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The detailed characterization of synaptic plasticity has led to the
replacement of simple Hebbian rules by more complex rules depend-
ing on the order of presynaptic and postsynaptic action potentials.
Here, we describe a mechanism endowing a plasticity rule with
additional computational complexity—a dependence on the pattern
of presynaptic action potentials. The classical Hebbian rule is based on
detection of conjunctive presynaptic and postsynaptic activity by
postsynaptic NMDA receptors, but there is also accumulating evi-
dence for the existence of presynaptic NMDA receptors in several
brain structures. Here, we examine the role of presynaptic NMDA
receptors in defining the temporal structure of the plasticity rule
governing induction of long-term depression (LTD) at the cerebellar
parallel fiber-Purkinje cell synapse. We show that multiple presynap-
tic action potentials at frequencies between 40 Hz and 1 kHz are
necessary for LTD induction. We characterize the subtype, kinetics,
and role of presynaptic NMDA receptors involved in the induction of
LTD, showing how the kinetics of the NR2A subunits expressed by
parallel fibers implement a high-pass filter plasticity rule that will
selectively attenuate synapses undergoing high-frequency bursts of
activity. Depending on the type of NMDA receptor subunit expressed,
high-pass filters of different corner frequencies could be imple-
mented at other synapses expressing NMDA autoreceptors.
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Computation in the nervous system emerges from signal inte-
gration. This may be achieved at global, network, cellular,

synaptic, and finally molecular levels. Synapses may undergo long-
term increases or decreases in synaptic strength depending on
differences in the patterns of neural activity. How synaptic elements
detect those patterns and translate them into synaptic modifications
has been a central issue in neuroscience research. Glutamate
receptors of the NMDA type are often seen as molecular coinci-
dence detectors, a role arising from their biophysical properties. In
addition to gating by glutamate, conduction by NMDA channels
requires membrane depolarization to relieve the voltage-dependent
Mg block (1, 2). NMDA receptors (NMDARs) located on the
postsynaptic elements translate these biophysical requirements into
computational coincidence between presynaptic activity, releasing
the agonist and postsynaptic depolarization allowing Mg unblock.
In these conditions, NMDAR activation is a key step in the
induction of several forms of synaptic plasticity.

The study of the role of NMDARs in plasticity has concentrated
on postsynaptic NMDARs. However, accumulating evidence sug-
gests the existence of NMDAR located on presynaptic elements in
cortex, spinal cord, hippocampus, and cerebellum. Presynaptic
NMDARs may be present at both glutamatergic (3–9) and
GABAergic terminals (10–13). The activation of presynaptic
NMDAR has been shown to be required for long-term plasticity in
diverse structures (8, 9, 12, 14; for a review, see 15). However, the
role of presynaptic NMDARs in defining plasticity rules remains
unclear.

We have shown that NMDARs are required for long-term
depression (LTD) of the AMPA-receptor-mediated glutamatergic
synaptic transmission between granule cells (GC) and Purkinje cells
(PC) in the cerebellar cortex (14). Cerebellar LTD is produced
when parallel fiber (PF, granule cell axon) activity is coupled with

climbing fiber activity (16). The molecular events associated with
LTD induction and expression have been extensively studied. LTD
expression has been shown to be postsynaptic, being associated with
a reduction in AMPA receptor number (17). Triggering of AMPA
receptor endocytosis depends on an elaborate balance between
phosphorylation and dephosphorylation of receptors and receptor-
associated proteins (17, 18). Two main signaling pathways modify
this balance: first, Ca rises in the PC elicited by climbing fiber
activity (19) and, second, transcellular NO signaling after PF
activity (20–24). We have proposed that NO production arises from
the activation of NMDARs located on PFs (see Discussion) (14, 24).
LTD induction depends on high-frequency repetitive activity of
PFs. By combining immunohistochemistry, pharmacological stud-
ies of LTD induction in cerebellar slices and recordings from
recombinant NMDARs expressed in heterologous cells, we show
that the frequency dependence of LTD arises from the activation
of NMDARs on PFs. We demonstrate that the NMDARs involved
in LTD contain the NR2A subunit. The deactivation kinetics of
NR2A-containing NMDARs determines the high frequencies of
activity required for LTD induction. The kinetic properties of
presynaptic NMDARs therefore explain the precise activity pat-
terns selected by the plasticity induction rule.

Results
High-Frequency PF Activity Is Required for LTD Induction. LTD of
PF-PC synapses was induced by a protocol pairing PC depolariza-
tion with a doublet of PF stimulations (at 1 Hz for 2 min) (Fig. 1A)
(14). A protocol with 5-ms interval between the PF stimuli resulted
in a robust LTD (EPSC depression 30 min after pairing: 34.7 �
6.2%; n � 9, P � 0.005). In contrast, an induction protocol
consisting of single PF stimulations failed to induce LTD (�1.8 �
5.8%, n � 6, P � 1) (Fig. 1B). Thus, synapses that undergo repetitive
activity are selectively depressed.

