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A problem common to biology and economics is the transfer of
resources from parents to children. We consider the issue under the
assumption that the number of offspring is unknown and can be
represented as a random variable. There are 3 basic assumptions.
The first assumption is that a given body of resources can be
divided into consumption (yielding satisfaction) and transfer to
children. The second assumption is that the parents’ welfare
includes a concern for the welfare of their children; this is recursive
in the sense that the children’s welfares include concern for their
children and so forth. However, the welfare of a child from a given
consumption is counted somewhat differently (generally less) than
that of the parent (the welfare of a child is ‘‘discounted’’). The third
assumption is that resources transferred may grow (or decline). In
economic language, investment, including that in education or
nutrition, is productive. Under suitable restrictions, precise formu-
las for the resulting allocation of resources are found, demonstrat-
ing that, depending on the shape of the utility curve, uncertainty
regarding the number of offspring may or may not favor increased
consumption. The results imply that wealth (stock of resources)
will ultimately have a log-normal distribution.
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There are many points of overlap between the fundamental
theoretical questions in economics and those in evolutionary

ecology, and these have been explored widely in both disciplines.
Many problems in evolutionary theory, like the consumption of
available resources, fit easily into this framework, and the
insights from economics have illuminated core problems in
behavioral ecology (see for example refs. 1–6). Similarly, eco-
logical and evolutionary approaches can shed light on funda-
mental problems in economics (7–8).

Among the most classic challenges in both ecology and
economics is how one discounts the future and trades off present
consumption against discounted future rewards. In the economic
context, this is a well-posed problem; the solution involves
maximization, across a range of options, of the discounted
present utility to be realized from that set of options. Analogous
problems in evolutionary ecology involve the tradeoffs between
growth and reproduction, and problems of parent-offspring
conflict. For example, for annual plants, the earlier a plant
switches from growth to reproduction, the longer it can spend
reproducing; but the reduced resources at the onset of early
reproduction translate into reduced production per unit time. In
contrast, deferring the transition to reproduction too late can
lead to insufficient time for producing offspring; the resolution
of this tradeoff then involves, as is intuitively clear, transition at
intermediate times from growth to reproduction (9). The cou-
pling of timing of reproduction and parent-offspring conflict is
explored more fully in ref. 10.

More generally, most of the central problems in evolutionary
ecology involve resolution of life-history tradeoffs, such as those
between growth and reproduction. Increased reproduction is
generally at the expense of the survival of the parent. Early
reproduction may increase the number of potential offspring one
can have; furthermore, for a growing population with overlap-

ping generations, offspring produced early in life are more
valuable than those produced later because those offspring can
also begin reproduction earlier. This is analogous to the classic
investment problem in economics, in that population growth
imposes a discount rate that affects when one should have
offspring. The flip side is that early reproduction compromises
the parent’s ability to care for its children, and that increased
number of offspring reduces the investment that can be made in
each. Again, the best solution generally involves compromise and
an intermediate optimum.

A particularly clear manifestation of this tradeoff involves the
problem of clutch or litter size—how many offspring should an
organism, say a bird, have in a particular litter? (11) Large litters
mandate decreased investment in individuals, among other costs,
but increase the number of lottery tickets in the evolutionary
sweepstakes. This problem has relevance across the taxonomic
spectrum, and especially from the production of seed by plants
to the litter sizes of elephants and humans. Even for vertebrates,
the evolutionary resolution shows great variation: The typical
human litter is a single individual, for which parental care is high,
whereas fish may produce millions of offspring with low indi-
vidual probabilities of survival.

The great British biologist David Lack (12) provided a simple
and intuitive solution to this problem: The optimal solution was
predicted to maximize the product of the number of offspring
and their probability of survival to reproduce. The problem with
this solution is that it is incomplete: It ignores the carry-over
effect from one generation to another, basically the grandparent
effect. Although a large litter with low investment per offspring
may lead to the same product as a small litter with high
investment per offspring, the members of the smaller litter are
also likely to be more fit, leading to a carry-over effect to future
generations (see also refs. 3, 6, and 11). Livnat et al. (13) explore
this question with a game-theoretic model, and show that the
balance between large and small litters is affected fundamentally
by the degree of genetic reassortment: When mutation (or
recombination) rates are high, individuals are more weakly
related to their offspring, and the best solution tends toward the
production of large litters with small investment. When reas-
sortment is low, as for humans, the balance shifts toward small
litters and large investment per offspring.

