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ABSTRACT

Highly recombinant populations derived from inbred lines, such as advanced intercross lines and
heterogeneous stocks, can be used to map loci far more accurately than is possible with standard
intercrosses. However, the varying degrees of relatedness that exist between individuals complicate
analysis, potentially leading to many false positive signals. We describe a method to deal with these
problems that does not require pedigree information and accounts for model uncertainty through model
averaging. In our method, we select multiple quantitative trait loci (QTL) models using forward selection
applied to resampled data sets obtained by nonparametric bootstrapping and subsampling. We provide
model-averaged statistics about the probability of loci or of multilocus regions being included in model
selection, and this leads to more accurate identification of QTL than by single-locus mapping. The
generality of our approach means it can potentially be applied to any population of unknown structure.

A number of experimental strategies for genetic
mapping of complex traits in model organisms

involve the use of highly recombinant populations
derived from inbred lines. Examples are advanced
intercross lines (AILs) (proposed by Darvasi and
Soller 1995), where a pair of inbred progenitors are
intercrossed for three or more generations, and
heterogeneous stocks (HS) (Demarest et al. 1999),
where a number, usually eight, of inbred strains are
intercrossed for many generations. In theory, these
strategies can achieve much higher-resolution mapping
than is obtainable with standard inbred strain crosses
because they accumulate a greater density of recombi-
nants.

It is often assumed that these populations can be
analyzed as if the individuals were equally related, as in
an F2 cross, or unrelated, as in the case of a carefully
ascertained human case–control association study. The
simplifying assumptions are that family relations may be
ignored and that each locus can be analyzed indepen-
dently. However, it can easily be shown, for example by
simulation, that these assumptions are false.

What makes genetic association in an AIL or HS more
complicated than in an F2 cross? Advanced intercross
lines are bred in maintenance populations of small to
moderate size, typically between 20 and 50 mating pairs
for n � 1 generations, and then bred out in a final
generation to achieve a larger mapping population. The
breeding strategy employed during the maintenance
phase is usually chosen to minimize loss of genetic

diversity and is similar to schemes used in the preserva-
tion of rare species. Completely random mating is
inappropriate because, owing to the small number of
individuals, it gives rise to an unacceptable number of
matings between full sibs. Mating maximally unrelated
individuals after Wright (1921) is optimal in the first
few generations but rapidly contracts the network of
unrelateds, making consanguineous breeding in later
generations inevitable. More often schemes are chosen
to balance convenience with minimal long-term in-
breeding. In pseudorandom mating, mates are chosen
at random, although mating to close relatives is forbid-
den. In regular systems such as circular mating, the
population is maintained in a number of separate
groups and males are transferred between groups in a
predetermined pattern (Kimura and Crow 1963).
Other more complex schemes based on minimizing
coancestry are a sophistication of Wright’s method and
may guard better against inbreeding (Caballero and
Toro 2000) but are not to our knowledge used in the
generation of populations bred for experimental map-
ping. Rockman and Kruglyak (2008) recently com-
pared breeding schemes for the generation of
recombinant inbred AILs (RIAILs) in terms of their
ability to guard against allele-frequency drift and pro-
mote map expansion, finding that random-pair mating
is superior to circular or random mating for producing
panels of inbred lines for QTL mapping.

One important consequence of these breeding
schemes applied over multiple generations in a finite
outbred population is the emergence of long-range
correlations between genetic markers, such that, for
example, it is sometimes possible to predict the geno-
type of a marker on chromosome 1 by the genotype on
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chromosome 5. These are due to partial fixation of pairs
of haplotype blocks within subsets of the population.
The exact pairings are stochastically determined, but
some breeding designs are more susceptible to this ef-
fect than others. Consequently a single causal variant
segregating in the cross will be confounded not only
with neighboring loci [due to short-range linkage
disequilibrium (LD)] but also with distant loci.

HS populations have used similar breeding schemes
to AILs (Valdar et al. 2006a) but differ from AILs in that
they are descended from more than two inbred strains:
typically, though not necessarily, eight. This adds a
further level of complexity. Because the markers used
for genotyping will have fewer alleles than the number
of haplotypes segregating in the cross, individual mar-
kers typically do not unambiguously identify the un-
derlying strain haplotype. In particular, unless all
variants are genotyped, QTL will be missed by single-
marker association analysis (Mott et al. 2000).

Large-scale studies of HS, AILs, and similarly struc-
tured populations are also particularly susceptible to
environment–genotype confounds that are avoidable in
F2’s, backcrosses, and simpler designs. With limited
laboratory resources, inclusion of siblings in a genetic
mapping study is often unavoidable. However, doing so
introduces a level of clustering that can result in, for
example, some families and alleles being oversampled
in summer and undersampled in winter, which in turn
can produce spurious genetic or family associations.
The complex correlation structures present in AILs, HS,
and related populations cause simplistic association
methods to misclassify false signals as true QTL.

These highly recombinant structured experimental
populations resemble those found in plant and animal
breeding where it is common to model the multiple
levels of relatedness through variance components
parameterized by the kinship matrix. Specifically, to
account for effects from the rest of the genome the
effect of a single locus is estimated simultaneously with
one or more random intercept terms whose expected
correlation structure is fixed given the pedigree
and models the effects of overall genetic relatedness
(Kennedy et al. 1992; Jannink et al. 2001; Zhao et al.
2007). Such approaches are highly applicable to HS and
AIL populations, and control the false positive rate
of association by diminishing the estimated effect
and significance of loci that are predictive of family
structure.

However, two loci that are associated with the pheno-
type can be correlated with each other in a way that is
not well explained by overall genetic relatedness.
Moreover, it is plausible that a causal locus happens
to be predictive of family structure and so is hard to
detect under polygenic modeling. It is therefore useful
to have complementary approaches that characterize
the correlation structure between loci but that do not
make strong assumptions about the relationship be-

tween the underlying population structure and the trait
of interest.

In this article we describe single-locus and multilocus
approaches for dealing with both the detection and the
subsequent characterization of location uncertainty of
QTL segregating in structured populations. We expect
our method to be particularly helpful in cases where the
founders are known but the pedigree is not and where
the population structure is expected to be smooth in the
sense that any major structural features, such as gross
environmental effects or strong subpopulation effects
arising from combining separate populations at a late
stage, are known or absent. We argue that when it comes
to detecting QTL, a single-locus approach is inferior to
one that models multiple loci, a view that has been
advocated by several groups in animal and plant
genetics ( Jansen 1993; Zeng 1993; Sillanpaa and
Arjas 1998; Broman and Speed 2002), and is one
increasingly taken in human association (Balding

2006 and refs therein; Servin and Stephens 2007;
Fridley 2008 and refs therein).

METHODS

We describe first an approach to single-locus model-
ing that reduces false positives by more conservative
estimation of significance thresholds, but at the cost of
increasing false negatives. We then describe a preferable
way to model the confounding elements of the pop-
ulation, doing so explicitly in a multilocus framework.
Finally we describe alternative single-locus approaches
included for illustrative comparison in our simulations.

