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Anthrax, a potentially lethal disease of animals and humans, is
caused by the Gram-positive spore-forming bacterium Bacillus
anthracis. The outermost exosporium layer of B. anthracis spores
contains an external hair-like nap formed by the glycoprotein BclA.
Recognition of BclA by the integrin Mac-1 promotes spore uptake
by professional phagocytes, resulting in the carriage of spores to
sites of spore germination and bacterial growth in distant lym-
phoid organs. We show that CD14 binds to rhamnose residues of
BclA and acts as a coreceptor for spore binding by Mac-1. In this
process, CD14 induces signals involving TLR2 and PI3k that pro-
mote inside-out activation of Mac-1, thereby enhancing spore
internalization by macrophages. As observed with mice lacking
Mac-1, CD14�/� mice are also more resistant than wild-type mice
to infection by B. anthracis spores. Additionally, after B. anthracis
spore challenge of CD14�/� mice, interference with the CD14-
mediated signaling pathways results in increased mortality. Our
results show that the binding and uptake of B. anthracis spores by
phagocytic cells is a dynamic process and involves multiple recep-
tors and signaling pathways.

BcLA � anthrax � exosporium � rhamnose receptor � signaling pathways

Anthrax is caused by exposure of a human or animal host to
spores of the soil bacterium Bacillus anthracis. The outer-

most layer of B. anthracis spores is called the exosporium and is
the first point of contact with the cells of the host immune
system. The exosporium is composed of a basal layer, which
contains many different proteins, and an external hair-like nap
that is formed by the collagen-like glycoprotein BclA (1). This
protein includes multiple copies of two O-linked oligosaccha-
rides—a pentasaccharide and trisaccharide with the sequenes
GalNAc-(rhamnose)3-anthrose and GalNAc-rhamnose-3-O-
methyl-rhamnose, respectively (2). We showed that BclA is
recognized by the integrin Mac-1 and that this interaction
mediates the internalization of B. anthracis spores into profes-
sional phagocytes (3). However, it is not known whether Mac-1
acts alone or in cooperation with other receptors during this
process.

Because the avidity of Mac-1 in resting cells for its ligands is
generally low, Mac-1 must be activated to mediate stable and
functional binding to its ligand (4–6). Receptors of the innate
immune system have been selected for their ability to recognize
molecules present on microorganisms but not on host cells (7).
These target molecules are typically conserved among major
groups of microorganisms and are often required for survival of
the microorganism in its environmental niche. A well charac-
terized example of such a target molecule is lipopolysaccharide
(LPS), the principal endotoxin of Gram-negative bacteria (8).
The CD14 molecule expressed on monocytes and macrophages
acts as a high-affinity receptor for LPS (9), and the binding of
LPS results in cellular activation and the induction of an
inflammatory response. The interactions involving LPS and
CD14 are pivotal in the innate response to a Gram-negative
bacterial infection. However, recent in vitro experiments showed
that CD14 not only binds to LPS but also to components of the
Gram-positive bacterial cell wall (10–16). Of particular interest
is the lipopolysaccharide binding protein (LBP)-dependent bind-

ing of CD14 to fragments of Gram-positive cell walls and
lipoteichoic acid (LTA) derived from Bacillus subtilis (14, 17).

In this study, we show that CD14 is also involved in the binding
and uptake of B. anthracis spores. Specifically, CD14 binds to
rhamnose (or possibly 3-O-methyl-rhamnose) residues in the
oligosaccharides of BclA and induces an inside-out signaling
pathway involving TLR2 and PI3K that ultimately leads to
enhanced Mac-1-dependent spore internalization. Evidently, the
major surface-exposed protein of the B. anthracis exosporium
contains two ligands, one of which indirectly activates Mac-1,
whereas the other binds directly to Mac-1. Both activities appear
to play important roles in B. anthracis spore-host macrophage
interactions.