Still, there is always some degree of reassortment, especially
for diploid populations; hence, the problem of intergenerational
transfers of resources becomes a fundamental issue in ecology
and economics alike. All individuals are mortal, and so discount-
ing of the future has to account for (i) whether an individual uses
resources now or later and (ii) whether deferring consumption
until the future increases the likelihood that those resources will be
used by one’s children, or others’ children, versus by the individual
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who is deferring. These two related problems—the individual
versus one’s children, and one’s children versus the children of
others—are at the core of both estate planning and decisions about
environmental protection. A related problem involving the coevo-
lution of intergenerational transfers and life history is treated in ref.
14.

The dynasty model (see refs. 15 and 16 and, for a more general
formulation, ref. 17), in which one’s offspring are a continuation
of self, is designed to account for these issues, and can also
account for the distinctions between one’s own utility and one’s
offspring’s utilities. The remaining problem, however, is that
dynasty models typically deal with deterministic futures in terms
of the number of offspring per parent. Even if population growth
is negligible, so that each parent on average is replaced by one
offspring, in practice this does not mean that every individual is
replaced by precisely one genetic partial copy. Some individuals
will remain childless, whereas others will have large numbers of
offspring. How does this uncertainty affect the decisions one
makes regarding transfers? How does the variance of the prob-
ability distribution of offspring affect the optimal decision?
What are the consequences, if individuals employ optimal strat-
egies, for the distribution of wealth within a population? Will the
differences among these distributions in different cultures re-
f lect differences in reproductive patterns, and especially the
variances in the reproductive kernels?

In this article, we introduce a framework to begin investigating
this problem. We present here only a model of the simplest cases,
leaving for future work (likely by others) problems such as the
importance of information about future uncertainty in deter-
mining one’s decisions about the intergenerational transforma-
tion of resources. For example, early in life, one has little
information about the number of surviving offspring one will
have; but that uncertainty diminishes with age. Of course, even
grown offspring can die, leaving another source of uncertainty
even late in life. Similarly, we know less about how many
offspring our children will have, or our grandchildren will have,
than we know about our own fecundity. A full theory will need
to examine these, and other, effects.

Results
Basic Model. The dynamic programming framework we use in this
article, based on Bellman’s equation, is standard in economics
and behavioral ecology alike (see for example ref. 14), For
simplicity, we ignore differences between the sexes, and assume
a single-sex model. Each individual lives for 1 unit of time, and
is endowed (by inheritance) with, say, K units of wealth, which
can be divided between her own consumption and the estate. She
gets satisfaction both from her own consumption and from the
welfare of her heirs. Because we will assume the identical
concave utility function for all offspring, the optimal strategy for
maximizing total welfare divides the estate equally among the
heirs, whose welfare is in general discounted compared with the
individual’s own consumption. Also, the estate grows by a
constant factor, �, over each period.

Let U(c) be the satisfaction (‘‘utility’’) that any individual
receives from consumption, c. Now assume that the number of
offspring n is a random variable, with the same distribution for
all families and independently distributed across families. The
total welfare, starting with initial capital, K, of any individual is
her utility plus the welfare of each of her heirs, discounted by a
factor, � (which is generally �1, but need not be). Hence, along
the optimal path, consumption must be chosen such that the
expectation V(K) of total welfare (expected sum of discounted
utilities, including those of descendants) satisfies the Bellman
condition (see refs. 18 and 19):

V�K� � En�maxc�U�c� � �nV���K � c� /n��� . [1]

It is implicitly assumed that the individual knows how many heirs
she has before choosing how to divide her wealth between her
own consumption and her estate. Next, following the standard
theory, we assume that U is a concave increasing power function,
and for definiteness assume explicitly that

U�c� � c1��/�1 � ��, � � 0. [2]

(U(c) is allowed to be negative if � 	 1, because only relative
utility matters). To solve the dynamic programming problem
given by Eq. 1 and 2, conjecture the ansatz that

