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ABSTRACT

The rates and patterns of spontaneous mutation are fundamental parameters of molecular evolution.
Current methodology either tries to measure such rates and patterns directly in mutation-accumulation
experiments or tries to infer them indirectly from levels of divergence or polymorphism. While
experimental approaches are constrained by the low rate at which new mutations occur, indirect
approaches suffer from their underlying assumption that mutations are effectively neutral. Here I present
a maximum-likelihood approach to estimate mutation rates from large-scale polymorphism data. It is
demonstrated that the method is not sensitive to demography and the distribution of selection
coefficients among mutations when applied to mutations at sufficiently low population frequencies. With
the many large-scale sequencing projects currently underway, for instance, the 1000 genomes project in
humans, plenty of the required low-frequency polymorphism data will shortly become available. My
method will allow for an accurate and unbiased inference of mutation rates and patterns from such data
sets at high spatial resolution. I discuss how the assessment of several long-standing problems of
evolutionary biology would benefit from the availability of accurate mutation rate estimates.

NUCLEOTIDE mutations are the ultimate source of
genetic variation within populations and between

species. Mutations initially occur in individuals, yet some
might subsequently become fixed in the population.
Such substitution events underlie the evolution of species.
Precise knowledge of the rates and patterns of sponta-
neous nucleotide mutation is hence of essential impor-
tance for our understanding of the evolutionary process.

The characteristics of mutations can be analyzed
by mutation-accumulation experiments (Luria and
Delbrck 1943; Denver et al. 2004; Haag-Liautard

et al. 2008; Lynch et al. 2008). These approaches are
confined, however, to experimentally feasible organ-
isms. Their accuracy is also limited by the generally low
rate at which new mutations occur in individuals. Muta-
tion patterns might furthermore be peculiar in specific
analyzed strains. An accurate estimation of mutation rates
and patterns on local genomic scales by mutation-
accumulation experiments is clearly beyond the scope
of present-day experimental capabilities.

For practical purposes, one therefore often uses
indirect approaches to investigate mutation character-
istics. Indirect approaches are based on predictions from
population genetics theory that quantitatively link the
mutational processes to the expected levels of divergence
between species or polymorphism within a population.

They typically rely on the assumption that mutations are
effectively neutral.

For example, population genetics theory predicts that
the amount of polymorphism in a population is related
to the quantity u ¼ 4Nem, where m is the rate of
spontaneous mutation in an individual genome and
Ne is the effective population size. A variety of different
estimators for u from polymorphism data exist (Ewens

2004), but all either depend on the neutrality assump-
tion or require explicit knowledge about the distribu-
tion of selection coefficients among new mutations.

Polymorphism-based approaches are also particularly
sensitive to demography, especially when they utilize
polymorphism data over the full range of population
frequencies. A population bottleneck, for instance, can
remove a large amount of polymorphism from the
population. Mutation rates estimated from the amount
of polymorphism under the assumption of constant
population size might then substantially underestimate
the true rates (Tajima 1989b).

Population genetics theory also links mutations and
substitutions. Here it is predicted that substitution rates
equal mutation rates if mutations are effectively neutral
(Kimura 1968). The rates and patterns of substitution
between species can thus provide a proxy for rates and
patterns of mutation in individuals under the above
assumption.

Such divergence-based approaches underlie most of our
present estimates of mutational parameters (Nachman
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and Crowell 2000; Kumar and Subramanian 2002;
Ellegren et al. 2003). Primarily this might be due to
the greater availability of divergence compared to poly-
morphism data. Divergence-based analyses should also
be less affected by demography than polymorphism-
based approaches, yet they rely more crucially on the
assumption of selective neutrality.

The widespread acceptance of divergence-based ap-
proaches relates to Kimura’s influential ‘‘neutral theory
of molecular evolution,’’ which surmises that most
substitutions and observed polymorphisms are indeed
effectively neutral (Kimura 1968). On a genomewide
scale, the effects of selection on the population dynam-
ics of new mutations can hence safely be neglected, even
more so when restricting analyses to presumably un-
constrained regions of genomes like pseudogenes,
inactivated transposable elements, or fourfold degen-
erate codons.

In recent years the neutral theory has been strongly
challenged. There is accumulating evidence that in
many species selection is far more prevalent than
previously thought (Fay et al. 2002; Andolfatto 2005;
Bustamante et al. 2005; Eyre-Walker 2006; Begun

et al. 2007; Nielsen et al. 2007; Macpherson et al. 2007;
Cai et al. 2009). In addition, biased gene conversion
(BGC), which with regard to allele frequency dynamics
operates identically to selection, seems to be acting in
many higher organisms (Nagylaki 1983; Galtier and
Duret 2007). In the light of such evidence it remains
questionable to what extent indirect approaches that
measure levels of divergence or polymorphism at ‘‘pre-
sumably neutrally’’ evolving sequence regions may still
provide accurate estimates for the true rates and patterns
of mutation.

In principle, many of the biases that result when
mutations are not effectively neutral should vanish
when utilizing polymorphism data at very low popula-
tion frequencies. This is because the population dy-
namics of low-frequency alleles are predominantly
governed by stochastic, rather than selective forces. In
this regime, all mutations should behave similarly, irre-
spective of their particular selection coefficients. More-
over, mutations at low population frequencies should
also be less affected by past demographic events because
on average they are younger than mutations at higher
frequencies (Kimura and Ohta 1973).

A more intuitive example of why low-frequency
mutations should become less sensitive to both selec-
tion and demography is to consider the extreme limit of
mutations that are present in only one individual of the
population. These mutations are likely to have just
occurred in the parental germline. They will neither be
influenced by the species demography nor be influ-
enced by selection—except for dominant lethals. One
can therefore expect such mutations to reflect the
‘‘true’’ rates and characteristics of the underlying muta-
tional processes.

Single-nucleotide polymorphism (SNP) data at suffi-
ciently low population frequency should hence allow for
the inference of rates and patterns of spontaneous
nucleotide mutation in a way that is less affected by the
distribution of selection coefficients among new muta-
tions and the particular demographic history of the
species. Such an approach has not been feasible so far
due to the lack of genomewide SNP data at the required
low population frequencies.

This restriction will shortly be overcome. Several
large-scale sequencing projects are presently being
conducted, for example, the 1000 genomes project in
humans (Kaiser 2008). These experiments will provide
large amounts of genomewide SNP data at sufficiently
high population resolution, finally making the regime
of low-frequency variation accessible for quantitative
investigation. To utilize such data for an unbiased
inference of mutational parameters, one requires esti-
mators that isolate particular frequency classes from the
frequency spectrum of SNPs.

Here I develop a maximum-likelihood (ML) method
for measuring u from the observed numbers of SNPs at
particular population frequencies. When applied to low-
frequency SNPs, it allows for an unbiased inference of
mutation rates and patterns at high regional resolution
and accuracy. The method does not require prior
knowledge of the distribution of selection coefficients
among new mutations or the demographic history of the
species. I demonstrate that ML estimates always converge
to the true rates as long as investigated population
frequencies are sufficiently low. Analytical formulas for
the deviations between ML estimates and the true rates in
the presence of selection and demography are also
provided, and it is discussed how these deviations, in
turn, can be used to infer selection and demography.

