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Marcel Salathé,1 Jeremy Van Cleve and Marcus W. Feldman

Department of Biological Sciences, Stanford University, Stanford, California 94305-5020

Manuscript received March 27, 2009
Accepted for publication May 23, 2009

ABSTRACT

Uncertain environments pose a tremendous challenge to populations: The selective pressures imposed
by the environment can change so rapidly that adaptation by mutation alone would be too slow. One
solution to this problem is given by the phenomenon of stochastic phenotype switching, which causes
genetically uniform populations to be phenotypically heterogenous. Stochastic phenotype switching has
been observed in numerous microbial species and is generally assumed to be an adaptive bet-hedging
strategy to anticipate future environmental change. We use an explicit population genetic model to
investigate the evolutionary dynamics of phenotypic switching rates. We find that whether or not
stochastic switching is an adaptive strategy is highly contingent upon the fitness landscape given by the
changing environment. Unless selection is very strong, asymmetric fitness landscapes—where the cost of
being maladapted is not identical in all environments—strongly select against stochastic switching. We
further observe a threshold phenomenon that causes switching rates to be either relatively high or
completely absent, but rarely intermediate. Our finding that marginal changes in selection pressures can
cause fundamentally different evolutionary outcomes is important in a wide range of fields concerned
with microbial bet hedging.

EVOLUTIONARY adaptation is the process of phe-
notypic change across generations due to which

organisms are more likely to survive and reproduce in
their environments. In the standard population genetic
framework, the underlying mechanism of adaptation is
genetic change caused by random mutations or re-
combination. In the past few decades, epigenetic change
has been described as an additional mechanism to
induce phenotypic change without modification of the
genotype. Phenotypic change mediated by epigenetic
change can be inherited across generations and can
lead to phenotypic heterogeneity among genetically
identical individuals. While the exact molecular mech-
anisms underlying epigenetic change are not yet fully
understood, the phenomenon has been described in a
variety of species, from unicellular organisms such as
Saccharomyces cerevisiae, Escherichia coli, or Bacillus subtilis
to plants and animals (Rakyan et al. 2002; Henderson

and Jacobsen 2007).
An intriguing example of such a process is stochastic

switching, whereby individual cells randomly switch
among a number of different inheritable phenotypes.
Phenotypic variation (often referred to as phenotypic
noise) in clonal populations caused by stochastic switch-
ing is generally understood to be a bet-hedging strategy
in uncertain environments (Stumpf et al. 2002; Thattai

and van Oudenaarden 2004; Kussell and Leibler

2005): In the absence of a reliable sensing mechanism, it
might be beneficial to spread the risk of being malad-
apted in future environments among phenotypically
variable offspring, each of whom stands a chance of
being well adapted to a future environment. Bet
hedging is a general phenomenon thought to be re-
sponsible for phenotypic variability at all levels of the
tree of life, ranging from stochastic switches in unicel-
lular organisms to variable seed morphologies in desert
plants that must survive recurrent droughts (Evans and
Dennehy 2005). Like every risk-diversifying strategy,
however, bet-hedging comes at a cost, generated by the
production of potentially maladapted phenotypes. Un-
der which circumstances the benefits outweigh the costs
of stochastic switching is a question tackled by both
experimental (Acar et al. 2008) and theoretical studies
(Leigh 1970; Ishii et al. 1989; Lachmann and Jablonka