Modeling single loci: The approach that follows is
applicable to a wide range of trait distributions in-
cluding binary (case–control), binomial (count), gamma,
and survival (time-to-event) distributions, and these have
been implemented in our software (see end of discus-

sion). For clarity though we restrict our focus to normally
distributed traits. Let the phenotype of individual i when
affected by a single genetic locus m be modeled as

yi ¼ m 1
X
c2C

bT
c xiðcÞ1 bT

mgiðmÞ1 ei ; ð1Þ

where xiðcÞ is the value of the covariate c for individual i,
C is the set of all known (or suspected) covariates, which
we define to include environmental covariates and any
gross components of population structure (e.g., subpopu-
lations of a mapping population sourced from different
distributors or breeders or other ‘‘obvious’’ subpopula-
tion indicators), gi(m) specifies the genetic predictor at
locus m in individual i, m is the trait mean, b is used
generically to describe a predictor’s effect, and ei � N(0,
s2). A nominal P-value for the association of the locus m
with the phenotype can be calculated as the probability
that a more extreme test statistic would be observed under
the null hypothesis that bm ¼ 0, as judged by a partial F-
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test (or more generally a likelihood-ratio test for the
model in Equation 1 against one without the locus term).

We define gi(m) in terms of the HAPPY statistical
model (Mott et al. 2000), where a locus is defined as the
interval between two observed loci and the genotype for
the individual is described as the estimated descent of
founder haplotypes within that interval. Because this
model uses identity by descent, in some literature it
would be classified as linkage disequilibrium mapping
(e.g., Meuwissen and Goddard 2000) to distinguish it
from pure association with observed genotypes. How-
ever, because our approach generalizes trivially to the
case where gi(m) is coded as an observed genotype, and
because the distinction between ‘‘LD mapping’’ and
‘‘association’’ is defined inconsistently across and within
plant, human, and animal literature (cf. Hastbacka

et al. 1992; Kruglyak 1999; Clark 2003; Mackay and
Powell 2007), we use the general term ‘‘association.’’
(We note that any method that computes these quantities
could be substituted for HAPPY. Specifically, gi(m) is a
vector of expected haplotype proportions for mouse i at
marker interval m defined as follows. Let D be an h 3 h
matrix of expected diplotype proportions for marker
interval m in individual i, such that element Dst is the
expected proportion of the interval that is composed of
the phased haplotype pair {s, t}, where s and t are
founder haplotypes. Then under an additive plus dom-
inance (i.e., full) genetic model, gi(m) ¼ vec(D); under
a full model where phase is unknown, giðmÞ ¼
vech D 1 DT � diag vecdiagðDÞð Þð Þ, where vecdiagð�Þ
extracts the diagonal elements of a matrix and other
functions are defined as in, for example, Gentle

(2007); and under an additive model where the t 2
1; . . . ; hf g th element of gi(m) is the expected number

of haplotypes from strain t over the interval, giðmÞ ¼
1TðD 1 DTÞ (see also appendix a). For marker intervals
on the X chromosome, males are treated as homozy-
gous for their hemizygous allele. In the simple case of a
single additive effect modeled with no covariates in a
two-founder system, such as an F2 cross or an advanced
intercross, Equation 1 simplifies to

yi ¼ m 1 bgiðmÞ1 ei ; ð2Þ

where gi(m) is the expected proportion of t haplotypes
in marker interval m of individual i, where t is one of the
two founders.

Significance thresholds: parametric bootstrapping from a
multilevel sibship model: It is useful to have a genomewide
significance threshold by which to judge how unusual
an observed association would be under the null
hypothesis of no QTL effect. However, in a population
with a complex genetic and family correlation structure,
it is sometimes unclear how to identify the exchangeable
structure of the data under the null hypothesis
(Churchill and Doerge 2008). For example, if the
phenotype is influenced by environmental covariates,

then members of the population are exchangeable only
conditional on those covariates. The permutation is
then valid only if it is within environment groups or
if the phenotype is corrected for the effect of the
environment before permutation. On this principle,
sibship-specific effects may be removed by either per-
muting within sibship or correcting the phenotype for
sibship effects prior to permutation. However, in pop-
ulations with family structure, the sibship-specific and
allele-specific effects are confounded: removing one
also removes the other, causing loss of power.

A compromise is to correct the phenotype at an early
stage in the analysis with the sibship effect (and some or
all of the environmental effects) estimated using partial
pooling (Gelman and Hill 2007), also known as best
linear unbiased prediction (BLUP) or shrinkage
(McCulloch and Searle 2001), or using the related
approach of fitting animal models (Henderson 1974;
Lynch and Walsh 1998; Aulchenko et al. 2007).
Nonetheless, if the phenotype is influenced by multiple
genetic loci of small effect, even the shrinkage estimate
of the sibship effect will be confounded with the
cumulative effect of several QTL, and so correcting for
this will still reduce power.

Consequently, it is worth considering an alternative
approach of simulating null phenotypes by parametric
bootstrap from a hierarchical sibship model. Let sk i½ �
denote the effect of sibship k containing individual i (all
individuals from the same sibship share the same
effect); then we fit the null model

yi ¼ m 1
X
c2C

bT
c xiðcÞ1 sk i½ �1 ei ; ð3Þ

where sk �N ð0; s2
s Þ, to obtain point estimates m̂,

b̂c"c 2 C , ŝ2
s and ŝ2. To generate null model pheno-

types we first sample hierarchically from

Sk �N ð0; ŝ2
s Þ

and then from

Yi j Sk i½ � �N m̂ 1
X
c2C

b̂
T
c xiðcÞ1 Sk i½ �; ŝ

2

 !
:

This generates a set of phenotypes whose correlation
structure reflects the grouping of environments and
sibships in the observed population, but not necessarily
the correlation structure between sibships that might be
due to the segregation of specific alleles since the rank
order of sibship effects is scrambled, in effect, sampling
between and within sibships. The single-locus model in
Equation 1 is then applied to each simulated data set
(see appendix b) and the resulting distribution of
genomewide maximum P-values is taken as the distri-
bution of maximum P-values expected under the null
hypothesis of no QTL. This null distribution is then

Mapping in Structured Populations 1265



fitted to a generalized extreme value (GEV) distribution
and a suitable quantile is estimated as the genomewide
significance threshold (Dudbridge and Koeleman

2004; Valdar et al. 2006a).
Modeling multiple loci: Genotype correlations be-

tween loci mean that some seemingly independent
associations will be confounded. Multiple-QTL model-
ing can clarify these relationships. The mutlilocus
version of Equation 1 is

yi ¼ m 1
X
c2C

bT
c xiðcÞ1

X
m2M

gmbT
mgiðmÞ1 ei ; ð4Þ

where M is the set of all genetic predictors, and gm 2
f0; 1g is an indicator variable for each genetic predictor
m denoting its inclusion (gm ¼ 1) or exclusion (gm ¼ 0)
from the model, with g hereafter denoting the vector of
gm’s for all m. Identifying the true set of QTL (or rather
the set of genetic predictors that best capture the true
causal signals) means finding the correct assignment
of ones and zeros to g, a model selection problem
(Broman and Speed 2002).

Resample model averaging: bootstrap aggregation and
subsample aggregation: Traditional methods of model
selection aim to find an assignment of ones and zeros
to g that produces a parsimonious model with good
explanatory power. However, choosing a single model
(which we call discrete selection) does not characterize
the uncertainty of model choice and leads to an estimate
of g that is unstable in the sense that observing a slightly
different data set can result in a quite different model
being chosen (and where a causal interpretation is
sought, a different conclusion) (e.g., Sillanpaa and
Corander 2002). Not only do such estimates have high
variance, but also there is no standard function for
determining the variance of the estimator.

Bootstrap aggregation (bagging) and subsample
aggregation (subagging) are resample model averaging
(RMA) procedures that have been shown to produce
more accurate predictions of quantities related to
multiple predictor models, especially when the stan-
dard estimators of those quantities have high variance
(Breiman 1996; Buhlmann and Yu 2002). Here we
adopt a strategy of inferring g that minimizes risk under
quadratic loss, aiming to find an estimate ĝ with low
mean squared error, ð1=M Þ

P
m2M ĝm � gmð Þ2. Under

this loss structure, RMA should therefore produce an
estimate ĝ that is more stable than that from discrete
selection and one that leads to greater predictive ac-
curacy. A probabilistic interpretation is that if g̃ is the
estimate of g given by discrete model selection applied
to a new sample drawn from the underlying population
model, then ĝ from RMA estimates Eðg̃Þ, the long run
expectation of g̃.