Results
Pull-Down Analysis Reveals B. anthracis Spore-Interaction with CD14.
We demonstrated that Mac-1 is required for efficient binding
and internalization of B. anthracis spores by phagocytic cells (3).
However, whether Mac-1 acts independently or in concert with
other receptors is not known. We searched for possible Mac-1-
associated macrophage receptors by labeling RAW 264.7 cells
with a biotinylated cross-linking agent, solubilizing the surface
proteins, and screening for those that bound to wt spores. In
addition to CD11b and CD18 (3), another major membrane
protein with apparent molecular mass of 55 kDa was detected
(Fig. 1A). Mass spectrometric analysis and western blot using an
anti-CD14 monoclonal antibody identified the protein as CD14.
The detection of the same protein in anti-CD14 antibody-pull-
down assays with bone marrow-derived macrophages (BMDM)
from wt C57BL/6 but not from CD14�/� mice further confirmed
this identity (Fig. 1 A).

Rhamnose Residues from B. anthracis Exosporium Binds to CD14.
Although the cross-linking analysis in our previous study (3)
identified CD11b/CD18 as the only interacting proteins for B.
anthracis spores, the pull-down procedure described here addi-
tionally identified CD14. The cross-linking used for the identi-
fication of the spore receptor Mac-1 involves amine group-
specific binding (to detect protein–protein interactions).
Because CD14 has been shown to bind polysaccharides formed
by rhamnose polymers (14), we reasoned that the biotinylation
method would also pick up receptors that bind polysaccharides.
Taking these observations together, we hypothesized that exo-
sporium carbohydrates were involved in binding of spores to
CD14. Two mutants of B. anthracis (Sterne) are available that
produce spores with altered glycosylation of BclA. The �rmlD
(18) and �degT (19) strains produce spores with only GalNAc or
GalNAc-(rhamnose)3 attached to BclA, respectively. These mu-
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tants together with �bclA (3, 18) and wt spores were incubated
for 1 h at 4 °C with different concentrations of recombinant
biotinylated CD14 followed by streptavidin-APC. CD14 bound
specifically to wt and �degT but not to �bclA and �rmlD spores
(Fig. 1B). These results suggested that CD14 bound to rhamnose
residues associated with BclA.

To further analyze the mechanism of spore binding to mem-
brane-associated CD14, CHO-Neo cells (negative for CD14)
labeled with cell tracker red and CD14 stable-transfected CHO
cells (CHO-CD14) labeled with cell tracker green were cocul-
tured and infected with Alexa Fluor 647-labeled spores at
different multiplicities of infection (MOI). The spore association
with each independently fluorochrome-labeled CHO-cell pop-
ulation was determined by flow cytometry (Fig. 2A). The
cell-associated spores associated with each cell line remain
extracellular because spore internalization in the absence of
Mac-1 is negligible (3). There was low binding of Alexa Fluor
647-labeled wt spores to CHO-Neo cells. However, in the
presence of CD14 (CHO-CD14) there is a dose-dependent
binding of wt spores (Fig. 2B Left). In contrast to the CD14-
dependent binding of wt spores, �rmlD spores showed very low
specific binding (Fig. 2B Right). The CD14-dependence of
binding of wt and �degT spores was confirmed by inhibition with
the anti-CD14 MAb (clone Sa2–8, eBioscience) but not by the
isotype-matched control antibody (Fig. 2C).