1996; Thattai and van Oudenaarden 2004; Kussell

and Leibler 2005).
Stochastic switches often rely on feedback loops in

genetic networks. Stochasticity in gene expression due
to internal fluctuations in mRNA transcription or pro-
tein translation can be sufficient to cause transition
between two or more different regulatory states, result-
ing in bi- or multistability (Smits et al. 2006). For
example, the galactose-utilization network in S. cerevisiae
consists of three feedback loops that allow for bistability
of two distinct expression states that reflect past galac-
tose exposure (Acar et al. 2005). The soil bacterium B.
subtilis relies on a positive feedback loop to generate
bistability between competence and noncompetence
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states, where the bacterium can incorporate exogenous
DNA into its genome when in the competence state
(Maamar et al. 2007). More recently, multistability in
gene expression in E. coli has been described as an
example of an epigenetic switch that does not rely on
feedback loops, but instead is based on methylation
(Lim and van Oudenaarden 2007). While there may be
many different mechanisms underlying stochastic
switching, they are relevant to this study only insofar as
they produce switching rates that are inherited and
malleable and thus subject to natural selection. If the
rate at which the switching occurs is an evolvable trait,
understanding the ecological and genetic parameters
that determine the evolutionarily stable phenotypic
switching rate is important to understanding the general
phenomenon of bet hedging. Theoretical studies have
shown that the evolutionarily stable switching rate is
expected to evolve to be in tune with the rate of
environmental change (Leigh 1970; Ishii et al. 1989;
Lachmann and Jablonka 1996). Experimental data
have indeed suggested that cells may tune interpheno-
type switching rates to the frequency of environmental
changes (Acar et al. 2008). Furthermore, evidence that
phenotypic variation can be selected for has been
provided recently (Freed et al. 2008).

We address the evolution of stochastic switching rates
using an explicit population genetic model with a
modifier gene that determines the rate of switching to
explore the conditions under which stochastic switching
is adaptive. Our results indicate that switching rates will
reflect the rate of environmental change only under very
limited conditions. In particular, we find that unless
selection is very strong, the maintenance of nonzero
rates of stochastic switching depends crucially on the
symmetry of the fitness landscape: If the fitness cost of
being maladapted varies among environments, stochas-
tic switching cannot be maintained. Our findings
suggest that pure bet hedging as a strategy in an
uncertain world is constrained by very stringent fitness
symmetry conditions.

METHODS

To address the evolution of phenotypic switching rates
we use a population genetic model that tracks the
frequency of haploid genotypes over time in an infinitely
large population. Each genotype consists of a major
locus under selection and a modifier locus. The allele at
the major locus determines the phenotype and thus the
fitness of the genotype in a given environment (see
below). The allele at the modifier locus determines the
rate at which the allele at the major locus switches to an
alternative allele; the modifier alleles are otherwise
selectively neutral. There are two possible alleles at the
major locus (0 and 1) and two possible alleles at the
modifier locus (m and M). Thus, there are four possible
genotypes: 0m, 0M, 1m, and 1M.

The phenotype of an individual is given solely by the
allele at the selection locus, and hence there are only
two phenotypes in the model, p0 and p1. The fitness of
these phenotypes depends on the environment in
which they find themselves. At any given time, the
environment is in one of two possible states, e0 and e1.
Phenotypes p0 and p1 have maximal fitness (i.e., 1) in
environments e0 and e1, respectively. The fitness of
phenotype p0 in environment e1 is 1� s0, and the fitness
of phenotype p1 in environment e0 is 1 � s1.

The population is initiated with random allele fre-
quencies at the major locus. At the modifier locus, only
the wild-type allele m is present initially. The initial
environment is randomly chosen to be either e0 or e1.
After initiation, the following processes occur at each
time step: clonal reproduction, selection, and mutation
(i.e., switching of allelic states at the major locus). The
frequency of the genotype with allele i at the major locus
after selection in environment j is given by fi9, where

f 9i ¼
wiP
k wk

;

wi ¼ fiwij, and wij ¼ 1 if i ¼ j and wij ¼ 1 � si otherwise.
Mutation occurs only at the major locus. The rate at

which mutation occurs is given by the allele at the
modifier locus. Thus, there are two mutation rates, mm

and mM. Unless noted otherwise, mutation at the major
locus occurs at the same rate in both directions: i.e., the
rate of mutation from allele 0 to allele 1 (m[0/1]) is
equal to the rate of mutation from allele 1 to allele 0
(m[1/0]). We can relax this assumption and allow for
m[0/1] 6¼ m[1/0]. In that case, the allele at the modifier
has two distinct rates associated with it, m[0/1] and
m[1/0]. Because we are concerned mainly with the
change of phenotype, we generally use the term switch-
ing rate, rather than mutation rate.