The suitability of resampling for assessing frequentist
variability in model choice depends on how well the
resample procedure mimics the ideal of sampling from

the population (i.e., of repeating the experiment many
times). If we knew the true model g in advance and
wanted to measure properties of the inference process,
such as how often the model selection procedure in-
cluded particular subsets of loci or how well ĝ matched
true g, then it would be appropriate to resample by
parametric bootstrapping, first fitting the true model
and then applying the inference procedure to data sets
generated by draws from it. Since in this context we do
not know the true model, we use nonparametric
resampling, by which we mean generating a new data
set by drawing a fraction p individuals at random from
the population either with or without replacement. In
doing this we assume infinite exchangeability among
only the rows in the data, where each row represents
trait, covariate, and genetic data for a single individual.
Additional constraints are required (e.g., block resam-
pling) for time series and other data structures where
the order of row labels may be important.

Sampling with replacement is otherwise referred to as
nonparametric bootstrapping, sampling without re-
placement when p , 1 is subsampling (Politis et al.
1999), whereas sampling without replacement when p¼
1 recovers the original data set. ‘‘Bagging’’ is model
averaging based on nonparametric bootstrapping
[from ‘‘bootstrap aggregation’’ (Breiman 1996)] and
‘‘subagging’’ is when it is based on subsampling [from
‘‘subsample aggregation’’ (Buhlmann and Yu 2002)].

Within each resample we use forward selection to
select the multiple-QTL model because it is fast, has
predictable convergence (relative to, say, stepwise selec-
tion), and scales to any number of loci (unlike backward
selection), making it highly practical in this context. For
the objective function that compares nested models we
use the negative log10 P-value (log P) of the partial F-test
(or likelihood-ratio test for non-least-squares problems)
and we terminate selection when the highest log P from
adding a predictor fails to exceed the 5% genomewide
significance threshold that would be given by naive
permutation. Model selection is conceptually distinct
from the test of a null hypothesis (e.g., Raftery 1995)
and so specifying a looser threshold than that for single-
locus inference does not imply a contradiction. Moreover
for this purpose we prefer the genomewide permutation
threshold to the more traditional ‘‘Akaike information
criterion’’ (AIC) (Akaike 1974) or ‘‘Bayes information
criterion’’ (BIC) (Schwarz 1978) because it scales with
the effective number of tests and has an interpretation
when only one locus is chosen. Where the proportion
resampled is p , 1, we adjust the threshold downward so
that a signal of a constant effect size that is borderline
significant in the full data set would also be borderline
significant in the subsample (see appendix c).

Calculating model inclusion probabilities: Applying
model selection to each of R resamples of the ob-
served population yields the R 3 n(M) matrix
G ¼ ½gð1Þ gð2Þ � � � gðRÞ�T, where g(r) is the column vector
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of indicators describing the predictors chosen by model
selection on the rth resample. The expected proportion
of times genetic locus m would be included in a multi-
locus model is then given by the Monte Carlo estimate

RMIPðmÞ¼ EðgmÞ �
1

R

XR

r¼1

Grm ;

which we term the resample model inclusion probability
(RMIP), because it is an estimate of a binomial
probability it is asymptotically normally distributed with
variance RMIP(1 � RMIP)/R.

Range probabilities and other useful statistics: The
expected number of chosen marker intervals within a
subset of marker intervals M*, where for example this
set could describe a chromosome, a small genomic
region, or even a noncontiguous set of loci, is

Eð�gM *Þ � 1

R

XR

r¼1

X
m2M *

Grm :

The empirical ‘‘range probability’’ of q or more chosen
marker intervals within region M* is

P
X

m2M *

gm $ q

 !
� 1

R

XR

r¼1

I
X

m2M *

Grm $ q

 !
: ð5Þ

For example, if the range probability of one or more
chosen marker intervals within the region 80–90 Mb is
estimated at 0.6, then in 60% of resamples one or more
loci from the region entered the multilocus model, or
equivalently there is a�60% probability of one or more
loci being chosen within that region in multilocus
model selection of a future resample of the data. The
conditional probability of m being chosen in models
containing any of M* where m;M* is

Pðgm ¼ 1 jmaxk2M *ðgkÞ ¼ 1Þ

�
PR

r¼1 I ðGrm ¼ 1 \maxk2M *ðGrkÞ ¼ 1ÞPR
r¼1 I ðmaxk2M *ðGrkÞ ¼ 1Þ

:

More generally, any other statistic T that can be defined
for a multilocus model, such as the variance explained
by the whole model or one of its predictors, may be
estimated as by model averaging as

T̂ ¼ 1

R

XR

r¼1

Tr ;

where Tr is the statistic calculated for the model in
resample r.

Alternative mapping methods 1: correcting the
phenotype before mapping for family effects using
hard, soft, and pedigree correction: An intuitive
approach to mitigate the effects of population structure
is to correct the phenotype for family effects before
subsequent analysis, with a more sophisticated variant

being to ‘‘correct’’ the phenotype for polygenic effects
estimated with the help of the pedigree (Aulchenko

et al. 2007; Barendse et al. 2007). To illustrate the impact
of this general approach on mapping small-effect QTL
in structured populations of related individuals of
known descent, we consider three types of correction
to the phenotype. Let yi* be the corrected phenotype for
individual i used in the single-locus model

yi* ¼ m 1 bgiðmÞ1 ei;

with other parameters defined as for Equation 2. For
‘‘hard correction,’’ we define yi* ¼ yi � sk½i�, where sk½i� is
the mean phenotype of sibship k, to which individual i
belongs. This is equivalent to using the residuals from a
least-squares fit to the phenotype with sibship as a fixed
effect or equivalently subtracting the sibship. We term
‘‘soft correction’’ as using yi* ¼ yi � s̃k½i�, where s̃k is the
shrinkage estimate of the sibship effect from fitting
yi ¼ m 1 sk½i�1 ei , with sk �N ð0;s2

s Þ. Finally, when the
full pedigree is known, we define ‘‘pedigree correction’’
as yi* ¼ yi � ãi , where ãi is the estimate of the polygenic
effect [i.e., the individual’s BLUP (Lynch and Walsh

1998)] from previously fitting the pedigree model
yi ¼ m 1 ai 1 ei , with a�N 0; As2

A

� �
and A as the

additive genetic relationship matrix derived from the
full pedigree. Under the assumptions of these models,
once corrected the phenotypes of individuals in differ-
ent families are exchangeable under permutation and
derivation of empirical genomewide thresholds are
valid (Aulchenko et al. 2007). When fitting these
models we therefore estimate significance thresholds
by permutation of yi*.

Alternative mapping methods 2: mixed model with a
sibship random intercept: A more computationally
intensive approach used traditionally in animal and
plant breeding is to estimate single-locus effects simul-
taneously with a random polygenic effect (Kennedy

et al. 1992). We approximate this by fitting the multilevel
model

yi ¼ m 1
X
c2C

bT
c xiðcÞ1 bT

mgiðmÞ1 sk i½ �1 ei ;

with terms defined as in Equations 1 and 3, obtaining a
nominal P-value for the locus effect via a likelihood-ratio
test against the model in Equation 3, and calculating a
genomewide significance threshold using the paramet-
ric bootstrapping approach described earlier, where
trait values are simulated from a multilevel sibship that
excludes the locus effect.