The method is expected to yield accurate and robust
mutation rate estimates from the anticipated SNP data
sets. For the 1000 genomes project in humans I estimate
that the expected spatial resolution of the method
should allow for a regional inference of mutation rates
on genomic length scales ,100 kbp.

The availability of regionally resolved rates and patterns
of spontaneous mutation would encourage the assess-
ment of many important problems in evolutionary biology
(Duret 2009). Examples include the elucidation of the
relative contributions of drift and selection to evolution,
the investigation of extent and characteristics of BGC, and
the characterization of inherent biases of mutation pro-
cesses. The application of my ML approach and its
potential advantages over substitution-based approaches
for such analyses is discussed at the end of this article.

BACKGROUND

The aim of this study is to establish a ML methodology
for inferring the rates of spontaneous mutation from
the numbers of low-frequency SNPs in polymorphism
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data sets. To compute likelihoods of observed counts
given particular mutational parameters one requires a
probabilistic model of the expected numbers of such
counts. The starting point for this probabilistic model
is the expected frequency distribution of mutations in
the source population from which the SNP data have
been obtained. Fortunately, an analytic formula for
this distribution already exists. It is discussed in the
following.

Let us consider a panmictic population of N diploid
individuals. Mutations are characterized by their selec-
tion coefficients s, and codominance is assumed. Indi-
viduals heterozygous for a mutation have fitness 1 1 s,
homozygotes have fitness 1 1 2s, and individuals without
the mutation have fitness 1. Mutations are modeled
according to an infinite-sites model. Mutations with
selection coefficient s arise in individuals by a Poisson
process with rate mg, where g ¼ 2Ns determines the
strength of selection associated with a mutation. Different
mutations evolve independently of each other. Segregat-
ing sites in the population can be classified according to
the g’s of their mutant alleles. For each class g, we define
with gg(x) the expected average number of segregating
sites in the population at which the mutant allele is
present at population frequency x, the so-called site
frequency spectrum (SFS). Under mutation-selection
equilibrium, Wright (1938) has shown that

ggðxÞ ¼ 2mg

12e22gð12xÞ

ð12e22gÞxð12xÞ : ð1Þ

The SFS can also be deduced from Kimura’s seminal
diffusion approximation for the stochastic dynamics of
allele frequencies in a population under the influence
of random genetic drift and selection (Kimura 1964;
Sawyer and Hartl 1992; Ewens 2004). As this frame-
work will prove instructive for my further analysis, it is
shortly outlined here. Let f(p, x, t) be the conditional
probability density that a mutation from class g is at
frequency x in the population at time t, given that its
initial frequency is p at time t ¼ 0. The stochastic
dynamics of f(p, x, t) per generation in the diffusion
approximation are then determined by

@f

@t
¼ 1

4N

@2

@x2 ½xð12xÞf�22g
@

@x
½xð12xÞf�

� �
: ð2Þ

The first term on the right-hand side describes the
stochastic influence of random genetic drift on f(p, x,
t), and the second term specifies the average determin-
istic rate of change in x due to selection. In the limit of
low frequencies x, Equation 2 is dominated by the drift
term and the relative contribution of selection to the
variance in allele frequency between generations be-
comes negligible. Consequently, one can also expect the
distribution (1) to converge to its neutral asymptotics
gg/0(x) for small x. Indeed, Taylor series approxima-
tions yield

ggðxÞ ��!g/0 2mg

x
[ g0ðxÞ and ggðxÞ ��!x/0

g0ðxÞ: ð3Þ

Examples for the rate of convergence can be seen in
Figure 1, where distributions gg(x) are shown for several
exemplary values of g.

From the SFS for class g one can calculate the
expected overall number of segregating sites in the
population from that class,

mgðmgÞ ¼
X

x2XN

ggðxÞ: ð4Þ

Here the sum is taken over all possible frequencies
in a diploid population of N individuals, XN ¼
f1=ð2N Þ; . . . ; ð2N 21Þ=ð2N Þg. The normalized distri-
bution of mutant frequencies is then

rgðxÞ ¼ ggðxÞ=mgðmgÞ: ð5Þ

Note that rg(x) does not depend on mg because both
numerator and denominator are proportional to the
mutation rate.

It needs to be pointed out that the diffusion approx-
imation, and thus the SFS derived from it, are valid only
in a restricted regime of population parameters. This
regime is specified by the conditions N ?1 and jg j>N .
The latter condition implies that lethal and semilethal
mutations cannot be treated in terms of the diffusion
approximation. Such mutations therefore need to be
excluded from further analysis.

Figure 1.—Expected number of mutant alleles present at
frequency x in a population. Distributions gg(x) are shown for
several different selection classes, always using mg ¼ 1. The
solid line is the neutral asymptotics, g0(x) ¼ 2/x, which in
the double-logarithmic plot appear as a straight line with
slope �1. Compared with neutral mutations, deleterious mu-
tations (g , 0) are systematically suppressed from reaching
higher frequencies in the population, and beneficial muta-
tions (g . 0) are enriched at high frequencies. In the low-
frequency limit all distributions converge to the neutral
SFS, although convergence occurs substantially faster for ben-
eficial than for deleterious mutations.
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RESULTS

In principle, the rate of spontaneous mutation can be
calculated from the SFS (1) by measuring gg(x) at given
frequencies x, provided that one knows the selection
coefficients of mutations and that the population can be
assumed to be in mutation–selection equilibrium.

Both prerequisites will often not be fulfilled. SNP
frequency data are typically obtained from genomic
regions for which one has no prior knowledge about
the distribution of selection coefficients among new
mutations. And the SFS can substantially deviate from
mutation–selection equilibrium for nonstationary de-
mographic histories. In addition, one also has to account
for possible sampling biases resulting from the fact that
SNP frequency data will be estimated from only a sample
of genotyped individuals from the population.

In this section I first describe a ML approach to infer
mutation rates mg for SNPs from a given selection class g

that assumes mutation–selection equilibrium, yet ac-
counts for sampling biases due to a finite number of
sequenced strains. I then show how this approach can be
applied to SNP data from mutations with an unknown
distribution of selection coefficients by restricting the
analysis to very low-frequency SNPs. Quantitative ex-
pressions for the expected errors are also derived. I
finally discuss how my method is affected by a breach of
mutation–selection equilibrium due to demographic
forces such as recent population expansions and bottle-
necks. It is demonstrated that the influence of de-
mography on my estimates is effectively reduced to only
very recent population size changes when focusing on
low-frequency SNPs.