In vivo, PFs are known to fire both tonically and in bursts of
diverse frequencies up to at least 1 kHz (25, 26). We studied the
magnitude of LTD over a range of physiologically relevant PF
frequencies (Fig. 1C). Of the intervals tested, 1 and 5 ms were the
most effective for depressing the synapses (32.3 � 5.7%, n � 8, P �
0.01 and 34.7 � 6.2%, n � 9, P � 0.005 of the control value,
respectively). A 15-ms interval was still able to induce LTD (30.1 �
8.6%, n � 5, P � 0.06). However, a 30-ms interval was only effective
in a few cells (13.4 � 11.2%, n � 6, P � 0.69). A 60-ms interval was
ineffective for inducing LTD (6.6 � 4.2%, n � 4, P � 0.63). Similar
results were obtained with protocols intended to be closer to
physiological conditions, i.e., by replacing the PC depolarization by
climbing fiber stimulation (Fig. S1), or when more sparse PF
stimulation was carried out by stimulating in the granule cell layer
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(GCL) (Fig. 1E). These results show that the induction of depres-
sion depends on the frequency of PF activity.

LTD Induction Requires NMDA Receptor Activation. What determines
the PF frequencies able to induce LTD? Because PF activity leads
to glutamate release, we investigated whether glutamate receptor
activation was involved in selection of activity patterns. At PF-PC
synapses, two different types of receptors to glutamate have been
reported to play a role in LTD induction: mGluR1 receptors of PCs
(27–30) and presynaptic NMDARs of PFs (14).

Although recent studies have shown that PCs of adult mice
express functional NMDARs at synapses with climbing fibers (31,
32), functional NMDARs are not present after postnatal day 7 in
PCs of juvenile rats (33, 34) (Fig. S2). However, NMDA antagonists
prevent LTD induction (14, 24). In previous work, we reported that
the activation of presynaptic NMDA receptors present at PF-PC
synapses is a permissive condition for LTD induction (14). In Fig.
1D, we show that the 5-ms interval protocol failed to induce LTD
in the presence of the NMDAR antagonist D-APV (5.1 � 5.7%,
n � 5, P � 1) (Fig. S3). When a 1-ms interval protocol was used,
D-APV also prevented LTD induction (�1.2 � 7.5%, n � 4, P �
0.62). Similar results were obtained when LTD is induced by
alternative induction protocols, that is, by pairing CF and PF
activities (Fig. S1) or when the PF input is sparse by stimulating the
GCL (Fig. 1E). Thus, we confirm that NMDAR activation is an
absolute requirement for LTD induction. We then set out to test
whether NMDARs are also responsible for the dependence of LTD
induction on repetitive, high-frequency activity in PFs.

It could be argued that the need for repetitive activity for LTD
induction arises from metabotropic mGluR1 receptor activation. PC
mGluR1 activation is known to require repetitive activity of PFs (35,
36), probably because of the perisynaptic location of these receptors (37,
38). Pharmacological and transgenic approaches have shown that
mGluR1 receptor activation can contribute to the PC calcium increase
necessary forLTDinduction(17,28,30,36,39).However,weshowhere
that LTD can still be induced in the presence of the noncompetitive
selective antagonist of mGluR1 receptors, CPCCOEt (Fig. 1D) (25.5 �
4.0%, n � 6, P � 0.04, similarly to control: P � 0.35, Mann–Whitney
U test, see Fig. S3). This may be due to a bypass of the mGluR1
requirement by our experimental pairing protocol (i.e., a robust PC
depolarization supplying sufficient Ca via voltage-dependent Ca chan-
nels), as shown by others (19, 22, 40). Consistent with this, LTD induced
in a sparse set of synapses by placing the stimulation electrode in the
GCL is of somehow lesser amplitude (Fig. 1E). In these conditions,
glutamate buildup after spillover is unlikely (41–44). Therefore, LTD
induction depends on NMDAR activation but not on that of mGluRs.

An NR2A-Selective Antagonist Prevents LTD Induction. Because of
their slow gating kinetics, NMDA autoreceptors would not be
expected to conduct effectively after a single action potential.
Instead, repolarization of the PF would cause voltage-dependent
Mg block of NMDARs. Conduction of Ca by NMDA autoreceptors
should therefore require the relief of Mg block by a second action
potential within an interval defined by the residence time of
glutamate on the NMDA receptor. This hypothesized mechanism
therefore predicts a precise correspondence between the kinetics of
glutamate unbinding from the NMDARs and the action potential
frequencies that are effective in inducing LTD.