Pedigree correction models were fitted by restricted
estimate maximum likelihood, using WOMBAT (Meyer

2007) with standard settings. All other models were
fitted in R (R Development Core Team 2007) with
extensive use of the add-on packages lme4 (Bates et al.
2008) for multilevel models and evd (Stephenson

2002) for fitting null GEV distributions.
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SIMULATIONS

To test how well our method distinguished true from
false associations in structured populations we simu-
lated two breeding designs commonly used for high-
resolution mapping in model organism genetics: the
AILs and the HS.

F18 advanced intercross: We simulated 1000 popula-
tions of 500 F18 individuals. Each individual comprised a
simplified genome of two chromosomes and each
chromosome comprised 50 diallelic markers spaced
evenly over 100 cM. Chromosome 1 contained 2 ad-
ditional markers hidden from further analysis that acted
as QTL at 25 and 75 cM. Recombination was simulated
using the Haldane model (Lynch and Walsh 1998).
The F18 was bred from 60 F2’s maintained in a circular
mating system (see Valdar et al. 2006a and references
therein) of 25 mating pairs for 15 generations, with a
final outbreeding of 20 sibs from each F17 mating pair.
Simulated QTL were additive and acted in the same
direction in the founders, and each accounted for 5% of
the phenotypic variance, with the remaining variance
simulated as a normal deviate.

Figure 1 shows genome scans from a single simulated
population with the positions of the simulated QTL
labeled. A naive single-locus analysis (fitted using
Equation 1 with no covariates) and permutation thresh-
olds (Figure 1a) suggest at least four highly significant
associations, two of which are on the control chromo-
some [chromosome (chr) 2]. These false associations
are due to correlation between the simulated QTL and
chr 2 markers arising through population structure
(among all 1000 trials, the maximum R2 between a chr 2
marker and a QTL was .0.3 in 182 trials and .0.4 in 32
trials). Correcting the phenotype for sibship effects
before mapping provides an overconservative analysis
that detects no QTL (Figure 1, b–d). The mixed model
(Figure 1d) performs better but still attributes higher
significance to a ghost peak than to one of the true QTL.
The multilocus methods bagging and subagging (Fig-
ure 1, f and g) allow associations across the genome to
compete with one another for a place in the model and
in this example results in the true QTL ranking higher
than all ghost peaks.

Figure 1.—Single-locus and multilocus genome scans for a
simulated F18 advanced intercross. (a–d) The single-locus
HAPPY model applied to a simulated two-chromosome F18

population. (a) The single-locus model with permutation
(bottom dashed line) and parametric bootstrap (top dashed
line) thresholds. (b–d) The effect of correcting the pheno-
type for family, with dashed lines marking permutation
thresholds. (e) The single-locus model including a sibship var-
iance component with a threshold derived by parametric
bootstrap. (f and g) Resample model inclusion probabilities
(RMIPs) for each marker interval derived from bagging (f)
and subagging (g). The positions of the two simulated QTL
are marked Q1 and Q2.
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To compare the performance of the single and
multilocus approaches for identifying QTL in all 1000
simulated populations, we first divided the genome into
nonoverlapping segments of 10 cM such that there were
20 segments in total with the segments at 20–30 cM and
70–80 cM covering Q1 (at 25 cM) and Q2 (at 75 cM). For
each segment we then recorded the maximum log P (for
the single-locus approaches) or the range probability
(for the multilocus approaches). We examined the
ability of the segment score for each method to dis-
criminate segments that contained QTL from those that
did not. Defining segments in this way allowed us to
focus on the problem of discriminating confounded
associations without being distracted by uncertainty in
precise genomic location.

Table 1 reports performance statistics for single- and
multilocus methods. At a given threshold we define
power as the proportion of QTL-containing segments
that exceed the threshold (i.e., detected), false discovery
rate (FDR) as the proportion of detected segments that
did not contain QTL, and chromosome 2 associations as
the proportion of marker intervals on chr 2 that were
predicted to be QTL. Statistics were calculated sepa-
rately for each simulated population (trial) and Table 1
reports the averages over the 1000 trials. In the first
section of Table 1 each trial has its own set of thresholds
for 5% genomewide significance, as derived in meth-

ods. Under the null model assumed by each combina-
tion of method and threshold type, chr 2 associations
exceeding the threshold are therefore expected �2.5%
of the time. Permutation is seen to be anticonservative
for the naive single-locus approach, leading to more
than half of the declared associations being false and
almost 10% of loci detected on chr 2. Parametric
bootstrap provides a threshold that is overconservative
on chr 2 but nonetheless leads to a high FDR, mainly
because of the relative abundance of false peaks on chr 1
and, in the case of the single-locus method, poor
discrimination. In these simulations, the combination
of phenotype correction and permutation thresholds
leads to low power and a complete abolition of signal in
the case of correcting for sibship means (hard
correction).

To allow a purer assessment of discriminatory power,
the remaining sections of Table 1 fix the threshold of
each method to that required to achieve 80% power
over all simulations and include the multilocus meth-
ods. The second section shows that the mixed model is
most discriminatory among single-locus approaches,
but that bagging and subagging achieve an order of
magnitude lower FDR. Varying the proportion sub-
sampled for subagging makes little difference to per-
formance, but it does change the range probability
cutoff associated with a given detection rate. This is
because increasing the proportion reduces the variabil-
ity between subsamples, which acts to polarize the
inclusion probabilities such that in the limit, where

100% is equivalent to forward selection, a binary
measure is produced. The third section of Table 1
considers departures from the loose permutation-based
threshold used as a stopping rule for forward selection
in our implementation of subagging. In particular, we
consider using the conservative parametric bootstrap
threshold (strict) and a threshold that is midway between
that and the loose permutation threshold (medium),
finding that imposing a strict threshold abolishes all
power. Figure 2 compares the discriminatory power of
the methods by power and FDR for all possible thresh-
olds (Figure 2A) and summarizes those curves by their
area against the x-axis (Figure 2B). Like the related
receiver–operator characteristic (ROC) curves (e.g.,
Sing et al. 2005), a perfect classifier would trace a right
angle at the top left corner of the plot and have an area
under the curve of 1. For clarity Figure 2A plots mean
statistics from 1000 simulations. In Figure 2B we show
the sampling variability associated with those means
with error bars representing 50 and 95% confidence
intervals for the area under each curve.

The bottom section of Table 1 compares subagging
(with 80% subsamples) and bagging with forward
selection, for which segments are predicted to contain
a QTL if one or more loci within the segment are
included in the multiple-QTL model. Forward selection
produces a hard classification of QTL status for a
segment and so it does not require (or enable use of)
a detection threshold: we therefore adjust the range
probability thresholds of bagging and subagging to
achieve the same power (90.35%).