Spore Binding to CD14 Promotes Mac-1-Dependent Spore Phagocy-
tocis. To examine whether CD14 participates in the phagocytosis
of spores, we used the human monocytic leukemia cell line,
THP-1, stably transfected with either CD14 (THP-1-CD14) or
vector alone (THP-1-rsv). Both THP-1-CD14 and THP-1-rsv
cell lines express similar levels of Mac-1 whereas only THP-1-
CD14 expresses CD14. THP-1-CD14 cells were exposed to
Alexa Fluor 488-labeled spores for 30 min and spore phagocy-
tosis was measured by flow cytometry after treatment with
trypsin-EDTA to detach noningested bacteria (3). Transfection
of THP-1 cells with CD14 (THP-1-CD14) enhanced phagocy-
tosis of wt spores by 60–80% (Fig. 3A) compared with non-
transfected cells; however, no enhancement was observed with
�rmlD, spore mutants that lack rhamnose (Fig. 3B). These
results confirm the role of exosporium-associated rhamnose as
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Fig. 1. CD14 is a macrophase receptor for rhamnose containing BclA. (A)
Identification of CD14 as a macrophage receptor for B. anthracis spores. (a)
Biotin-labeled spore-bound proteins, derived from lysed Raw 264.7 cells, were
resolved on SDS/PAGE, and transferred to PVDF membranes. Proteins were
detected by Western blot with HRP-streptavidin A, Coomasie blue staining (B)
and anti-CD14 antibody (C). (D) BMDM from C57BL/6 or CD14�/� mice were
surface biotinylated and biotinylated proteins were pull down with spores.
Spore bound proteins were detected by Western blot with anti-CD14 anti-
body. (B) Rhamnose residues associated with spore exosporium bind to CD14.
Wt, �rmlD, �degT and �bclA spores were incubated with different concen-
trations of biotinylated CD14. The binding of CD14 to spores was determined
by flow cytometry after staining with streptavidin-APC.
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Fig. 2. Binding of membrane bound-CD14 to B. anthracis spores. CHO-Neo
cells (negative for CD14) labeled with cell tracker red and CD14-CHO cells
labeled with cell tracker green, were cocultured and infected with Alexa
647-labeled spores. The spore association with each cell population was
determined by flow cytometry. (A) Representative histograms of spore distri-
bution between CD14- and CD14� CHO cells. The cell-associated spores rep-
resent extracellular spores because spore internalization is negligible in the
absence of Mac-1. (B) Dose-dependent binding of wt spores (Left), and �rmlD
spores (Right). The rhamnose/CD14 interaction is inhibited by the anti-CD14
MAb but not by the isotype-matched control Ab (C). The binding of �degT
spores to CD14� cells and the absence of binding of �rmlD spores to CHO cells
independently of CD14 status further confirm that exosporium-associated
rhamnose acts as CD14 ligand.
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a CD14 ligand. As described in ref. 3, �bclA spores showed
enhanced internalization irrespective of the presence of CD14 or
Mac-1 (Fig. 3C).

To investigate the role of CD14 on uptake of B. anthracis
spores in vivo, we compared the internalization of �bclA and
�rmlD mutant spores by cells in the peritoneal cavity of C57BL/6
and CD14�/� mice after IP injection. Internalization of wt spores
by Mac-1� cells in CD14�/� mice in vivo was significantly
reduced (�50% reduction, P � 0.05) compared with Mac-1�

cells in C57BL/6 mice 1 h after injection. The internalization of
�rmlD spores, mutants lacking rhamnose, was also reduced by
�60% (P � 0.05) and was independent of the presence of CD14.
As described in ref. 3, �bclA spores showed enhanced internal-
ization (2-fold, P � 0.05) compared with wt spores, independent
of the presence of CD14 and Mac-1 (Fig. 3 D and E).

Because we showed that phagocytosis of spores is inhibited in
the absence of Mac-1 (3), these data suggest that both Mac-1 and
CD14 are involved in the uptake of spores, and that CD14
binding of spores may subsequently trigger events leading to an
increase in Mac-1 dependent spore internalization.

CD14 Promotes Inside-Out Activation of Mac-1. The monoclonal
antibody CBRM1/5 recognizes an activated neo-epitope on
CD11b, the �-chain subunit of Mac-1, and increased binding of
mAb CBRM1/5 to Mac-1 is considered to reflect the potential
for increased avidity of Mac-1 for its ligands (20, 21). Flow
cytometric analysis showed that treatment of BMDM from
C57BL/6 mice with wt spores induced a 14-fold increase in
CBRM1/5 binding (Fig. 4 Top). Cells infected with �bclA and
�rmlD spores induced only a 1.2-fold increase in CBRM1/5
binding. When the same experiment was performed using
BMDM from CD14�/� mice, wt spore-induced surface staining
by CBRM1/5 mAb was reduced by 93% compared with m�s
from C57BL/6 mice and no differences were observed between
�bclA and �rmlD strains (Fig. 4 Bottom). Taken together, these
data show that rhamnose residues on the BclA protein enhance
spore uptake by promoting inside-out activation of Mac-1
through a pathway that appears to be triggered by CD14.