ML estimation of mg for a given selection co-
efficient: Let us assume a sequence region was geno-
typed in n individual haploid genomes. The true
frequency of a mutation from class g in the population
that is observed in k of n genotyped sequences will not
be exactly x¼ k/n. Instead, x will be specified in terms of
a probability distribution. One can calculate this distri-
bution via Bayes’ theorem,

Prðx j k; nÞ

¼ Prðk j x; nÞPrðxÞP
x92XN

Prðk j x9; nÞPrðx9Þ ¼
Bxðk j nÞrgðxÞP

x92XN
Bx9ðk j nÞrgðx9Þ :

ð6Þ

Here I used rg(x) from Equation 5 as a prior. Bx(k j n)
denote binomial distributions to incorporate the effects
of sampling. In Figure 2, Pr(x j k, n) is shown for neutral
mutations and exemplary values of k. Depending on the
value of g, the true population frequency of a mutation
can be substantially overestimated by simply using x ¼
k/n as a proxy for x.

The denominator of (6) defines the marginal prob-
ability to observe a mutation from class g in k of n
genotyped sequences,

P k
g [ Prðk j n; rgÞ ¼

X
x2XN

rgðxÞBxðk j nÞ: ð7Þ

Let Gk
g be the measured overall number of mutations

from class g that are observed in k of the n genotyped
sequences. The probability to observe Gk

g , given that
mg(mg) sites are segregating in the population, is then
again a binomial distribution. This probability defines a
likelihood function for the underlying mutation rate mg,

Lk
gðmgÞ ¼ Pr½Gk

g j mg� ¼ BP k
g
½Gk

g j mgðmgÞ�: ð8Þ

By maximizing Lk
g(mg) over mg the ML estimate for the

data can be derived. One can also measure values Gk
g for

a set of sample frequencies, k 2 K, and calculate LK for
the entire set,

LKg ðmgÞ ¼
Y
k2K

Lk
gðmgÞ: ð9Þ

Here it is assumed that likelihoods Lk
g for different k are

independent of each other, which should be a reason-
able approximation as long as n>N .

ML estimation of m for arbitrary distributions of
selection coefficients: From Equations 8 and 9 one can
derive ML estimates of mg from measuring counts of
mutations from class g in a sample of n genotyped
individuals. This approach is of limited practicality
because SNPs in a given sequence region will comprise
mutations with several different selection coefficients,
the distribution of which we are unlikely to have prior
knowledge of. When measuring the number of muta-
tions present in k of n genotyped sequences, an overall
count for mutations from all different classes of selec-
tion coefficients will be obtained,

Gk ¼
X

g

Gk
g : ð10Þ

The rate of spontaneous mutation in the investigated re-
gioncan bedefinedbysummingoverall individual rates mg,

Figure 2.—Probability density Pr(x j k, n) that a neutral
mutation has population frequency x in a population of size
N¼ 104 if it is observed in k of n¼ 1000 genotyped sequences.
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m ¼
X

g

mg: ð11Þ

The true likelihood function for m is again a binomial
distribution. Formally it is given by

LkðmÞ ¼ BP k Gk j mðmÞ
� �

: ð12Þ
Here m(m) is the (unknown) expected number of
segregating sites and P k is the (unknown) probability
to find a mutant allele in k of n sequences at a seg-
regating site.

In the following I show that even without knowledge of
the particular distributions of selection coefficients, and
thus the precise values of m(m) and P k, one can still infer
accurate ML estimates of m by restricting the analysis to
mutations at low population frequency (k>n) and
approximating Lk(m) by the neutral-likelihood function

Lk
0ðmÞ ¼ BP k

0
½Gk j m0ðmÞ� with P k

0 ¼
X

x2XN

r0ðxÞBxðk j nÞ: ð13Þ

Mathematically it is not immediately obvious that this
neutral approximation always works. After all, both
parameters m0(m) and P k

0 of the neutral-likelihood
function can substantially differ from their true values
m(m) and Pk if selection coefficients are not zero. For
example, if many mutations are deleterious, then there
will be fewer segregating sites compared to the neutral
expectation. One will therefore overestimate the ex-
pected overall number of SNPs in the population by
using m0(m) as a proxy. The SFS at those sites, on the
other hand, will be skewed toward smaller frequencies
compared to the neutral expectation. Hence one will
underestimate the probability to observe a mutation at
low frequency at a given segregating site. In the next
paragraph I show analytically that both deviations
compensate for each other in the limit x / 0.

Let us assume that selection coefficients among new
mutations are distributed according to an (unspecified)
distribution v ¼ {vg} in terms of the individual ratios vg ¼
mg/m.Tostartmyderivation, Ifirstpointout thatanaccurate
calculation of Lk and L0

k relies on large-enough numbers
Gk. The expectation value of Gk can be calculated by

hGki ¼ mðmÞP k ¼ u

4N

X
g

mgðvgÞP k
g ; ð14Þ

with u ¼ 4Nm. The corresponding expectation of Gk

under the assumption of neutrality yields

hGk
0 i ¼ m0ðmÞP k

0

¼ m0ðmÞ
X

x2XN

r0ðxÞ
n

k

� �
xkð12xÞn2k

��!N ?1
4N m

ð1

0

n

k

� �
xk21ð12xÞn2kdx

¼ u

k
: ð15Þ

In the third line I exchanged the summation over all
frequencies from the set XN by an integral over the

interval [0, 1], which is feasible if N ?1. Note that hGk
0 i is

independent of the number of genotyped strains.
The low-frequency asymptotics of the likelihood

functions (12) and (13) are technically obtained by
evaluating L1(m) and L1

0(m) in the limit n / ‘, and I
hence require that hG1i?1 and u?1. In this regime, the
central limit theorem states that the binomial distribu-
tion L1

0ðmÞ ¼ BP 1
0
½G1 jm0ðmÞ� converges to a normal

distribution with mean m0P 1
0 ¼ u and variance

m0 P 1
0 ð1 2 P 1

0 Þ � u. Accordingly, the true-likelihood
function L1(m) will converge to a normal distribution
with mean and variance hG1i. A normal distribution is
unambiguously defined by its mean and variance. To
prove that the true-likelihood function always converges
to the neutral-likelihood function in the low-frequency
limit, it thus suffices to show that

lim
n/‘
hG1i ¼ u: ð16Þ

To calculate the limit let us first consider products of
the form

mgðvgÞP 1
g ¼

X
x2XN

mgðvgÞrgðxÞnxð12xÞn21

���!N ?1
4N vg

ð1

0

12e22gð12xÞ

12e22g nð12xÞn22dx

¼ 4N vgð12e22gÞ21 n

n21
2

ð1

0
e22gð12xÞnð12xÞn22dx

� �
:

ð17Þ
The last integral can be expressed in terms of incom-
plete gamma functions, G½a; x� ¼