What is the advantage of nesting forward selection
within a resampling procedure if doing so achieves only
modest gain in power or FDR? Figure 3a plots empirical
densities of the mean squared error of individual locus
assignments (where the predicted assignment is 0 or 1
for forward selection or the RMIP for bagging and
subagging). Consistent with theoretical studies, bagging
and subagging give a lower average MSE (1.2 3 10-2 6

2.1 3 10-4 and 1.3 3 10-2 6 3.1 3 10-4, respectively, with
1 being the maximum possible if all locus assignments
were wrong) than forward selection (1.9 3 10-2 6

4.5 3 10-4). Moreover, because it is a discrete classifier,
the density of forward selection is trimodal (correspond-
ing approximately to finding both, one, or no QTL) and
has a mass of probability in the upper tail where bagging
and subagging do not. To see why this matters, consider
the following hypothetical scenario: suppose a finite
budget were available for following up the results of
mapping and money was allotted to investigate each
marker interval in proportion to the probability that
that interval was included in the multilocus model, with
the probability being one or zero for forward selection
or equal to the RMIP for bagging and subagging. Figure
3b plots the empirical density for the percentage of the
budget spent on investigating markers that do not
contain QTL (i.e., the budget wasted). Averaged over

Mapping in Structured Populations 1269



T
A

B
L

E
1

P
er

fo
rm

an
ce

o
f

si
n

gl
e-

lo
cu

s
an

d
m

u
lt

il
o

cu
s

m
et

h
o

d
s

in
m

ap
p

in
g

tw
o

Q
T

L
in

1
0

0
0

si
m

u
la

te
d

F
1

8
ad

va
n

ce
d

in
te

rc
ro

ss
p

o
p

u
la

ti
o

n
s

Si
n

gl
e

lo
cu

s
o

r
m

u
lt

il
o

cu
s

T
h

re
sh

o
ld

F
al

se
d

is
co

ve
ry

ra
te

(%
)e

C
h

ro
m

o
so

m
e

2
as

so
ci

at
io

n
s

(%
)f

M
et

h
o

d
a

T
yp

eb
U

n
it

s
V

al
u

ec
P

o
w

er
(%

)d

N
ai

ve
si

n
gl

e
lo

cu
s

Si
n

gl
e

P
er

m
u

ta
ti

o
n

L
o

g
P

3.
01

(2
.6

7,
3.

38
)

94
.8

(6
0.

49
)

65
.4

(6
0.

66
)

9.
68

(6
0.

13
)

N
ai

ve
si

n
gl

e
lo

cu
s

Si
n

gl
e

P
ar

am
et

ri
c

b
o

o
ts

tr
ap

L
o

g
P

6.
79

(3
.0

1,
12

.4
)

70
.1

(6
1.

1)
21

.1
(6

0.
83

)
1.

3
(6

0.
05

1)

H
ar

d
co

rr
ec

ti
o

n
Si

n
gl

e
P

er
m

u
ta

ti
o

n
L

o
g

P
3.

02
(2

.6
6,

3.
4)

0.
8

(6
0.

2)
0.

05
(6

0.
05

)
0

(6
0)

So
ft

co
rr

ec
ti

o
n

Si
n

gl
e

P
er

m
u

ta
ti

o
n

L
o

g
P

3.
01

(2
.6

5,
3.

39
)

28
.2

(6
1)

1.
75

(6
0.

3)
0

(6
0)

P
ed

ig
re

e
co

rr
ec

ti
o

n
Si

n
gl

e
P

er
m

u
ta

ti
o

n
L

o
g

P
3.

01
(2

.6
3,

3.
42

)
25

(6
1)

1.
92

(6
0.

32
)

0
(6

0)
M

ix
ed

m
o

d
el

Si
n

gl
e

P
ar

am
et

ri
c

b
o

o
ts

tr
ap

L
o

g
P

3.
23

(2
.8

3,
3.

63
)

83
(6

0.
86

)
26

(6
0.

82
)

0.
31

8
(6

0.
02

5)

Si
n

gl
e

lo
cu

s
Si

n
gl

e
�

80
%

p
o

w
er

L
o

g
P

5.
27

80
(6

0.
99

)
37

.6
(6

0.
96

)
2.

38
(6

0.
06

9)
H

ar
d

co
rr

ec
ti

o
n

Si
n

gl
e

�
80

%
p

o
w

er
L

o
g

P
0.

53
6

80
(6

0.
9)

62
.5

(6
0.

65
)

4.
63

(6
0.

09
5)

So
ft

co
rr

ec
ti

o
n

Si
n

gl
e

�
80

%
p

o
w

er
L

o
g

P
1.

68
80

(6
0.

89
)

23
.4

(6
0.

81
)

0.
25

9
(6

0.
02

3)
P

ed
ig

re
e

co
rr

ec
ti

o
n

Si
n

gl
e

�
80

%
p

o
w

er
L

o
g

P
1.

55
80

(6
0.

91
)

24
.2

(6
0.

8)
0.

29
(6

0.
02

4)
M

ix
ed

m
o

d
el

Si
n

gl
e

�
80

%
p

o
w

er
L

o
g

P
3.

45
80

(6
0.

92
)

22
.3

(6
0.

81
)

0.
21

6
(6

0.
02

1)
B

ag
gi

n
g

M
u

lt
il

o
cu

s
�

80
%

p
o

w
er

R
an

ge
p

ro
b

ab
il

it
y

0.
65

80
.6

(6
0.

93
)

1.
83

(6
0.

36
)

0.
00

20
4

(6
0.

00
2)

Su
b

ag
gi

n
g

(4
0%

)
M

u
lt

il
o

cu
s

�
80

%
p

o
w

er
R

an
ge

p
ro

b
ab

il
it

y
0.

6
80

.1
(6

0.
93

)
1.

6
(6

0.
35

)
0.

00
20

4
(6

0.
00

2)
Su

b
ag

gi
n

g
(5

0%
)

M
u

lt
il

o
cu

s
�

80
%

p
o

w
er

R
an

ge
p

ro
b

ab
il

it
y

0.
65

80
.5

(6
0.

94
)

1.
52

(6
0.

33
)

0.
00

20
4

(6
0.

00
2)

Su
b

ag
gi

n
g

(6
0%

)
M

u
lt

il
o

cu
s

�
80

%
p

o
w

er
R

an
ge

p
ro

b
ab

il
it

y
0.

7
80

.6
(6

0.
93

)
1.

82
(6

0.
37

)
0.

00
61

2
(6

0.
00

35
)

Su
b

ag
gi

n
g

(7
0%

)
M

u
lt

il
o

cu
s

�
80

%
p

o
w

er
R

an
ge

p
ro

b
ab

il
it

y
0.

76
80

.2
(6

0.
95

)
1.

78
(6

0.
37

)
0.

01
22

(6
0.

00
5)

Su
b

ag
gi

n
g

(8
0%

)
M

u
lt

il
o

cu
s

�
80

%
p

o
w

er
R

an
ge

p
ro

b
ab

il
it

y
0.

82
80

.4
(6

0.
94

)
2.

35
(6

0.
42

)
0.

01
43

(6
0.

00
54

)
Su

b
ag

gi
n

g
(9

0%
)

M
u

lt
il

o
cu

s
�

80
%

p
o

w
er

R
an

ge
p

ro
b

ab
il

it
y

0.
91

80
.2

(6
0.

96
)

2.
72

(6
0.

45
)

0.
01

43
(6

0.
00

54
)

Su
b

ag
gi

n
g

(8
0%

,
m

ed
iu

m
st

o
p

p
in

g
ru

le
)

M
u

lt
il

o
cu

s
�

80
%

p
o

w
er

R
an

ge
p

ro
b

ab
il

it
y

0.
06

81
.6

(6
1)

5.
78

(6
0.

54
)

0.
93

9
(6

0.
04

4)

Su
b

ag
gi

n
g

(8
0%

,
st

ri
ct

st
o

p
p

in
g

ru
le

)
M

u
lt

il
o

cu
s

�
80

%
p

o
w

er
R

an
ge

p
ro

b
ab

il
it

y
0

10
0

(6
0)

90
(6

0)
10

0
(6

0)

F
o

rw
ar

d
se

le
ct

io
n

M
u

lt
il

o
cu

s
N

A
N

A
N

A
90

.4
(6

0.
71

)
8.

51
(6

0.
66

)
0.

14
7

(6
0.