CD14-Dependent Mac-1 Phagocytosis of Spores Involves PI3K. We
next sought to identify intracellular pathways that are involved
in CD14-induced Mac-1 activation. In light of the important role
played by PI3K in integrin activation (22, 23) and regulation of
phagocytosis (24), we examined the involvement of PI3K in
Mac-1 inside-out activation by determining the effect of the
PI3K inhibitors, wortmannin (WM) (25) and LY294002 (LY) in
Mac-1 activation (26). We found that the ability of spores to
induce the CBRM1/5 epitope was reduced when the cells were
pretreated with 250 nM WM or 50 �M LY (Fig. 5A). Both WM
and LY showed a dose-dependent inhibition of spore-induced
levels of the CBRM1/5 epitope (P � 0.05). In contrast, the
vehicle control had no effect (Fig. 5B). Staining of spore-
stimulated cells with Alexa Fluor 488-labeled M1/70 mAb, which
detects a nonactivation dependent epitope, showed that PI3K
inhibitors did not influence total Mac-1 surface expression.
Interference with the PI3-kinase pathway that blocks the induc-
tion of the CBRM1/5 neoepitope inhibited the cell internaliza-
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Fig. 3. Binding to CD14 correlates with spore internalization. THP-1 cells stably transfected with either CD14 or vector alone were exposed to wt, �rmlD or �bclA
Alexa 488-spores. Proportions of cells bearing spores in the wt (A) and CD14�/� (B) populations were determined by flow cytometry. (C) Internalization of
fluorescent spores by peritoneal macrophages. Alexa Fluor 555-labeled spores were injected (107 spores) IP in C57BL/6 or CD14�/� mice. After 1 h, peritoneal
macrophages were recovered and stained with Alexa Fluor 488 anti-BclA (EF12, for wt and �rmlD spores) (18) or Alexa Fluor 488 anti-BxpB (DH4–1 for �bclA
spores) antibodies (18) to detect spores that were not internalized and Alexa Fluor 647 anti-Mac-1 antibodies. The cells were attached to glass slides, using a
cytospin centrifuge. Merge, showing one spore not internalized in the field (green). (D) Quantitation of the number of fluorescent spores internalized by Mac-1�

peritoneal cells in C57BL/6 or CD14�/� mice determined by microscopic analysis as we previously described (3).
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Fig. 4. Induction of a Mac-1 activation-specific neoepitope involves CD14.
BMDM from C57BL/6 or CD14�/� mice were exposed to wt, �rmlD or �bclA
spores and then stained with the anti-Mac-1 mAb (clone CBRM1/5) directed to
an activation epitope or an isotype-matched mAb. Samples were then washed
and analyzed by flow cytometry. Tinted histograms correspond to cells stained
with irrelevant mAb and blank histograms correspond to cells stained with
specific mAb. Each of such histograms in this figure and in Fig. 5 and Fig. 5C
have been scaled to 100% maximum in Flowjo.
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tion of spores (Fig. 5B). Therefore, induction by spores of the
CBRM1/5 neo-epitope on CD11b positively regulates Mac-1
dependent cell binding of the spores. Taken together, these
findings suggest that PI3K activation plays a central role in
CD14- dependent Mac-1 mediated phagocytosis of spores.

CD14-Dependent Mac-1 Activation Involves TLR2. As previously
described, PI3K-activated TLR2 functions as a coreceptor for
CD14 (21, 27, 28). Based on a recent report that B. anthracis
spore-derived components are recognized by TLR2 (29), we
speculated that TLRs may function as a link between CD14 and
PI3K induced Mac-1 inside-out activation.

We evaluated the potential role of TLRs in regulating CD14-
dependent Mac-1 activation using BMDM from TLR2�/�,
TLR4�/� and the double knock out TLR-2,4�/� mice. As shown
in Fig. 5C, treatment of TLR4�/� cells with wt spores resulted in
a similar degree of Mac-1 activation compared with C57BL/6
BMDM. However, exposure of TLR2�/� or TLR-2,4�/� cells to
wt spores led to only a modest degree of inside-out activation.
Thus, it appears that TLR2 is a key signaling receptor for Mac-1
activation by spores and that CD14 may contribute to this
pathway.