Ð ‘

x ta21e2tdt,ð1

0
e22gð12xÞnð12xÞn22dx

¼ nð2gÞ12n Gðn21; 0Þ2Gðn21; 2gÞ½ �

��!n/‘
e22g: ð18Þ

This result applies for arbitrary vg; therefore

lim
n/‘
hG1i ¼ u

4N

X
g

4N vg ¼ u: ð19Þ

From the central limit theorem it then immediately
follows that

lim
n/‘

L1ðmÞ ¼ lim
n/‘

L1
0ðmÞ: ð20Þ

I have shown above that the true-likelihood function
converges to the neutral-likelihood function in the limit
x / 0 for arbitrary distributions of selection coeffi-
cients. One can hence expect ML estimates derived by
the neutral-likelihood function from low-frequency
SNPs in a given genomic region to approximate the
true rates for that region. If observed values Gk are
sufficiently large, the neutral-likelihood function con-
verges to a Gaussian distribution
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Lk
0ðuÞ ¼

1

ðu=kÞ
ffiffiffiffiffiffi
2p
p exp 2

Gk2ðu=kÞ
� �2

2ðu=kÞ2

 !
: ð21Þ

For a given k, my ML estimator for u will hence be of the
simple form

ûðkÞ ¼ kGk for 0 , k , n: ð22Þ

When both alleles at a polymorphic site are counted, i.e.,
the folded spectrum G̃k is measured, then the estimator
ûðkÞ is consistent with the expectation value hG̃ki ¼
u½1=k 1 1=ðn2kÞ� derived in Tajima (1989a). Note that
for unfolded spectra, ûðkÞ does not depend on the
overall number n of genotyped strains, yet the expected
error of ûðkÞ resulting from nonneutral mutations will.
The magnitude of such errors is calculated below. For
neutral mutations the estimator is correct for all k and
also consistent with Watterson’s commonly used estima-
tor ûw (Watterson 1975), which is based on the overall
number S ¼

Pn21
k¼1 Gk of segregating sites observed in a

sample of n genotyped sequences,

ûw ¼
SP

n21
k¼1 1=k

¼
P

n21
k¼1 ûðkÞ=kP

n21
k¼1 1=k

: ð23Þ

Sensitivity to selection: What will be the error of the
estimator ûðkÞ if mutations are not neutral? My ML
approach provides a straightforward way to calculate the
expected error for an assumed distribution v of selection
coefficients: Analogously to Equation 21 one can also
approximate the true-likelihood function (12) by a
Gaussian distribution. Its mean and variance are given
by hGki. From Equations 14 and 15 it then follows that

ûðkÞ
u
¼ k

2m

X
g

ð1

0
ggðx; mgÞBxðk j nÞdx: ð24Þ

In Figure 3 values of the expected relative errors
ûðkÞ=u are shown for different strengths of selection and
different values of k in an assay of 1000 genotyped
sequences. For simplicity it is assumed that all mutations
have the same selection coefficient g. Hence, the
distribution v of selection coefficients has only one
nonzero value vg¼ 1. Figure 3 confirms the expectation
that the relative error of ûðkÞ increases for more negative
selection coefficients and higher sample frequencies k.
But it will still be sufficiently small for practicable sample
frequencies as long as selection is not too strong. For
example, when estimating ûðkÞ at k ¼ 5 with n ¼ 1000,
the true rate will be underestimated by ,10% for g ¼
�10 and still only �40% for g ¼ �50. Deviations due to
positive selection are very small and limited by an upper
bound that does not depend on the actual strength of
selection.

In Figure 4 full-likelihood curves Lk
0ðmÞ are shown for

several mutation scenarios. I thereby first calculated, for

a given mutation scenario v, the average number hGki
of mutants one expects to observe in k of n samples
according to Equation 14. From rounded values Gk ¼
roundhGki neutral-likelihood curves Lk

0ðmÞ were calcu-
lated as defined by Equation 13. The maxima of the
likelihood curves approach the correct mutation rate as
k becomes smaller. Errors ûðkÞ=u accurately coincide
with the values predicted by Equation 24.

Equation 24 also allows one to calculate the expected
error of the estimator ûðkÞ if selection coefficients
among new mutations are specified in terms of their
distribution. However, the shape of this distribution is
much debated and hypotheses vary widely (Keightley

1994; Fay et al. 2001; Nielsen and Yang 2003; Piganeau

and Eyre-Walker 2003; Yampolsky et al. 2005; Boyko

et al. 2008). Clearly one will also expect distinct
distributions for different species and different classes
of mutational events. Nonsynonymous mutations, for
example, are likely to have different distributions of
selective effects than synonymous mutations (Akashi

and Schaeffer 1997). And mutations in noncoding
regions will again differ from both of the above.

For calculating error bounds of ûðkÞ due to non-
neutral mutations one does not require full knowledge
of the distribution of selection coefficients. It suffices to
have upper limits for one or more of its quantiles. We
have already seen in Figure 3 that positive selection will
not significantly influence the error. Hence, if we know
that maximally a fraction dg of new mutations is more
deleterious than a particular g , 0, then the limit
for the expected error can be calculated by ûðkÞ=u ¼
ðk=2Þ

Ð 1
0 ggðx; mg ¼ 12dÞBxðk jnÞdx according to Equa-

tion 24. This means one would very conservatively
assume that a fraction 1 � d of mutations has selection
coefficient g, and the remaining mutations would be so
deleterious that they are never observed as SNPs.
Information on additional quantiles can be incorpo-
rated analogously.

Figure 3.—Expected relative errors ûðkÞ=u according to
Equation 24 for nonneutral mutations as a function of g
for three different k ¼ 2, 5, and 10 in a sample of n ¼ 1000
genotyped sequences.
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Sensitivity to demography: Demographic events can
cause substantial deviations of the SFS from its equilib-
rium shape. A recent population expansion, for exam-
ple, will lead to a SFS that is skewed toward lower
frequencies because new mutations that emerged after
the expansion have not yet had enough time to reach
higher population frequencies (Slatkin and Hudson

1991). Population bottlenecks can substantially reduce
the overall number of polymorphic sites in a population
and lead to a more uniform SFS. Bottlenecks and
expansions are common demographic patterns in sev-
eral species, including Drosophila melanogaster (Li and
Stephan 2006; Thornton and Andolfatto 2006) and
human (Harpending et al. 1998). It is therefore
essential to investigate how the SFS, and consequently
my ML estimates, are affected by such demographic
events.

For neutral polymorphism, the expected shape of the
SFS in demographic histories with population size
changes can be calculated analytically following the
approach outlined in Williamson et al. (2005). The key

idea is to segment the demographic history into a
sequence of time intervals where population size is
constant within each interval, but changes instanta-
neously between intervals. The demographic history is
then specified by the sequence N1, N2, . . . , Nn of
population sizes in the successive intervals and the
numbers of generations t1, t2, . . . , tn each interval
lasted.