01
7)

B
ag

gi
n

g
M

u
lt

il
o

cu
s

�
90

.3
5%

p
o

w
er

R
an

ge
p

ro
b

ab
il

it
y

0.
46

90
.5

(6
0.

69
)

5.
73

(6
0.

55
)

0.
02

24
(6

0.
00

68
)

Su
b

ag
gi

n
g

(8
0%

)
M

u
lt

il
o

cu
s

�
90

.3
5%

p
o

w
er

R
an

ge
p

ro
b

ab
il

it
y

0.
5

90
.4

(6
0.

71
)

6.
72

(6
0.

6)
0.

05
71

(6
0.

01
1)

a
Su

b
ag

gi
n

g
(p

%
)

re
fe

rs
to

re
sa

m
p

le
m

o
d

el
av

er
ag

in
g

u
si

n
g

p%
su

b
sa

m
p

le
s.

‘‘S
tr

ic
t

st
o

p
p

in
g’

’
re

fe
rs

to
u

se
o

f
a

st
o

p
p

in
g

ru
le

b
as

ed
o

n
th

re
sh

o
ld

s
fr

o
m

p
ar

am
et

ri
c

b
o

o
ts

tr
ap

o
f

a
m

u
lt

il
ev

el
si

b
sh

ip
m

o
d

el
;

‘‘m
ed

iu
m

st
o

p
p

in
g’

’
re

fe
rs

to
u

si
n

g
th

e
m

ea
n

o
f

th
at

th
re

sh
o

ld
an

d
o

n
e

d
er

iv
ed

b
y

p
er

m
u

ta
ti

o
n

;
al

l
o

th
er

st
o

p
p

in
g

ru
le

s
ar

e
b

as
ed

o
n

p
er

m
u

-
ta

ti
o

n
.

b
H

o
w

th
e

th
re

sh
o

ld
fo

r
ca

lc
u

la
ti

n
g

p
er

fo
rm

an
ce

st
at

is
ti

cs
w

as
d

et
er

m
in

ed
an

d
ap

p
li

ed
.P

er
m

u
ta

ti
o

n
:g

en
o

m
ew

id
e

5%
si

gn
ifi

ca
n

ce
th

re
sh

o
ld

s
w

er
e

ca
lc

u
la

te
d

se
p

ar
at

el
y

fo
r

ea
ch

si
m

u
la

ti
o

n
.

P
ar

am
et

ri
c

b
o

o
ts

tr
ap

:
th

re
sh

o
ld

s
w

er
e

ca
lc

u
la

te
d

se
p

ar
at

el
y

fo
r

ea
ch

si
m

u
la

ti
o

n
.

‘‘�
n

%
p

o
w

er
’’:

sc
o

re
s

w
er

e
p

o
o

le
d

fo
r

al
l

si
m

u
la

ti
o

n
s

an
d

th
e

th
re

sh
o

ld
w

as
ca

li
b

ra
te

d
to

gi
ve
�

n
%

p
o

w
er

.
c
F

o
r

th
e

p
er

m
u

ta
ti

o
n

an
d

p
ar

am
et

ri
c

b
o

o
ts

tr
ap

re
su

lt
s,

th
re

sh
o

ld
va

lu
es

ar
e

gi
ve

n
as

‘‘m
ed

ia
n

(l
o

w
es

t,
h

ig
h

es
t)

.’’
O

th
er

w
is

e
th

e
n

u
m

b
er

s
ar

e
th

e
ra

n
ge

p
ro

b
ab

il
it

y
th

re
sh

o
ld

s
re

q
u

ir
ed

to
ac

h
ie

ve
�

n
%

p
o

w
er

.
d

T
h

e
p

ro
p

o
rt

io
n

o
f

se
gm

en
ts

co
n

ta
in

in
g

Q
T

L
th

at
h

ad
sc

o
re

s
ab

o
ve

th
e

th
re

sh
o

ld
,

av
er

ag
ed

o
ve

r
si

m
u

la
ti

o
n

s
(S

E
in

p
ar

en
th

es
es

).
e
T

h
e

p
ro

p
o

rt
io

n
o

f
10

-c
M

se
gm

en
ts

w
it

h
sc

o
re

s
ab

o
ve

th
e

th
re

sh
o

ld
th

at
d

id
n

o
t

co
n

ta
in

a
Q

T
L

,
av

er
ag

ed
o

ve
r

si
m

u
la

ti
o

n
s

(S
E

in
p

ar
en

th
es

es
).

f
T

h
e

p
ro

p
o

rt
io

n
o

f
m

ar
ke

r
in

te
rv

al
s

o
n

ch
ro

m
o

so
m

e
2

p
re

d
ic

te
d

to
co

n
ta

in
Q

T
L

,
av

er
ag

ed
o

ve
r

si
m

u
la

ti
o

n
s

(S
E

in
p

ar
en

th
es

es
).

1270 W. Valdar et al.



the 1000 simulations, spending money in accordance
with forward selection seems least wasteful (45.4 6

1.14%), with subagging slightly more wasteful (49.5 6

0.853%) and bagging the most wasteful (61.3 6 0.58%).
However, as illustrated by the decumulative probabili-
ties in Figure 3c, the high variance of the discrete
classifier means that within a simulation there is a
considerable risk (21.4%) that the classification is
completely wrong and the entire budget is wasted,
whereas this would be an unlikely prospect with bagging
(�0%) or subagging (1%).

Heterogeneous stocks: To test our method on a more
complex population with ambiguous descent, we simu-
lated 100 populations of 500 F53 heterogeneous stock
individuals derived from eight inbred lines. Again
modeling a minimal two-chromosome genome, we used
marker genotypes from the HS study of Valdar et al.

(2006b). This comprised 870 markers spanning 98.6 cM
on chromosome 1 and 759 markers spanning 103.7 cM
on chromosome 2. All markers were diallelic with minor
alleles distributed variously among the eight founder
strains (see http://gscan.well.ox.ac.uk/ for more in-
formation). We simulated two diallelic QTL on chr 1
and, to allow the simulation to focus on discrimination
of signals rather than on power, we positioned these in
marker-dense regions at 29 and 68 cM with additive
effects each accounting for 10% of the phenotypic
variance. The QTL acted in the same direction in the
founders, had alleles split equally among the eight
inbreds, but had strain distribution patterns that differed
from those of their flanking markers. Each population
was generated by a single funnel of four two-way crosses,
two four-way crosses, and one eight-way cross, giving rise
to a mating population of 100 individuals that was then

Figure 3.—Comparison of forward selection, bagging, and subagging in predicting QTL status of loci in 1000 simulated F18

mapping experiments. Plots show error statistics relating to the assignment of QTL status to each of 98 marker intervals in the two-
chromosome genome of the simulated F18’s, where the correct assignment is 1 for the two intervals containing QTL and 0 for the
remaining 96, and the predicted status is the vector ĝ of RMIPs from subagging with 80% subsamples and bagging or 0’s and 1’s
from forward selection. (a) The mean squared error of assignment ð1=M Þ

P
m2M ĝm � gmð Þ2. (b and c) The percentage of money

wasted if follow-up funding is spent on each marker interval in proportion to the predicted QTL status. Each data series is fitted to
1000 points, with series in a and b fitted as rectangular-kernel density estimates.