Survival of CD14�/� Mice After Challenge with B. anthracis. To
determine whether the absence of CD14 affects the virulence of
B. anthracis spores in vivo, groups of C57BL/6, CD14�/�, or
CD11b�/� mice were injected s.c. (SC) with wt spores and
monitored twice daily for morbidity and survival. Mice from the
C57BL/6 group began showing signs of edema as early as 24 h
after spore administration and most succumbed to infection
between days 2–4. In contrast, by day 10, 70% of CD14�/� and
CD11b�/� mice survived without symptoms of disease (P �

0.1225 and 0.0432, Log-rank test) (Fig. 6). When C57BL/6 or
CD11b�/� mice were pretreated with wortmannin, the differ-
ence in survival was not statistically significant (P � 0.6768 and
0.9688, Log-rank test). However, CD14�/� mice pretreated with
wortmannin were more susceptible to wt spores (P � 0.0017,
Log-rank test) and all mice had succumbed to infection between
days 3–4 (Fig. 6). Based on these observations, the CD14/Mac-1
spore-interaction appears to play a major role in B. anthracis
pathogenesis at least during the early stages of infection. Our
data are also consistent with the hypothesis that the PI3K
pathway serves as a compensatory or feedback mechanism to
negatively regulate pro-inflammatory responses.

Discussion
The invasion of target cells is critical for the subsequent growth
and intracellular survival of B. anthracis. We previously dem-
onstrated that binding and internalization of B. anthracis spores
to phagocytic cells occurs by a Mac-1 dependent pathway (3).
The results presented in this study suggest that regulation of B.
anthracis spores uptake by macrophages is a dynamic process
involving multiple receptors (Fig. 7). In this model, binding of
rhamnose to CD14 triggers signaling through TLR-2 leading to
activation of PI3K and converting Mac-1 into an active receptor
for B. anthracis spores. Mac-1-dependent spore ingestion also
proceeds independently of CD14, but at suboptimal levels.

B. anthracis binding to CD14 through rhamnose residues on
the BclA protein is an important adjunct signaling event in the
internalization of B. anthracis spores by phagocytic cells. Spore
uptake can occur through Mac-1 alone, but optimal uptake
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Fig. 5. CD14-dependent Mac-1 spore phagocytosis involves PI3K and TLR2.
(A) BMDM from C57BL/6 mice were treated with PI3K inhibitors, infected with
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requires the presence of both CD14 and Mac-1. The dual
participation of both CD14 and Mac-1 in B. anthracis spores
uptake is not limited to passive, additive roles for each of these
receptors. CD14 by itself does not function as a phagocytic
receptor for spores. Indeed, CHO-CD14 cells (Mac-1-/CD14�)
ingested minimal amounts of wt spores.

An important question raised by these observations relates
to the mechanism of communication between CD14 and
Mac-1. PI3K has been shown to play a direct role in a
regulating multiple cell functions including adhesion (30),
phagocytosis (31, 32), phagosome biogenesis (33) and modu-
lation of the activities of �2 integrin receptors (22, 23). These
observations made PI3K a potential candidate for regulating
cross-talk between CD14 and Mac-1 in the binding and uptake
of B. anthracis spores. Indeed, the PI3K inhibitors wortmannin
and LY294002 both attenuated phagocytosis of B. anthracis
spores. Additionally, rhamnose residues on BclA protein in-
duced a PI3K-dependent expression of the activation epitope
on Mac-1 that ref lects a potential increase in the avidity of
spore-binding by Mac-1.