The transition probability density fi(p, x, ti) that an
allele, initially present at population frequency p at the
end of stage i� 1, has frequency x at the end of stage i is
given by the transient solution of Equation 2 for g¼ 0. It
has been calculated by Kimura as

fðp; x; tiÞ

¼
X‘

i¼1

4ð2i 1 1Þpð12pÞ
iði 1 1Þ Ti21ð122pÞTi21ð122xÞe2iði11Þti=ð4Ni Þ:

ð25Þ
Here Ti�1(x) are Gegenbauer polynomials, which can
be defined in terms of hypergeometric functions,
Ti�1(x) ¼ (i/2)(i 1 1)F[i 1 2, 1 � i, 2, (1 � x)/2].
See, e.g., Crow and Kimura (1970) for a discussion of
Equation 25 and its derivation.

New mutations arise at rate 2mNi during stage i and
have initial population frequency 1/(2Ni). We can
express gi(x), the SFS at the end of stage i, as a function
of gi�1(x) at the end of stage i � 1 plus the contribution
of new mutations that entered the population during
stage i,

g iðxÞ ¼
X

p2XNi21

g i21ðpÞfðp; x; tiÞ
2Ni

1 m

ðti

0
f

1

2Ni
; x; t

� �
dt:

ð26Þ

This allows for an iterative calculation of the present-day
g(x) given an initial g0(x), usually chosen as the SFS at one
point in the past when equilibrium was assumed to hold.
Note that the farther back in time g0(x) lies, the less
influence its particular shape will have on g(x). Especially
the most relevant low-frequency part of g(x) will be
governed predominantly by recent mutations and hence
will be less affected by ancient demographic events.

Kimura also succeeded in deriving analytic solutions
for the diffusion Equation 2 in the presence of selection
(Crow and Kimura 1970), but expressions for the
transition probabilities become very complex. However,
for small frequencies x the diffusion equation is always
dominated by the drift term, and so will be the transition
probabilities f(p, x, t) when both p and x are small. The
influence of selection on g(x) should therefore become
negligible for small x irrespective of the particular
demographic scenario.

If the precise demographic history of a population is
known, one can obtain the expected present-day SFS
g(x) by iterative application of Equation 26. In practice,
though, estimates of the demographic history of a
population are often unknown or at least surrounded

Figure 4.—Neutral-likelihood curves Lk
0ðmÞ for several mu-

tation scenarios. The mutation rate is always m ¼ 0.005. The
distribution of selection coefficients for a particular scenario
is specified by the parameters vg. The expected counts of mu-
tations to be observed in k of n ¼ 1000 samples, hGki, were
estimated from Equation 14 for each mutation scenario. Like-
lihoods Lk

0ðmÞ were calculated according to Equation 13. The
size of the source population was N ¼ 104.
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by considerable uncertainty. How accurate will it be in
such cases to apply the simple estimator ûðkÞ from
Equation 22 to infer the present-day value uc ¼ 4Ncm

with the contemporary population size Nc? For a given
demographic scenario one can easily calculate the
expected relative error by

ûðkÞ
uc
¼ k

2m

ð1

0
g ðxÞBxðk j nÞdx: ð27Þ

Note the structural analogy to Equation 24, where the
relative error of ûðkÞ under constant population size but
in the presence of selection was calculated.

I investigated the magnitude of the expected error for
three prominent demographic scenarios to show that
ûðkÞ provides accurate estimates for uc when evaluated
at small k. The first model (Figure 5A) is a scenario
suggested for the African-American human subpopula-
tion that features an instantaneous population growth
(Boyko et al. 2008). The second and third models are
two scenarios proposed for the European D. melanogaster
subpopulation. The model of Li and Stephan (2006)
supposes an ancient population expansion followed by
a severe population bottleneck (Figure 5B). The compar-
atively simpler model of Thornton and Andolfatto

(2006) supposes only a population bottleneck (Figure
5C). All three demographic scenarios can be expected
to yield present-day SFS that substantially deviate from
the equilibrium of Equation 3.

I numerically estimated the expected present-day SFS
g(x) for the three demographic scenarios by performing
extensive forward simulations. For practical application,
the simulation approach turns out to be more efficient
compared to a semianalytical approach based on the
calculation of Equation 26 because the infinite sums in
the transition probabilities (25) converge only very
slowly if initial frequencies p are small.

For my simulations I assumed that the SFS was in
equilibrium (3) at an ancient point in time (dotted lines
in Figure 5, A–C). Expected numbers of segregating
neutral sites at that time, m0, and their normalized
frequency distribution were calculated according to
Equations 3–5 for a chosen value of m. Then m0 sites
were drawn randomly from the frequency distribution
and their trajectories were simulated by binomial
sampling under a Wright–Fisher model for the partic-
ular demographic scenario.

New mutations arising in stage i were modeled by a
Poisson process with rate 2mNi. Their frequency dynam-
ics were also simulated by binomial sampling starting
from the respective initial frequencies p¼ 1/(2Ni). The
expected present-day SFS g(x) for each demographic
scenario was then obtained by combining the present-
day frequencies of all simulated segregating sites. I
chose values m¼ 10.0 for scenario A, m¼ 1.0 for scenario
B, and m ¼ 0.01 for scenario C, which resulted in
sufficiently large numbers of segregating sites to ap-
proximate g(x) in each scenario with high accuracy.

The simulation algorithm was implemented in C11.
Runs were performed on up to 250 CPUs of the Bio-X2

cluster at Stanford University. All software is available
from the corresponding author upon request.

In Figure 5D error ratios ûðkÞ=uc according to
Equation 27 using the numerically estimated g(x) are
shown for the three demographic models. As expected,
ûðkÞ converges to the correct uc in all three demographic
scenarios if k is chosen sufficiently small. For scenario
A, the proposed demographic model for African-
American humans, the relative error will be ,5% when
estimated at k ¼ 5. Errors for the two demographic
models of the European D. melanogaster subpopulation
are larger, but still converge to the correct present-day
estimates for small enough k.

Figure 5.—Analysis of the expected errors ûðkÞ=uc for three
exemplary demographic scenarios. The time arrows in the
three scenarios (A–C) go from the past to the present (tips
of the arrows). Intervals of constant population size are spec-
ified by their respective population sizes Ni and durations ti.
Population size changes instantaneously between intervals.
Dotted lines specify ancient points in time at which an equi-
librium SFS was assumed. The sample size in D was n ¼ 1000.
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DISCUSSION

Low-frequency polymorphism contains valuable in-
formation on the characteristics of mutational pro-
cesses. At low population frequencies, the dynamics of
derived alleles closely resemble those of effectively
neutrally evolving mutations. Low-frequency alleles
will also be comparatively young. Methods that infer
mutational parameters from low-frequency variation
should thus be less affected by selective and demo-
graphic effects compared to divergence-based meth-
ods or those based on the full frequency spectrum of
polymorphism.

Deep and large-scale SNP data sets comprising suffi-
cient numbers of sequenced individuals to allow for a
comprehensive analysis of low-frequency SNPs will shortly
become available. Hence there is clearly a need for analysis
methods that can focus on genetic variation at particular
population frequency classes for such inference.