Environmental change is simulated by switching from
environment e0 to environment e1 and vice versa after an
average waiting time of n generations, where the waiting
times are either sampled from a gamma distribution
with parameters a and b (with a as the shape parameter
and b as the scale parameter), or where the waiting time
is always exactly n. In the first case, the mean waiting
time is n ¼ ab, corresponding to the average rate of
environmental change, and the variance is ab2. In the
second case, the variance is zero, reflecting a situation
where the environment changes periodically every n
generations (we refer to this as the periodic case). The
gamma distribution allows us to test a whole range of
distributions by modifying the variance while holding
the mean constant. The exponential distribution, which
is a special case of the gamma distribution with a ¼ 1, is
used in a number of studies where the environment
changes with an instantaneous rate of 1/n at every time
point (we refer to this as the exponential case).

After a burn-in period of 1000 generations, the
modifier allele M is introduced at frequency fM ¼ 10�4.
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A simulation run is stopped 100,000 generations after
the introduction of the allele M or if fM¼ 1 or fM¼ 0. We
consider an invasion successful if fM . 10�4 after the
simulation has stopped; if the invasion is successful, we
say that mM is the selected switching rate, and otherwise
mm is the selected rate. In most cases, the two frequen-
cies (i.e., fM before and after the simulation) differ by
many orders of magnitude, in particular when the
selection coefficients (s0 and s1) and the difference
between mm and mM are not small. In such cases, allele
M will reach fixation (fM ¼ 1) if it has a selective bene-
fit over allele m.

To find the evolutionarily stable switching rate, we
perform the following invasion trial procedure: a
simulation run is started with randomly chosen values
between 0 and 0.1 for the wild-type switching rate mm and
the mutant switching rate mM. After the simulation run,
the selected switching rate is then used as the new wild-
type switching rate (mm) in a follow-up simulation, and a
new modifier switching rate (mM) is chosen such that
mM¼mm 3 @, where @ is a randomly chosen number from
an exponential distribution with mean 1 (in the case
where we allow for m[0/1] 6¼ m[1/0], we simply choose
two random numbers, @1 and @2, from an exponential
distribution with mean 1, and mM[0/1] ¼ mm[0/1] 3 @1

and mM[1/0] ¼ mm[1/0] 3 @2). This process is repeated
500 times, and the selected switching rate after 500
sequential simulation runs, each of up to 100,000
generations, is considered to be the evolutionarily stable
switching rate.

Although the formulation of the model is in purely
genetic terms, the generality of the model also allows for
its interpretation in epigenetic or behavioral terms. For
example, one can think of a gene x with two possible
expression states (e.g., low and high expression levels),
giving rise to two different phenotypes. In that case, the
expression level (low or high) is given here by the allele
at the major locus (0 or 1), and the rate of switching
between the two expression levels is given by the allele at
the modifier locus. It is important to note that the one-
locus/two-allele formulation is chosen solely for mod-
eling convenience, with the aim of capturing any type of
vertical transmission of a bimodal phenotypic trait, and
even though a given system might not involve an actual
genetic locus with two alleles (e.g., the expression
example given above), our model will still capture the
dynamics of that system.

RESULTS

We first explore the behavior of the model in a
symmetric fitness landscape, i.e., where the fitness cost
of expressing the maladapted phenotype is indepen-
dent of the environment (s0 ¼ s1). If the environment
changes periodically every n generations, we find the
evolutionarily stable switching rate to be on the order of
1/n, confirming results of earlier studies (Leigh 1970;

Ishii et al. 1989; Lachmann and Jablonka 1996).
However, in stochastic environments where the environ-
ment changes with an instantaneous rate of 1/n at every
time point, we find that the evolutionarily stable switch-
ing rates can be up to two orders of magnitude lower,
depending on the selection coefficient (Figure 1).
Interestingly, while the switching rates decrease sub-
stantially when selection is not very strong (s , 0.1), the
decrease does not occur gradually over the full range of
variances, but is confined to a rather narrow, interme-
diate region.