Figure 2.—Performance
of single-locus and multilo-
cus methods in mapping
two QTL in 1000 simulated
F18 advanced intercrosses.
(A) Plot of predictions at
a range of cutoffs for the
maximum log P in a seg-
ment (single-locus model
and hard, soft, and pedi-
gree correction, mixed
model) or the range proba-
bility over a segment (subag-
ging with 80% subsamples,
bagging). Forward selec-
tion is a discrete classifier,
has no applicable thresh-
old, and so is represented

as a single point. (B) Plot of the area under the curves in plot (A), including results for variants of subagging in which the pro-
portion of data subsampled varies (40–90%) and the stopping rule used in forward selection is made stricter (see simulations for
details). Area estimates, calculated via the trapezium rule over a grid of values, are plotted with 50 and 95% confidence intervals
(thick and thin horizontal bars).
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circular-mated for 50 generations, with the mating pairs
in the penultimate generation bred to produce 10
offspring each (see Valdar et al. 2006a and references
therein). Performance was assessed as for the advanced
intercross trials by defining genome segments. Because
the HS are more recombinant, segments were 6 cM wide
and defined such that each QTL sat at a segment
midpoint.

Table 2 reports performance statistics for the single-
and multilocus methods applied to the 100 HS pop-
ulations. The first section of Table 2 shows that the
combination of a naive single-locus model and permu-
tation results in most detections (92.3%) being false and
leads to more than half the associations on the control
chromosome (chr 2) exceeding the supposed 5% sig-
nificance threshold. The parametric bootstrap controls
the number of chr 2 associations somewhat (although is
anticonservative) for the naive single-locus model and
to an appropriate level for the mixed model (2.41%,
suggesting �5% false positives for a two-chromosome
genome). The second section of Table 2 fixes the
threshold for detection at that necessary to achieve
80% power and compares the FDR of single- and
multilocus methods. Figure 4 summarizes the discrim-
inatory power of these methods and their variants.
Consistent with the AIL simulations, the mixed model
outperforms the naive single-locus model and the best
discriminatory power is seen for bagging and subagging.
In addition to subagging with 80% subsamples and
bagging, we consider the two-step strategy of choosing
representative ‘‘peak’’ loci, defined as maxima from a
naive single-locus scan that exceed a low threshold and
are more than d cM apart, followed by performing
resample model averaging on those peaks. This strategy
was originally adopted by Valdar et al. (2006b), using
bagging. Although choosing among a smaller set of
peaks incurs fewer computations and so is faster, we
would expect it to be also inferior to using all loci
because it does not allow for the fact that the identity of
the marker acting as the strongest surrogate for a QTL
can vary between resamples (e.g., Visscher et al. 1996),
whereas using all loci does. Figure 4B illustrates this
trend clearly, showing that the smaller the minimum
separation of representative loci is, and thus the greater
the number of constituent loci that can contribute to
the range probability of a 6-cM segment, the more
powerfully bagging or subagging discriminates seg-
ments containing QTL from those that do not.

DISCUSSION

We describe a way to characterize model uncertainty
in a genomewide association study that is particularly
useful for outbred populations where the founders are
known or can be inferred and where the outbreeding
phase results in complex population structure. When
the founders are not known or inferable, the genetic

predictors can be the genotypes or some other numeric
formulation. When the population structure is not
complex, the method has no disadvantage over other
strategies other than running time. The method is
applicable to any situation in which population struc-
ture is present or suspected. Moreover, it does not
require pedigree information and so is widely applica-
ble to many existing data sets where such information is
missing or untrustworthy.

In contrast to methods that impose a genomewide
significance threshold to determine whether or not a
locus has been identified, our model averaging ap-
proach uses such a threshold only as a stopping rule.
Locus identification is based instead on the frequency
with which it recurs in the resampling. This is not to say
that the choice of threshold is unimportant: lowering
the stopping rule to a pathological degree will clearly
increase the number of spurious loci entering the
multilocus model, whereas a similarly pathological
raising of the threshold will lead to a loss in power.
Nonetheless, the multilocus analysis is far more robust
to a loose threshold than a single-locus approach.

For single-locus analysis, we consider a method to
generate thresholds based on parametric bootstrap
from a multilevel model that is appropriate when loci
from the whole genome are not available for a multi-
locus analysis. This more accurately models a null dis-
tribution of a normally distributed phenotype in the
presence of a multilevel structure than a permutation
test and results in a lower FDR for single-locus analysis.
However, in our simulated scenario of two QTL segre-
gating in a highly structured AIL we find that, consistent
with studies from mapping in livestock, either correct-
ing the phenotype for partially pooled family or poly-
genic effects or estimating such effects simultaneously
in a mixed model leads to a more discriminatory single-
locus approach, albeit with lower power to detect small
effects. We show that better discrimination still is avail-
able through a multilocus approach that can be igno-
rant of family structure.

Our assessment of polygenic modeling is illustrative
but far from comprehensive (e.g., see Hoeschele et al.
1997). In our simulations, we do not generate polygenic
effects explicitly because doing so is unnecessary
to demonstrate confounding. However, because our
method uses marker information from the whole ge-
nome, simulating such effects would also confuse
assessment of detection if simulated through multiple
scattered small-effect QTL or require a nongenetic
justification if simulated by adding correlated noise to
the phenotype. In our modeling, we do not estimate
polygenic parameters because they are unnecessary to
demonstrate unconfounding, although we expect that
including them as simultaneously estimated parameters
could improve discrimination, albeit it at some compu-
tational expense, making our method a frequentist
analog to some existing Bayesian approaches that do

Mapping in Structured Populations 1273



this (e.g., Bink et al. 2008). We do not, however, consider
it desirable to remove polygenic effects from the
phenotype before subsequent modeling, such as in
the pedigree correction based on Aulchenko et al.
(2007). If the goal is to dissect the genetic component of
the trait into a potentially large number of small-effect
loci as it often is in medical genetics, rather than to
detect only large-effect loci helpful for phenotype pre-
diction and subsequent selection as is often the goal in
QTL mapping of livestock and plants (Bernardo 2001),
then a strategy of removing polygenic effects before
mapping discards potentially valuable between-family
information that would otherwise add power to a multi-
locus analysis (see also Crooks et al. 2009). It is also
undesirable for our purposes because subtracting the
BLUP point estimate from the phenotype involves
conditioning on an unknown: uncertainty relating to
the polygenic estimates is lost and this potentially biases
subsequent characterization of the uncertainty among
locus-specific associations. Nonetheless, when there are
major structural features within the population that are
not first removed, such as distinct subgroups arising
through admixture, our method risks picking up loci that
are correlated with those components. Our approach is
therefore most useful as a way to characterize model
uncertainty once such major structural features have
been removed.

Aggregating models by bootstrapping (bagging) or by
subsampling (subagging) is simple to understand and
easy to implement. How does it compare to the in-
creasingly common practice of Bayesian model selec-
tion and Bayesian model averaging (Kilpikari and
Sillanpaa 2003; Yi 2004; Ball 2007; Yandell et al.
2007; Bink et al. 2008)? In the Bayesian paradigm the
inclusion of predictors is specified in terms of a formal
hierarchical model in which inclusion probabilities are
modeled as the outcome of higher-order processes that
loosely specify the number of parameters to be in-
cluded. The Bayesian approach then conditions on the

data to characterize the uncertainty in the inferred
parameters, modeling the inclusion probabilities as
posterior distributions. This requires integrating over
the space of possible multilocus models, which in
practice will usually involve exploring different config-
urations of g in a Monte Carlo Markov chain.