I presented a ML method for the estimation of
mutation rates from polymorphism data that can be
applied to every frequency class separately. My approach
works by comparing the measured counts Gk of muta-
tions that are present in a particular number k of n
genotyped sequences to their expectation for a given
underlying mutation parameter u in terms of the simple
neutral estimator ûðkÞ ¼ kGk. It can be applied specifi-
cally to low-frequency SNPs, and above I showed that the
neutral approximation is valid for this regime. This way
my ML approach does not require prior knowledge of
the distribution of selection coefficients among new
mutations and, in addition, becomes less sensitive to
past demographic events.

Error sources and their evaluation: The expected
errors of the estimator û in a practical analysis can be
divided into four categories: (i) stochastic errors due to
sampling, (ii) errors resulting from inaccuracy of the
SNP data set, (iii) SNP polarization errors, and (iv)
systematic errors due to violation of my assumptions.
They are discussed in order.

i. Stochastic sampling errors are fully incorporated in
my likelihood analysis. The magnitude of such
errors can be derived by calculating confidence
intervals around ML estimates from the likelihood
function (13) or its Gaussian approximation (21).

ii. Data set inaccuracies will primarily result from se-
quencing errors or misalignment. They can lead to
wrongly identified or missed SNPs and incorrect es-
timation of SNP frequencies in the sample (Hellmann

et al. 2008; Lynch 2008; Liu et al. 2009). The
resulting errors in my ML estimates will be de-
termined by the probability of such errors in the
data set. One can substantially reduce their magni-
tude by disregarding singletons (k¼ 1) or setting an
even higher threshold for the minimum k used in
the analysis. For example, assuming a sequencing
error rate of 10�5, a genome size of 3 3 109, and 1000

sequenced genomes, the expected number of in fact
nonpolymorphic sites that are erroneously identi-
fied as being polymorphic with k ¼ 4 would be on
the order of only one.

iii. It has been assumed so far that all SNPs in the data
set are perfectly polarized; i.e., for every polymor-
phic site we have exact knowledge of which is the
derived allele and which is the ancestral allele.
Although such information can in principle be
obtained from comparison with an out-group spe-
cies, it might be prone to error. However, given that
my analysis intends to focus on variation at very low
population frequency, it is presumably much safer
to simply assume that the low-frequency allele is
always the derived allele and not to refer to an out-
group species for such classification.

The expected number of wrongly classified alleles
by this approximation can be easily estimated from
the SFS (1). Let us consider a SNP with minor allele
frequency x and assume that the derived allele is
neutral. Then the probability that the derived allele
is actually the one at the larger frequency is
g0(1 � x)/[g0(x) 1 g0(1 � x)] ¼ x. And thus this
error will be small for low-frequency SNPs. For
deleterious mutations it will be even yet smaller.
For beneficial mutations, on the other hand, the
error probability can ultimately become as large as
0.5. If a substantial number of beneficial mutations
are expected in the data set, SNP polarization by an
out-group species might indeed be advisable.

iv. Systematic errors can arise in my analysis if one or
more of its underlying assumptions are violated.
One basic assumption is the applicability of an
infinite-sites model. It might be violated in large
SNP data sets if sites with more than two alleles are
observed. Having decided on a threshold minimum
k, alleles that occur in less than the minimum k
sequences can simply be masked. In the rare case
that more than two alleles are present at a poly-
morphic site above the threshold one can either
disregard these sites and estimate the resulting error
from the fraction of such sites in the data or treat all
individual low-frequency alleles at one site as in-
dependently derived alleles at different sites.

More critical are systematic biases due to selection
or demography. With Equations 24 and 27 I pro-
vided analytic expressions for the expected errors of
ûðkÞ when the full distribution of selection coeffi-
cients among new mutations, respectively the par-
ticular demographic history of the species, is known.
I quantitatively investigated the magnitude of these
errors for a wide range of selection coefficients
(Figure 3), as well as several prominent demo-
graphic scenarios (Figure 5), showing that ûðkÞ
becomes insensitive to both selection and demog-
raphy when estimated at small enough k.
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My ML method provides a simple test to check the
robustness of the estimator ûðkÞ directly from the data.
The key observation for this test is that ûðkÞ ¼ u should
be constant for all k if the underlying assumptions of
neutrality and unvarying population size are sufficiently
met. Both nonneutral mutations and past demographic
events will lead to characteristic biases in ûðkÞ that
depend on k in a systematic manner: In the presence of
many deleterious mutations, for example, one expects
ûðkÞ to decrease with increasing k because the SFS for
deleterious mutations is skewed toward smaller frequen-
cies compared to the neutral spectrum. Prevalent
positive selection, on the other hand, should lead to a
systematic increase of ûðkÞ at larger k. Similar arguments
hold for violations of the assumption of constant
population size as discussed earlier.

When combining the effects of demography and se-
lection, complex interactions can arise. Yet it is highly
unlikely that selective and demographic effects com-
pensate for each other in a way that makes the present-
day SFS appear unaffected by both. Therefore, if no
strong systematic changes of ûðkÞ are observed for the data
when varying k, assumptions are most likely appropriate.

Interpretation of ûðkÞ for complex demographic
histories: From ûðkÞ one obtains estimates of the rates of
spontaneous mutation only in terms of the population
parameter u¼ 4Nm, as is typical for methods that utilize
polymorphism data for such inference. Absolute values
of m thus cannot be obtained, unless one knows the
precise value of N. This raises the question which N the
estimator refers to, especially in the presence of com-
plex demographic histories.

In population genetic analyses this problem is usually
tackled by the introduction of an effective population
size, Ne, specifying the actual rate of change of allele
frequencies in the population due to random genetic
drift. Effective population sizes are influenced by a
variety of factors, including population substructure,
selection, and demography (Charlesworth 2009).
Often Ne is much lower than the current number of
individuals in a species (Frankham 2007).

If only effects of demography are taken into account
and we assume that all sites in a genome evolve in-
dependently of each other, then Ne for neutral variation
can be expressed in terms of the demographic history
N(t) of the species. Here N(t) is the actual number of
individuals in the species at time t, measured backward in
time from t ¼ 0 at present. The effective population size
for a neutral allele that emerged t generations ago will be
given by the harmonic mean of N(t) over its time of
existence (Charlesworth 2009),

Ne ¼ t

ðt

0
1=N ðtÞdt

� �
21

: ð28Þ

Note that the harmonic mean of N(t) over an interval is
dominated by its smallest values in that interval. The

average age of a derived allele, however, is itself a
function of population frequency x and effective pop-
ulation size (Kimura and Ohta 1973), determined by

tðxÞ ¼ 4Ne
logðxÞ
121=x

: ð29Þ

The effective population size corresponding to a de-
rived allele present at population frequency x will
therefore be a function Ne(x). It can be obtained by
simultaneously solving the combined system (28) and
(29) for the given demographic history N(t).

When estimating ûðkÞ at different k we are comparing
segregating sites at different population frequencies x.
The effective population size corresponding to a small k
will hence not be affected by demographic events that
occurred more than t(k/n) generations ago. SNPs at
population frequency x ¼ 0.5%, for example, will have
Ne � Nc if the population size did not change sub-
stantially from its contemporary size during the last
0.1 3 Nc generations.