Next, we turn our attention to the behavior of the
model in an asymmetric fitness landscape, i.e., where the
fitness cost of expressing the maladapted phenotype is
dependent on the environment (s0 6¼ s1). In such a
landscape, we observe a hitherto undescribed threshold
phenomenon: If the two selection coefficients are

Figure 1.—Evolution of stochastic switching rates in sym-
metric fitness landscapes, i.e., s ¼ s0 ¼ s1. The log10 evolution-
arily stable switching rate on the y-axis depends both on the
fitness cost of being maladapted in both environments (s) and
on the variance of the distribution of waiting times. The mean
waiting time is fixed at n ¼ 20 and the variance ranges from
zero, which corresponds to a periodic environment where the
environment changes exactly every 20 generations, to 400,
which corresponds to an exponential distribution (a ¼ 1,
b ¼ 20) where the environment changes with probability
0.05 at each generation. Different values of s are plotted using
the colored open and solid circles. The expectation that
switching rates evolve to be in tune with the rate of environ-
mental change (1/n) is given by the dashed line.
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similar in strength, switching rates evolve to levels
observed in symmetric fitness landscapes; however, if
the difference between the coefficients reaches a certain
threshold value, the switching rates quickly evolve to-
ward zero. Figure 2, a and b, shows the log10 values of the
evolutionarily stable switching rates for the periodic and
the exponential case, respectively, with various combi-
nations of selection coefficients s0 and s1 between (and
including) 0.001 and 1. Figure 2, a and b, demonstrates
that nonzero switching rates in asymmetric fitness land-
scapes cannot be maintained unless selection is very
strong in both environments. In the periodic case,
switching rates on the order of 1/n can be maintained—-
provided s0 and s1 are identical—even when selection is
weak. In the exponential case, the parameter range in
which nonzero switching rates can be maintained is
slightly larger, but when selection is not very strong,
switching rates drop dramatically even when s0 ¼ s1. In
Figure 2, c and d, we relax the condition that the
switching rates have to be identical in both directions
and allow for m[0/1] 6¼ m[1/0], but the general conclu-
sion remains the same. Figure 2, c and d, shows the lower
of the two switching rates. The areas where one of the
switching rates will evolve to zero (the white areas) are
almost identical to the case where m[0/1]¼ m[1/0] (i.e.,
Figure 2, a and b).

The threshold phenomenon observed in Figure 2
substantially limits the circumstances under which
stochastic switching can be maintained. To understand

the cause of this phenomenon, we looked at the invasion
dynamics of modifier alleles for different combinations
of selection coefficients in Figure 3 (for simplicity, we
assume again that m[0/1] ¼ m[1/0]). The panels in
Figure 3 are pairwise invasibility plots, where the
horizontal axis represents the value of the wild-type
switching rate mm and the vertical axis represents the
mutant switching rate mM. The modifier allele M cannot
invade the population in the black regions, whereas in
the white regions M invades. In all panels, s0 is kept
constant at 0.1, but s1 varies from 0.1 to 0.25. Figure 3a
shows that when s0¼ s1, the evolutionarily stable switch-
ing rate is on the order of 1/n. However, as soon as s0 6¼ s1,
we observe a qualitative change in the range of switch-
ing rates that are ,�0.01 (Figure 3b). In that range, any
mutant modifier allele that causes an even lower
switching rate can invade. Thus, there is a potential for
the switching rates to evolve to zero (in Figure 3b, the
smallest value for the switching rate is 10�6, but the
results in Figure 2 show that the switching rate will evolve
to values ,10�15). Notably, however, modifier alleles that
cause substantially higher switching rates (mM . 0.01)
may always invade. This means that although the switch-
ing rate might steadily evolve toward zero, it will always
be prone to invasion by higher switching rates. Whether
such an invasion can occur once the switching rate is very
low depends on the availability of mutations that cause
such dramatic changes in switching rates. On the other
hand, the equilibrium at�1/n is resistant to invasion by

