
E ½X0Xi1j �

�
X2N�i

Minði;2N�iÞ11

Yi

r¼1

j 1 r

i � r 1 1

mj1r

mi�r11

Ri�r

Rj1r�1

 !
E ½X0Xi1j �: ðB16Þ

We have now expressed E[X0Xi] in terms of the ‘‘higher’’ vector elements E[X0Xi1j], just as we were able to express
E[Xi] in terms of the higher E[Xi1j] in the infinite-alleles model. In that case, we obtained results by calculating all
E[Xi] terms beginning with E[X2N] and moving down the vector, relative to E[X2N], and then normalizing to obtain
E[X2N]. Here, our procedure is very similar, but with an added layer of calculation as we move down the vector to
calculate the E[X0Xi]’s relative to E[X0X2N]. The procedure is straightforward because E[X0X2N]¼ (k� 1)E[X2N], and
thus we can calculate all the E[X0Xi]’s, as well as E[Xi], relative to E[X2N], and normalize at the end as before. The full
expression for E[Xi] obtained in this manner is cumbersome, but a computer program can calculate the values readily.
As in the infinite-alleles model, once we have the expectations E[Xi], we can immediately calculate the normalization
constant Ckd

, as well as Var[Xi] and Cov[XiXj] for the k-allele model.
Analysis of k-allele mutation and reproduction-step selection is very similar, using the familiar balance equations and

the appropriate transition rates. The expression for the cross-product expectations in the case of selection at
reproduction is

E ½XiXj � ¼
Yi

r¼1

j 1 r

i � r 1 1

li�r

lj1r�1

Ri�r

Rj1r�1

 !
E ½X0Xi1j �; i , j ðB17Þ

E ½XiXi � ¼ E ½Xi �1
Yi

r¼1

i 1 r

i � r 1 1

li�r

li1r�1

Ri�r

Ri1r�1

 !
E ½X0X2i � ðB18Þ

and we again use (B15) to obtain

E ½X0Xi � ¼ ðk � 1ÞE ½Xi �

�
XMinði;2N�iÞ

j¼1

Yj

r¼1

i 1 r

j � r 1 1

lj�r

li1r�1

Rj�r

Ri1r�1

 !
E ½X0Xi1j �

�
X2N�i

Minði;2N�iÞ

Yi

r¼1

j 1 r

i � r 1 1

li�r

lj1r�1

Ri�r

Rj1r�1

 !
E ½X0Xi1j �: ðB19Þ

Again, a full expression for E[Xi] is not useful to write down, but a computer program can readily calculate the values.
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