V�K� � AK1��/�1 � �� [3]

for some A. Substitution will confirm that the ansatz satisfies the
problem, and determine A. Then the optimization yields,

c�� � A�n��1���K � c���,

and therefore,

c � �B/�B � n��K, [4]

where

B � �A��1����1
�. [5]

Then the capital, K�, of each of the heirs is given by

K� � ��K � c�
n � �K
�B � n�. [6]

We still have to verify that our ansatz (Eq. 3) holds for some A.
Substitute for c from Eq. 4 into Eq. 1, using Eqs. 2, 3, and 5. The
factor, K1 � �/(1 � �), appears on both sides and can be cancelled
out. Then, we have

A � E��B1�� � A��1��n�
�B � n�1���

� B��E��B � n��� � A��1��E��B � n���,

so that B is determined by the equation

��1��E��B � n��� � 1; [7]

the appropriate A then is determined from Eq. 5, so that the
conjecture is verified.

Note that the condition that there exists an optimal solution
is the same as that Eq. 7 has a solution. Because the left-hand
side is a strictly increasing function of B and approaches infinity
with B, the existence condition is that

��1��E�n�� � 1 [8]

This condition can be interpreted as stating that � cannot be too
large: If too much weight is placed upon the welfare of future
generations, we would be led to the paradoxical situation that
none of the resource should be consumed, leaving all for future
generations whose optimal strategy, however, similarly is to use
none. Note further that the limiting case where � � 1 reduces,
by L’Hospital’s rule, to U(c) � ln(c). In that case, Eq. 7 reduces
to the simple equation

B � ��1 � E�n�.

Finally, note that Eq. 7 can be used to compare the stochastic and
deterministic cases, because in the deterministic case the expec-
tation is simply the value of (B 
 n)�. Therefore, from Eq. 7 we
get that, E((B 
 n)�) � (B0 
 E(n))�, where B0 is the solution
to the problem when the mean number of children is the same
but there is no variation.

If � � 1, the function (B 
 n)� is concave in n, so that, by
Jensen’s inequality,
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E��B � n��� 	 �E�B � n��� � �B � E�n���,

and therefore,

B � B0 if 0 	 � 	 1.

Similarly,

B 	 B0 if � � 1.

That is, if utility of additional consumption falls off relatively
slowly (� � 1), then uncertainty about the number of one’s heirs
selects for higher consumption; but, if utility of additional
consumption falls off rapidly, uncertainty selects for lower
consumption.

Implications for the Distribution of Wealth. Computation of the
optimal policy does not deviate a great deal from the determin-
istic theory, but there are interesting implications for the pattern
of distribution of wealth. The essential relation is Eq. 6. Start
with a set of individuals at generation t, each with a capital stock
(so we have a distribution of capital ownership). For each such
individual, draw n at random (independently across individuals
across time). Those individuals for which n 	 0 generate n new
entities, each with a capital given by Eq. 6. Thus, the distribution
at generation t is transformed into a new distribution at gener-
ation t 
 1. Can we say anything interesting about this, for
example, about the limiting distribution?

In our model, for any individual with capital stock, K, and n
offspring, each offspring has capital stock, K� � � K/(B 
 n),
where � is the increased capital per unit of initial capital, and B
is a parameter. The random variable, n, has a given distribution,
independent of K.

If p(n) is the probability of n offspring, then, among parents
with capital K, the observed distribution of K�(n) will be given
by q(n) � np(n)/E(n).

Let k� � ln K�, k � ln K, and u(n) � ln � � ln(B 
 n). The
distribution of u(n) in the next period then is given by q(n).
Hence,

k� � k � u�n�. [9]

Here, k and u are independent variables. In the case when p(n)
is positive for exactly 1 positive n, all surviving families will have
the same number of offspring, and hence there will be no spread
of wealth. More generally, however, Eq. 9 implies a random-walk
process for which

E�k�� � E�k� � Eq�u�n�� [10]


k�
2 � 
k

2 � 
q
2. [11]

By the central limit theorem,

�k�t� � tEq�u�n���/t1/2
q

converges to a limit random variable with mean 0 and variance
1; and furthermore, k, properly normalized as above, converges
to a normal distribution, or K to a log-normal distribution. This
is illustrated by simulations (Fig. 1), for representative values of
the parameters chosen so that the expected change in the mean
of log wealth is zero. An analogous case, where n is fixed at 1 but
� is a random variable, was first studied by the French engineer
Robert Gibrat (20); the result is usually referred to as Gibrat’s
Law.