Figure 2.—Evolution of sto-
chastic switching rates in asym-
metric fitness landscapes. The
plot shows the log10 of the evolu-
tionarily stable switching rates.
In c and d, the smaller of the
two rates (m[0/1] and m[1/0])
is shown. The threshold phe-
nomenon is clearly visible as a
sudden drop from switching
rates at high levels (shown by
the gray color gradient) to rates
#10�15 (shown in white). Inter-
mediate rates are almost nonex-
istent (shown by the red color
gradient). (a–d) The periodic
(a and c) and the exponential
case (b and d). Each of the 900
points shows the average of 50 in-
vasion trials. s0 and s1 vary from
0.001 to 1, and the mean waiting
time is n ¼ 20. In principle, the
plots should be perfectly sym-
metric along the diagonal s0 ¼
s1. The slight deviations from
perfect symmetry are due to the
stochastic nature of the simula-
tions. The condition that the
switching rates are equal in both
directions is relaxed in c and d,

where the two rates are allowed to evolve independently (i.e., m[0/1] 6¼ m[1/0]). In c and d, only the lower of the two rates
is shown.
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mutant switching rates of any size; i.e., it is globally
evolutionarily stable. Hence, under the assumption that
all mutations are available with some nonzero probabil-
ity, switching rates are expected to evolve to a value on
the order of 1/n in the long run (given the settings used
here, i.e., a periodically changing environment), but for
large periods of time, they may be dramatically lower. A
slight increase in s1 (Figure 3c) increases the parameter
range where very low switching rates are temporarily
selected for, and while the globally evolutionarily stable
switching rate is still on the order of 1/n, it becomes
increasingly hard for a mutation causing high switching
rates to invade as long as the wild-type switching rate is
very low.

By further increasing s1, a threshold will eventually be
reached where the previously globally evolutionarily
stable switching rate will become locally evolutionarily
stable only: Once a mutant appears that causes a switch-
ing rate below a certain threshold value (red dashed
lines in Figure 3, d and e), the rate will ultimately evolve
toward zero. Thus, at this point the dynamic behavior is
opposite to that described above: The switching rates are
expected to evolve to zero in the long run, but, for a
period of time, they may be on the order of 1/n. Indeed,
when we look at the data of invasion trials underlying
Figure 2 at this parameter range (e.g., s0¼ 0.1, s1¼ 0.15),
we find that most stable switching rates are ,10�15 but, in
a very few cases, the rates are still on the order of 1/n
(data not shown). An even further increase of s1 will
eliminate the locally evolutionarily stable switching rate
of 1/n, and only mutations decreasing the switching rate
can invade, rapidly driving the switching rates toward
zero (Figure 3f).

DISCUSSION

The idea that stochastic switching of phenotypes is an
adaptive strategy to cope with changing environments
has gained ground in the past two decades. Empirical
studies have demonstrated the ubiquity of stochastic
switching in clonal populations, and theoretical advan-
ces have shown that such a bet-hedging strategy can in
principle be advantageous even in comparison to
environmental sensing (Kussell and Leibler 2005).
However, all modeling efforts aimed at understanding
the phenomenon have assumed fitness symmetry such
that the fitness cost of being maladapted is equal in all
environments. Here, we have used a population genetic
model to investigate the evolution of stochastic switch-
ing rates, and while our model can reproduce previously
reported results, we find dramatic changes in the be-
havior of the model once we relax the fitness symmetry
conditions. In particular, we discovered a threshold
phenomenon where minor changes in selection result
in the loss of stochastic switching unless selection against
maladaptation is strong in all environments.