The relation between k and the corresponding Ne also
explains why decreasing ratios ûðkÞ=uc are observed for
the three demographic scenarios of Figure 5; they all
feature smaller population sizes in the past compared
with current sizes Nc. Low-frequency SNPs have not
‘‘felt’’ these smaller population sizes, whereas the
population dynamics of SNPs contributing to ûðkÞ at
larger k might be entirely dominated by the smaller
population sizes in the past. In fact, for the simple two-
stage scenario A, the estimator ûðkÞ converges precisely
to 4Nam for large k (data not shown).

Background selection and selective sweeps: Besides
demography, also other evolutionary forces can de-
crease the effective population size. Adaptive substitu-
tion events, for instance, can lower Ne for SNPs in their
genomic vicinity as a consequence of linkage disequi-
librium (Kaplan et al. 1989). A similar reduction is ex-
pected to result from backgroundselection (Charlesworth

et al. 1993). In contrast to demography, which should
affect Ne genomewide, background selection and selec-
tive sweeps can cause local variation of Ne along a
genome.

Again, it holds that the lower the frequency of a SNP,
the lower is the probability that it has been affected by
such events. I illustrate this by a rough calculation for
the expected effects of genetic hitchhiking in Drosoph-
ila. Macpherson et al. (2007) estimated that a neutral
polymorphism destined for fixation will, on average,
experience two selective sweeps in its genomic vicinity.
If we assume a constant population size N, then the
average time to fixation of a neutral polymorphism is 4N
generations (Ewens 2004). One can thus roughly
estimate the rate at which SNPs are affected by sweeps
to be 1/(2N) per generation. A SNP at population
frequency x has then been affected by a sweep with
probability t(x)/(2N). For a frequency x ¼ 0.5% this
yields a probability of only �5%.
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Inferring selection and demography: The present-
day SFS g(x) is a function of the mutation parameter u,
the distribution of selection coefficients among new
mutations, and the demographic history of the species.
I have shown that my estimator ûðkÞ allows one to infer
accurate estimates of uc ¼ 4Ncm, which become in-
sensitive to selection and demography when estimated
at very low population frequencies. This is because
deviations between the true SFS and its asymptotic form
(3) vanish for small k. At higher population frequencies,
such deviations become more and more profound. The
particular shape of g(x) at larger x should in turn pro-
vide information on selection and demography. Various
studies have used this approach to estimate the distri-
bution of selection coefficients among new mutations,
the demographic history of species, or both simulta-
neously by analyzing observed SFS from population
genetic data sets (Williamson et al. 2005; Thornton

and Andolfatto 2006; Eyre-Walker et al. 2006; Li and
Stephan 2006; Keightley and Eyre-Walker 2007;
Boyko et al. 2008; Gonzalez et al. 2009).

These approaches suffer from the general problem
that selection and demography can never be unambig-
uously inferred from the shape of the SFS alone (Myers

et al. 2008). There are always different distributions of
selection coefficients, or different demographic scenar-
ios, that give rise to the same SFS. Moreover, both
selection and demography can lead to similar devia-
tions, making it difficult to disentangle their individual
contributions. In practice, inference of selection and
demography from the SFS is therefore usually restricted
to fitting simple parameterized models to the data in a
ML framework.

Such ML inference of demography or selection is
straightforward to incorporate into my method if one
can parameterize the expected SFS g in terms of the
variables of the particular model to be estimated. For
example, when assuming constant population size but a
particular distribution v of selection coefficients among
new mutations that one wants to infer, then g can be
calculated by g ðvÞ ¼

P
g

vggg, using the gg defined in
Equation 1. The SFS can thus be expressed as a function
of v. From g the expected number of segregating sites,
m ¼

P
x g ðxÞ, and the normalized distribution r ¼ g/m

can be calculated. Analogously to Equation 12, where g
was parameterized by m and a likelihood function for m

was obtained, the likelihood of a particular distribution
v is

LkðvÞ ¼ BP k ½Gk j m� with P k ¼
X

x

rðxÞBxðk j nÞ:

ð30Þ

For cases where one wants to infer the parameters of a
particular demographic model and can assume that
mutations are selectively neutral, g can be expressed as a
function of the variables of the demographic model

either analytically according to Equation 26 or numer-
ically by simulations. Simulations will clearly be the
approach of choice for analyses where neither constant
population size nor neutral mutations can be assumed.

The crucial advantage of my approach is again the
capability to calculate likelihoods for different frequency
classes separately. This can provide substantial improve-
ments to previous approaches, as it allows one to focus on
the particularly informative low-frequency part of the
SFS. Consider, for example, the two different scenarios
B and C for the demographic history of the European
D. melanogaster subpopulation shown in Figure 5. Both
scenarios cause similar reduction in overall heterozygos-
ity in the European population compared to the African
population because their bottleneck strengths tb/Nb are
comparable. Yet the two models can be clearly distin-
guished by the large differences of ûðkÞ at small k between
them (see Figure 5D).

Focusing on low-frequency SNPs might also be
particularly helpful for disentangling demography and
selection. This problem has often been approached by
dividing SNPs into two classes, the first comprising
presumably neutrally evolving SNPs, and the second
comprising SNPs of which the distribution of selection
coefficients is to be estimated. The rationale is that
demography can be inferred from the SFS of the neutral
class, which is then used as a proxy when fitting
distributions of selection coefficients to the SFS of the
latter class (Williamson et al. 2005; Eyre-Walker and
Keightley 2007; Boyko et al. 2008). The approach
hinges of course on the availability of a set of reliably
neutral SNPs. Often synonymous SNPs are used for this
purpose. But it is presently not clear to what degree
synonymous mutations are indeed selectively neutral
(Hershberg and Petrov 2008). At higher frequencies,
also small selection coefficients can substantially affect
the SFS, potentially causing misleading demographic
estimates.

In my analysis this problem can be addressed by
simply investigating the functional dependence of the
estimator ûðkÞ on k for the different classes of SNPs to
check the robustness of assumptions for each class. This
is illustrated in Figure 6, where theoretically expected
curves ûðkÞ are shown for three classes of sites. The three
classes could depict, for instance, nonsynonymous
(Figure 6, squares), synonymous (Figure 6, triangles),
and noncoding SNPs (Figure 6, circles).

From the observed curves we would conclude that
assumptions of neutrality and constant population size
are robust for noncoding and synonymous mutations at
the investigated frequencies, as indicated by the fact that
ûðkÞ does not change substantially as a function of k for
both classes (note that the systematic biases resulting
from the slightly deleterious selection coefficients for
noncoding and synonymous SNPs are very weak). This
observation implies in particular that demography is
unlikely to be a major issue for SNPs at these low
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population frequencies. And SNPs in all classes should
have been subject to the same demographic history of
the species. In fact, nonneutral SNPs, irrespective of
whether they are deleterious or beneficial, should be
affected by even fewer demographic events than neutral
SNPs because they are on average younger (Maruyama

and Kimura 1974).
For nonsynonymous SNPs, on the other hand, we see

a systematic decline of ûðkÞ with increasing k, indicating
that they are under selective constraint. One can then
simply fit Equation 25 to the observed ûðkÞ to infer the
best-fitting distribution of selection coefficients among
nonsynonymous mutations for the data.