Bayesian measures of uncertainty relate to personal-
ized probabilistic statements of degrees of belief in a
certain event occurring, such as a genetic variant af-
fecting a phenotype (Bernardo and Smith 1994;
Maliepaard et al. 2001). In contrast, frequentist meas-
ures, such as bagging or subagging, seek to address
uncertainty in an estimator (such as forward selection)
due to finite sample size, although the choice of model
selection procedure, though uncontroversial, is subjec-
tive, and the choice of the stopping rule even more so. It
is thus necessary to calibrate the RMIP by simulation to
interpret it as a probability of a QTL and different
mapping populations require individual calibration (al-
though note that calibration is usually required in a
Bayesian setting also). Moreover, compared with the
Bayesian approach, resampling could be seen as wasteful
in that the inferences based on each subsample use a
percentage of the data, and those based on bootstrap-
ping use on average �63% of the data (Davison and
Hinkley 1997). However, for those unprepared or
unwilling to specify subjective priors, our method offers
a much improved approach to multiple-marker selec-
tion, and one that is also simple to apply to a wide range
of distributions, such as survival models and generalized
linear models.

Our resampling procedure is applicable to any model
selection method that seeks to return an estimate of ĝ.
Here we use forward selection and consider only additive
genetic models. However, model selection strategies that
are more sophisticated or thorough, such as stepwise
regression or exhaustive search, that consider a broader
range of genetic models, such as dominance and inter-
actions, or that use more specialized stopping rules (e.g.,

Figure 4.—Performance
of single- and multilocus
methods in mapping two
QTL in 100 simulated HS
populations. (A) Plot of
predictions at a range of
cutoffs for the maximum
log P in a segment (naive
single-locus model, mixed
model) or the range proba-
bility over a segment (sub-
agging with 80%
subsamples, bagging). For-
ward selection is repre-
sented as a single point.
(B) Plot of the area under
the curves in a, including

results for variants of bagging and subagging in which model selection is applied to only a representative set of peaks, spaced
a minimum distance apart (in parentheses), rather than to all loci. Area estimates are plotted with 50 and 95% confidence in-
tervals (thick and thin horizontal bars; see Figure 2 legend for more details).
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see Zou and Zeng 2008 for a review) all fit into the
resampling paradigm we describe, allowing substantial
scope for future development.

In summary, we describe a method to deal with
problems inherent in certain forms of structured pop-
ulations: specifically, highly recombinant maintained
populations with known founders, where the pedigree
may be unknown, and where the population structure is
expected to be smooth in the sense that any gross
environmental factors or subpopulation indicators are
known and can be removed. The generality of our
solution means it can also be applied to other outbred
populations, including those that use different repre-
sentations of genotype. In particular we believe that the
general approach will be applicable to human popula-
tions where major strata have been removed. In agree-
ment with others (Churchill and Doerge 2008), we
show that single-locus modeling using permutation
thresholds is anticonservative, consider a more conser-
vative alternative based on parametric bootstrap, and
compare these with methods for correcting the pheno-
type for family effects. We then show in simulations that
regardless of the threshold chosen, multilocus model-
ing is superior to single-locus approaches in discrimi-
nating between true causal signals and confounding
ghost associations.

We provide software to perform single-locus associa-
tion, estimation of significance thresholds via para-
metric bootstrap and permutation, and multlilocus
association in our program BAGPHENOTYPE provided
free at http://www.well.ox.ac.uk/�valdar/software/.
BAGPHENOTYPE is based on the R-library HAPPY, also
free at http://www.well.ox.ac.uk/happy/.

W.V. thanks Andrew Morris for helpful discussions. W.V. was funded
by a grant from the European Union Framework 6 Programme,
contract no. LHSG-CT-2003-503265, and by a Career Development
Award from the Medical Research Council, United Kingdom.
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APPENDIX A: HANDLING MULTICOLLINEARITY IN
REGRESSIONS ON THE HAPPY MATRIX

The n 3 k matrix G mð Þ ¼ g1 mð Þ � � � gn mð Þ½ �T for n
individuals is by definition overspecified in the kth

column but is often also multicollinear in some of the
remaining columns owing to some haplotypes being
near indistinguishable at some loci. Where our chosen
regression software does not handle this ill-condition-
ing automatically through the QR factorization (see
appendix b), we replace G mð Þ by the orthogonal n 3 r
matrix G* mð Þ, whose r , k columns are those principal
components of scaled and centered G mð Þ whose eigen-
values exceed an orthogonality parameter lmin . 0,
which is chosen to be small and determined empirically
for a given genetic data set.

APPENDIX B: EFFICIENT PERMUTATION AND
PARAMETRIC BOOTSTRAP TESTS FOR THE

SINGLE-LOCUS LINEAR MODEL

In the case of linear models, establishing significance
thresholds by performing genome scans of repeated
parametric bootstraps or permutations is made several
orders of magnitude faster by exploiting the fact that the
slowest step in ordinary least-squares fitting, i.e., in-
version or decomposition of the design matrix, is
independent of the response. We illustrate this below
using the QR factorization (e.g., Venables and Ripley

2002) of the normal equations for least squares, which
in addition to being efficient implicitly handles the
common case of collinearity leading to nonidentifiabil-
ity among the predictors. Let X be the N 3 p design
matrix for the entire linear model including covariates
and marker intervals and ỹs be the sth simulated (or
permuted) version of the response such that the normal
equations for b̂ are XTXb ¼ XTỹs . Applying the QR
decomposition X ¼ Q

R
0

� �
, where Q is n 3 n orthonormal

and R is p 3 p upper triangular, the normal equations
become RTRb ¼ RTws , where QTỹs ¼

ws

vs

� �
with p-vector ws

and (n � p)-vector vs. Crucially, the residual sum of
squares (RSS) is jjvsjj22, which means that once the QR
factorization has been performed for a given design
matrix, the RSS and therefore trivially the log P can be
rapidly computed for any number of new response vectors
ỹs . For S permutations or parametric bootstrap replicates
on L loci this reduces the complexity from O(SLdr) to
O(Ld 1 Sr), where the time taken for matrix decomposi-
tion and RSS calculations is d and r units, respectively.

APPENDIX C: ADJUSTING THE STOPPING RULE FOR
FORWARD SELECTION IN A P% SUBSAMPLE

In subagging, forward selection is applied to a set of
predictors conditional on a p% subsample of the N data
points. If p ¼ 100%, then a stopping rule for deciding
whether to include a further predictor in the model is to
accept only if the logP of its partial F-statistic (or
likelihood-ratio statistic) is both greater than the a%
genomewide significance threshold ta,N and greater
than that of any other of the unselected predictors.
However, if p , 100%, and especially when p > 100%,
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then ta,N becomes inappropriately strict: all predictors
are penalized due to the drop in sample size. We prefer a
stopping rule that reflects the size of the effect rather
than the size of the subsample. Therefore to retain
power but avoid the computational burden of deter-
mining new thresholds empirically, we adjust ta,N for
sample size N to ta,n for sample size n ¼ pN/100% as
follows. Consider a predictor in a linear regression on N
data points that is borderline significant at ta,N and
explains a fraction of the variance q¼ FSS/(RSS 1 FSS),
where FSS and RSS are, respectively, the fitting and
residual sums of squares about the regression. If k is the
number of fitted parameters in the single-locus model,
then the corresponding F-statistic is

Fa;N ¼
FSS=k � 1

RSS=N � k
¼ qð1� qÞ�1

k � 1
ðN � kÞ

¼ uðq; kÞðN � kÞ;

where u is a function of q and k. If q and k are unchanged
in the subsample of size n , N, as would be expected if q
is robust to resampling, then the F-statistic correspond-
ing to ta,n is

Fa;n ¼ uðq; kÞðn � kÞ ¼ n � k

N � k
Fa;N ;

such that, given ta,N, N, n, and k, we can approximate ta,n

as

ṫa;n ¼ �log10SF
n � k

N � k
Fa;N ; k;n

� �

¼ �log10SF
n � k

N � k
S�1

F ð10�ta;N ; k;N Þ; k;n

� �

where SF and SF
�1 are survivor and inverse survivor

functions for the F-distribution.
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