Because CD14 by itself is unable to initiate cell signaling
responsible for changes in phagocytosis or other cell functions,
TLR2 and TLR4 have been implicated as coreceptors for
CD14, thus playing major roles in CD14-mediated cell re-
sponses (34, 35). Indeed, TLR4 plays a key role in recognition
of Gram-negative bacteria (35), whereas TLR2 has a similar
function in responses to components of Gram-positive bacteria
(36–38). Furthermore, it has been previously demonstrated
that recognition of B. anthracis spores occurs through TLR2
(29). These considerations prompted us to examine the hy-
pothesis that PI3K-dependent CD14/Mac-1 uptake of B. an-
thracis spores involves TLR2-dependent signaling. Direct ev-
idence for a TLR2-requirement in CD14-dependent Mac-1
activation was demonstrated by using BMDM from TLR2�/�

mice. Similar to CD14�/� BMDM, the induction of the
CBRM1/5 Mac-1 epitope by B. anthracis spores was impaired
on TLR2�/� and TLR2�/�/TLR4�/� but not on TLR4�/�

macrophages. These results suggest that TLR2-dependent

CD14 signaling is involved in the CD14-associated Mac-1
activation in response to B. anthracis.

Strikingly CD14�/�, similar to CD11b�/� mice, showed im-
proved survival after B. anthracis spore infection, and inhibition
of PI3K with WM abolished this protective effect.

Because PI3K is required for CD14-dependent activation of
Mac-1, our model predicts that treatment with wortmannin
would protect wild-type mice from spore challenge, and that
inhibition of PI3K would have no effect in either a CD11�/� or
CD14�/� mice. There are many possible explanations for the
discrepancies between the in vitro and in vivo data. 1) There are
substantial differences among different cell types regarding the
anti-inflammatory role of the PI3K pathway. It has been re-
ported that this pathway either acts as a positive or negative
regulator of NF-�B activation and cytokine production, depend-
ing on the nature of the stimulus and the cell type. Guha and
Mackman have reported that the PI3K-Akt pathway imposes a
braking mechanism to limit the expression of proinflammatory
mediators in LPS-treated monocytes (39). Fukao and Koyasu
have reviewed the role of PI3K in the regulation of inflammatory
responses and concluded that PI3K may act as a negative
feedback regulator crucial for the maintenance and integrity of
the immune system (40); 2) Distinct members of the PI3K family
are activated in the immune system according to the type of cell
or receptor responsive to individual ligands. Although the PI3Ks
have particularly important functions in the immune system, it is
difficult to evaluate the role of individual PI3Ks in cellular
immune responses due to a lack of specific inhibitors. 3) At
present, the activation mechanisms and the roles of different
classes of PI3Ks in the immune system remain mostly unknown
and PI3k knockout gene studies will help to address the role of
PI3K in the innate immune recognition system of B. anthracis
spores by phagocytic cells.

Materials and Methods
Spores and Cells. Preparation and labeling of spores, culture of CHO, THP-1
cells, and BMDM have been described in ref. 3.

Cell Surface Biotinylation and Spore Pull-Down. Raw 264.7 cells were cell
surface labeled by using EZ-Link Sulfo-NHS-LC-Biotin according to the instruc-
tions of the manufacturer (Pierce). After lysis, biotin-labeled proteins were
captured by incubating the lysate with B. anthracis spores (MOI of 25:1) at 4 °C
for 45 min. Spore-bound proteins were released with sample buffer and
analyzed by western blot with HRP-conjugated streptavidin or with CD14
specific antibody (clone Sa2–8). For mass-spectrometric analysis, Coomassie
blue-stained bands were excised, digested in trypsin, and tryptic fragments
were identified by tandem mass spectrometry (LTQ-FT; ThermoElectron).
Spore binding and internalization were determined as described in ref. 3.
Fluorescence microscopy and phagocytic index determination were per-
formed as we described in ref. 3.

Mac-1 Activation Assays. Mac-1 activation was monitored by using the
CBRM1/5 mAb. Cells were incubated at 37 °C with spores and binding of the
CBRM1/5 mAb (10 �g/mL) was detected by using standard flow-cytometry
procedures.

Statistical Analysis. Data were evaluated by using the InStat program (Graph-
Pad). Where appropriate, either 1-way ANOVA or t tests were performed.
Statistical differences were considered significant at the level of P � 0.05.
Experiments were performed by using triplicate samples and were performed
twice or more to verify the results.
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