Stochastic switching is generally seen as an adaptive
bet-hedging strategy to create phenotypic variability in
an otherwise uniform population (but alternative ex-
planations exist; see, for example, Ackermann et al.
2008). The main rationale is that the variability would
confer a fitness benefit to the population, and both

Figure 3.—These pairwise invasibility plots show which
modifier switching rate mM can invade a population with
wild-type switching rate mm. (a) A symmetric fitness landscape
with s0 ¼ s1 ¼ 0.1. (b–f) Asymmetric fitness landscapes with
s1 . s0 ¼ 0.1 and the following values for s1: (b) 0.11, (c)
0.13, (d) 0.15, (e) 0.18, and (f) 0.23. Each of the 2500 points
on each panel shows the average of 10 invasion trials (one in-
vasion trial corresponds to 500 consecutive simulation runs,
each up to 100,000 generations; see main text). If the modi-
fier switching rate invades, the area is white (also indicated by
a plus sign); otherwise it is black (also indicated by a minus
sign). In all simulations, the environment changes periodi-
cally every n ¼ 20 generations. The panels show how a depar-
ture from a symmetric fitness landscape (a) causes a
fundamental change in the invasion dynamics. In particular,
the parameter range in which a globally evolutionarily stable
nonzero switching rate exists becomes increasingly smaller (b
and c) and will eventually disappear altogether (d–f). In d and
e, the nonzero switching rate is locally evolutionarily stable
only and cannot be maintained in the long run: The red
dashed lines indicate the threshold values of mm below which
a modifier allele with switching rate mM can invade only when
mM , mm. A population with a wild-type switching rate mm be-
low this threshold will ultimately evolve its switching rate to-
ward zero.
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theoretical and empirical work (see, e.g., Dubnau and
Losick 2006) have demonstrated this effect repeatedly.
Our results confirm this notion in principle but indicate
that the details of environmental change, and in
particular the associated fitness costs in all environ-
ments, can dramatically alter the outcome and cause
strong and consistent selection against stochastic switch-
ing. An influential theoretical analysis (Kussell and
Leibler 2005) has suggested that stochastic switching is
an optimal strategy only if the environment does not
change too quickly and that otherwise environmental
sensing would be more beneficial. Here, we have focused
exclusively on stochastic switching, and it remains to be
seen if the observed selection against stochastic switching
in asymmetric fitness environments would automatically
lead to a competitive advantage for environmental sens-
ing. For example, it is possible that asymmetric fitness
landscapes will also make environmental sensing more
difficult to evolve, especially if the relative fitness cost of
the sensing mechanism is uniform across environments.
However, if the relative fitness cost of sensing is low com-
pared to the weakest selection coefficient and if sensing is
fairly responsive, then it is conceivable that sensing could
be selected for under a wide range of conditions. Study-
ing these issues quantitatively is an important next step in
this work.

Our results may be helpful to interpret differences in
findings from populations of cells in the wild and in the
laboratory. For example, wild strains of B. subtilis enter
the competence state at a much lower rate than lab-
oratory strains (Dubnau and Losick 2006). Both
periodic environments and perfectly symmetric fitness
landscapes are arguably more likely to be maintained in
the laboratory than in the wild. Thus, it is possible that
switching rates of laboratory strains are higher than
those found in the wild due to small differences in the
selective pressures imposed by the different environ-
ments or due to a difference in the variance of envi-
ronmental change.

Stochastic phenotype switching has attracted consid-
erable attention in the study of microbial pathogens,
where it is commonly referred to as phase variation (van

der Woude and Bäumler 2004). The resulting pheno-
typic variability has been proposed to facilitate immune
evasion and colonization of new niches within a host.
Bet hedging might even be an adaptive strategy in
between-host dynamics. For example, static latency of
the herpes virus has been suggested to be a bet-hedging
strategy when the number of susceptible hosts (i.e., the
environment of the virus) fluctuates over time (Stumpf

et al. 2002). Microbial pathogens have such short
generation times that evolutionary considerations are

of importance during the lifetime of their human hosts,
and thus understanding the evolutionary dynamics of
stochastic switching might hold a key to developing
efficient strategies for their control.
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