Overlapping Generation Growth with Random Family Size. Until this
point, we have assumed that individuals make decisions about
the distribution of wealth once in their lifetime and with full
knowledge of how many offspring they will have among whom

to divide resources. More generally, however, the allocation
problem is a continuous one, and the solutions temporally
variable as information accrues about the number of offspring,
and as expected conditional life expectancy diminishes. To
examine this problem, we approximate the continuous decision
process with a 2-stage model in which the parent’s resources can
grow for one period and then be used for consumption and
production of children.

We retain some of the basic elements of the previous models.
The utility of consumption, c, in any period is a power function,
c1 � �/(1 � �). Capital in any one period is divided between
consumption and savings; savings after one period are multiplied
by a growth factor, �. Each individual lives and consumes for 2
periods, and discounts second-period welfare by a factor, �.
‘‘Welfare’’ here includes both the utility of second-period con-
sumption of the parent and the long-term welfare of the children.
In the second period of a parent, the random number of children,
n, is known. The parent divides the capital available to her
between consumption for self and capital to the children. Each
child receives an equal endowment. Each child then immediately
chooses first-period consumption as the parent had done. The
parent discounts each child’s welfare compared with her own
(this applies instantaneously) with a factor, � (again, we do not
of course exclude that there is no real discounting, i.e., one or the
other of the discount rates might equal or even exceed 1).

Let V(K) be the welfare (i.e., expected sum of discounted
utilities, including those of descendants) for an individual with
capital K. Let c1 be the consumption of the parent in period 1 and
K� be capital of the parent at the beginning of period 2, i.e.,

K� � ��K � c1�. [12]

Let c2 be the consumption of the parent in period 2. Then, if
there are n children, the initial capital of each child is

K� � �K� � c2�/n. [13]

Hence,
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Fig. 1. Normalized distribution of log wealth after 100 generations, com-
pared with the normal distribution, for B � 1 and probabilities 7/18, 6/18, 3/18,
and 2/18, respectively, of 0, 1, 2, and 3 offspring.
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V�K� � �c1
1��/�1 � ��� � ���c2

1��/�1 � ��� � n�V�K���. [14]

Now, let us make explicit the assumptions about knowledge of
n. Assume that at period 2, the parent knows the actual
realization of n; but that in period 1, the parent does not
(although the parent does know the distribution of n). In period
2, then, we optimize on c2, given K�, which has been determined
by the choice of c1, and given n. This choice determines a
second-period payoff (the expression in curly brackets) as a
function of n and c1. Take the expectation of this payoff with
respect to n; we then have 2 functions of c1, whose weighted sum
is to be maximized.

To simplify the later discussion, it is convenient to state a
general lemma about functions of this kind, which we will use
twice in the following analysis.

Lemma. Let �(c) � [c1��/(1 � �)] 
 P[(K � c)1��/(1 � �)], where
P is a positive constant. Then �(c) is maximized at c � [Q/(1 

Q)]K, where Q is defined by Q�� � P, and the maximum value of
� is P(1 
 Q)�K1��/(1 � �).

The result follows straightforwardly from setting the derivative
�� equal to zero (note that � is a concave function) and then
substituting.

We now proceed as before. Conjecture that

V�K� � AK1��/�1 � ��,

for some A, then show that we can find a value of A such that Eq.
14 is satisfied.

Consider first the second-stage optimization, where n is
known and c2 is chosen.