Spatial resolution: The practical applicability of the
estimator ûðkÞ relies on sufficiently large counts Gk to
reduce finite-sample inaccuracies. We can estimate the
expectation value hGk

0 i for a given genomic region
according to Equation 15. The mutation rate m is
thereby specified as the rate for the entire investigated
region. The requirement of a large-enough Gk conse-
quently poses a limit on the minimum length of the
investigated sequence region. Next I calculate roughly
the expected spatial resolution of my method for the
1000 genomes project.

A common estimate for the per site mutation rate in
humans is 2.5 3 10�8 per generation (Nachman and
Crowell 2000). Obtaining an accurate estimate of the
effective population size is more intricate. Widely used
values Ne� 104—�105 times smaller than the actual size
of the human population at present—presumably re-
flect the effects of strong population bottlenecks in
ancient history. These small estimates might be valid
when averaging over SNPs in all frequency classes, but
they will underestimate the effective population size
associated with low-frequency SNPs, unless a bottleneck
occurred so recently that low-frequency SNPs have still
been affected by it. According to Equation 29 the
average age of a derived allele at population frequency
x¼ 0.5% is on the order of 0.1 3 Ne. This corresponds to
only 103 generations for the above estimate of Ne ¼ 104.
It is unlikely that humans have experienced a severe
enough bottleneck within the last 103 generations that
would justify the small estimate of Ne ¼ 104 during this
interval. Let us therefore assume that Ne for SNPs at
population frequency x¼ 0.5% is at least on the order of
105.

With the above estimates one obtains hGk
0 i �

1022 3 L=k, where L is the length of the investigated
sequence region. As was already argued earlier, a
threshold k¼ 5 should suffice to eliminate severe biases
due to sequencing errors from my analysis. For a 100-
kbp-long genomic region we would expect to observe
hG5

0 i � 200 SNPs to be present in 5 of the genotyped
sequences and still hG50

0 i � 20 SNPs to be present in 50
sequences. This should clearly allow for an accurate
estimation of u and its robustness for windows of the
given size. One would even expect to yield good

estimates of u for windows of size 10 kbp from data of
the 1000 genomes project, but then the robustness
estimation in terms of measuring ûðkÞ for larger k will
become less accurate. Note also that species with larger
effective population size, for instance Drosophila, will
generally permit even higher spatial resolution.

Application in an evolutionary context: The avail-
ability of regionally resolved rates of spontaneous
mutation would make a multitude of important prob-
lems in contemporary evolutionary genomics accessible
for quantitative investigation (Baer et al. 2007; Duret

2009). For example, it is not clear at present whether the
observed regional variations in substitution rates along
genomes mainly reflect regional variations in mutation
rates or differing degrees of selection, BGC, and other
forces that influence the probabilities of fixation of new
alleles (Eyre-Walker and Hurst 2001; Duret and
Arndt 2008).

Regional mutation rates could be compared with
regional values of various other genomic quantities, e.g.,
recombination rate, GC content, nucleosome position-
ing, etc. In a partial-correlation analysis determinant
factors for regional variations in mutation rate could
possibly be elucidated.

The rates of spontaneous mutation are expected to
depend on biochemical factors like accessibility of a
genomic region to mutagenic influences, error prone-
ness during DNA replication, and rate and accuracy of
damage repair (Baer et al. 2007). As a result, the basic
mutation process could in fact turn out to be rather
universal and its local rate could be primarily deter-
mined by a few basic regional features. A low GC
content, for example, may make the two DNA strands
more prone to separate, which could increase the
mutation rate in GC-poor regions (Frederico et al.
1993).

Figure 6.—Example of ûðkÞ estimated for three different
classes of sites. All classes have u¼ 1, but selection coefficients
differ between classes. For simplicity, all mutations within a
class are modeled to have the same selection coefficient. û
was then calculated by ûðkÞ ¼ ðk=2Þ

Ð 1
0 ggðx; mg ¼ 1ÞBxðk jnÞdx.

The sample size was n ¼ 1000.
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It is straightforward within my method to resolve
mutation rates into the rates of all 12 possible transitions
between nucleotides. A regional analysis between the
individual mutation rates and the corresponding sub-
stitution rates should prove informative in many aspects,
for instance to identify possible mutational biases,
estimate the magnitude of BGC, or test hypotheses
about selection for a particular GC content. My method
can also be easily extended to mutational processes
other than single-nucleotide mutations. Potential ex-
amples include DNA insertions and deletions, seg-
mental duplications, and insertions of transposable
elements.

A combined analysis of divergence and polymor-
phism at different population frequency classes should
provide insight into the interplay between distinct evo-
lutionary forces. Low-frequency polymorphism closely
reflects the rates and patterns of spontaneous muta-
tions, while polymorphism at intermediate population
frequencies is shaped, in addition, by selective con-
straints. Substitutions finally comprise least constrained
and also adaptive mutations. Knowing the relative pro-
portions of deleterious, neutral, and adaptive mutations
is fundamental for our understanding of the evolution-
ary process, yet still much is to be learned about the
precise shape of the distribution of selection coef-
ficients among new mutations (Eyre-Walker and
Keightley 2007).

The ratio between neutral and adaptive mutations is
often estimated by comparing levels of polymorphism
and divergence in McDonald and Kreitman-type analy-
sis (McDonald and Kreitman 1991). The underlying
rationale of these tests is that polymorphism observed at
intermediate population frequencies should mainly
constitute neutral variation. Low-frequency SNPs are
often intentionally discarded from such analyses to
diminish possible biases due to deleterious mutations
(Charlesworth and Eyre-Walker 2008).

My estimator ûðkÞ should perfectly complement
McDonald and Kreitman tests by shedding light on
the other side of the spectrum, the amount and
characteristics of deleterious mutations. This class of
mutations is naturally hidden from divergence-based
estimates. So far, it has been accessible only in mutation-
accumulation experiments, along with all the natural
limitations of such analyses. Our present knowledge
about deleterious mutations is hence rather limited.
With assays of at least 1000 genotyped sequences, as
anticipated for the upcoming large-scale polymorphism
data sets, estimation of ûðkÞ at k ¼ 5 should clearly be
within reach. I demonstrated that this will allow for a
reasonably accurate estimation of u that captures .90%
of deleterious mutations with g¼�10 and still�60% of
deleterious mutations with g ¼ �50. One can therefore
expect to obtain, for the first time, estimates of u from
polymorphism data sets that also comprise a substantial
fraction of strongly deleterious mutations.
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