Note that V(K�) � An� � 1 (K� � c2)1 � �/(1 � �), so that, from
Eq. 14, c2 maximizes,

�2�c2, n� � �c2
1��/�1 � ��� � P2�K� � c2�

1��/�1 � ��,

where P2 � A�n�. Define B by

B�� � A� [15]

Then, if we define Q2 in terms of P2 as in the Lemma, we see that,

Q2 � B/n. [16]

Then,

c2 � BK�/�B � n�, [17]

and

K� � K�/�B � n�. [18]

From the second part of the Lemma, we find that,

maxc2
�2�c2, n� � �A�n���1 � �B /n����K��1��/�1 � ��

� A��B � n���K��1��/�1 � �� . [19]

Now we proceed to the determination of c1. Because n is
unknown at time 1, we substitute the expected value of Eq. 19
for the expression in curly brackets in Eq. 14.

Let

�1�c1� � �c1
1��/�1 � ��� � �Enmax�2�c2, n� .

Substitute from Eq. 19 and then substitute for K� from Eq. 12.

�1�c1� � �c1
1��/�1 � ��� � P1��K � c1�

1��/�1 � ���,

where

P1 � A���1��E��B � n���.

Define C by

C�� � A���1��. [20]

For any positive random variable, X, we can define the �-mean
of X by


��X� � �E�X���1/�.

Then, if we define Q1 in terms of P1 as in the Lemma, we see that,

Q1 � C/
��B � n�.

Hence, by the Lemma,

c1 � �C/�
��B � n� � C��K.

and

max�1�c1� � P1�1 � Q1�
�K1��/�1 � ��

� A���1���
��B � n� � C��K1��/�1 � �� .

Because this has to equal V(K) by the Bellman equation, we
conclude that

���1���
��B � n� � C�� � 1. [21]

We can express C in terms of B and so reduce Eq. 21 to an
equation in one unknown. Divide Eq. 20 by Eq. 15 and then raise
both sides to the power, �1/�:

C � ���1����1/�B. [22]

Then Eq. 21 becomes, after some simplification,

�1/�����1���1/�
��B � n� � B� � 1. [23]

The left-hand side is a strictly increasing function of B and
approaches infinity as B approaches infinity. Hence, Eq. 23 has
a unique solution if the left-hand side is �1 at B � 0, i.e., if

����1���1/�
��n) � 1. [24]

From Eqs. 21 and 22 and the formula for c1, we can write

c1 � ����1���1/�CK � �1/�BK.

We can then derive the law of motion of the capital stock of each
individual by substituting into Eq. 12 and then Eq. 18.

K� � ���1 � �1/�B�/�B � n��K. [25]

This is the initial capital of each child when the parent’s capital
is K. Once again, it leads to the conclusion that the asymptotic
distribution of wealth is log-normal.

Discussion
It is not surprising that fundamental problems in economics have
strong analogies to similar problems in evolutionary ecology. In
both realms, individuals must trade off current and future
discounted benefits, to themselves and to others. Evolution
favors those strategies that increase payoffs, and the solutions
evolution favors broadly should be represented in the ways
individuals make decisions, for example about current consump-
tion versus savings for the future and legacies for offspring.
Fundamental in both arenas is how uncertainty affects decisions,
and when it selects for higher discounting of future benefits. We
explore this issue through a generalization of standard consump-
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tion models to uncertain environments, providing a framework
that we hope will serve as a springboard for further studies.

The general problem addressed in this article is how an
individual should allocate resources to maximize her expected
total welfare, where the decision must balance current consump-
tion and future consumption by one’s offspring, whose own
welfare is discounted relative to the parent’s. What is unique
about our model is that the number of offspring one has is not
fixed but is a random variable drawn from a distribution. We
begin with the simplest case, in which individuals have full
knowledge of how many offspring they will have before making
the consumption decision, and then extend that result to the case
when decisions are made twice in one’s lifetime, the first with no
knowledge. Because of the specific form assumed for the utility
function, we are able to derive an explicit analytical solution to
the problem (using Bellman’s equation). Depending on the

specific form of the utility function, the uncertainty introduced
by the randomness in number of offspring may either increase or
decrease current consumption. Finally, implementing the opti-
mal solution leads to a log-normal distribution of wealth, with a
variance that increases with time proportionally to the weighted
variance in the offspring distribution.
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13706 � www.pnas.org�cgi�doi�10.1073�pnas.0905613106 Arrow and Levin