To test this hypothesis, we needed to know the exact deactivation

required for LTD induction. LTD is prevented by D-APV but not by CPCCOEt.
Depression induced by pairing with double PF stimuli at 5-ms and at 1-ms
intervals, in control conditions (white; n � 9, n � 8, respectively), in the presence
of 200 �M D-APV (black; n � 5, n � 4, respectively) or in the presence of 50 �M
CPCCOEt (gray; n � 6). (E) LTD induced upon GCL stimulation is still frequency and
NMDAR dependent (Ctrl n � 8, APV n �4, 60 ms n � 4). For D and E, *, P � 0.02;
Mann–Whitney U test.
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Fig. 1. LTD induction requires high-frequency PF activity and NMDAR activa-
tion. (A and B) LTD was induced only when PFs fired at least twice. (A) LTD
induction protocol consisted of pairing (at 1 Hz for 2 min) a PC depolarization
withadoublePFstimulation.ThesecondPFstimulus (solid line)wasappliedatthe
middle of the PC depolarization whereas the position of the first (dashed line)
varied. (Bi) Time course of the normalized EPSC amplitude in experiments where
pairing was done with single (black; n � 6) or double PF stimuli at a 5-ms interval
(white; n � 9). (Bii) Representative recordings from the experiments in Bi. The PF
stimulation during the pairing protocol consisted of single PF stimuli (Upper) or
double PF stimuli at a 5-ms interval (Lower). Traces are averages of 10 sweeps,
beforepairing (solid)and30minafterpairing (dashed). (C)ThemagnitudeofLTD
depends on the interval between the two PF stimuli. Normalized EPSC amplitude
after pairing with single PF stimulus (0-ms interval, n � 6), or with double PF
stimuli at intervals of: 1 ms (n � 8), 5 ms (n � 9), 15 ms (n � 5), 30 ms (n � 6), or
60 ms (n � 4). Asterisks indicate statistical significance of the depression magni-
tudes. *, P � 0.01; **, P � 0.005; Sign test. (D) NMDARs but not mGluR1s are
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time course of PF NMDARs, but this depended on two unknowns:
i) the specific NMDAR subunits expressed by PFs and ii) their
kinetics at near physiological temperature. Thus, it is known that
the deactivation time constants (which reflect glutamate unbind-
ing) of NMDARs vary from 10s of milliseconds to several seconds,
depending on the subunit and temperature (45–47). NMDARs are
heterotetramers composed of NR1 and NR2 subunits, the latter
being the products of four separate genes (NR2A to D).

As a first step to determining which NR2 subunits contribute to
LTD induction, we used two noncompetitive antagonists that
discriminate between NR2A- and NR2B-containing receptors: zinc
ions (Zn2�) in the nanomolar range specifically antagonize NR2A-
containing NMDARs (48) whereas Ro25–6981 (R-(R*,S*)-�-(4-
hydroxyphényl)-�-methyl-4-(phenyl-methyl)-1-piperidine propa-
nol), an ifenprodil analog, specifically antagonizes NR2B-
containing NMDARs (49, 50). We checked the specificity of these
antagonists on recombinant NMDARs expressed in HEK cells
(Fig. S4). Zinc ions (300 nM) inhibited NR1�NR2A currents
(84.6 � 3.0% inhibition; n � 4) without affecting NR1�NR2B
(9.3 � 7.7%; n � 4) or NR1�NR2C (4.5 � 1.5%; n � 3) currents.
In the same manner, Ro25–6981 (300 nM) inhibited NR1�NR2B
currents (75.9 � 4.9% inhibition; n � 4) without affecting
NR1�NR2A (4.3 � 7.8%; n � 4) or NR1�NR2C (�6.7 � 3.9%;
n � 3) currents. Neither of these compounds had a significant effect
on basal AMPA-mediated fast transmission between PFs and PCs
(Fig. S5).

We then set out to test the actions of Zn and Ro25–6981 on LTD
induction. In the presence of the NR2A antagonist Zn, the 5-ms
interval protocol failed to induce LTD (depression: 4.5 � 9.2%, n �
5, P � 0.375) (Fig. 2 A, C, and D). This was significantly different
from the control experiment (P � 0.02, Mann–Whitney U test)
(Fig. 1C). In contrast, in the presence of the NR2B antagonist
Ro25–6981, the 5-ms interval protocol still induced LTD (24.6 �
3.4%, n � 6, P � 0.04) (Fig. 2 B–D), not different from the
depression in control conditions (P � 0.48, Mann–Whitney U test)
(Fig. 1 C). Therefore, NR2A- but not NR2B-containing NMDARs
are required for LTD induction.

Parallel Fibers Express Presynaptic NR2A-Containing NMDA Receptors.
To test directly for the presence of NMDAR subunits in PFs, we
performed immunohistochemistry with antibodies against
NMDAR subunits. We filled PCs in acute slices with neurobiotin
by the means of a patch pipette. Then we performed immunohis-
tochemistry with an antibody directed against NR2A. No staining
was observed on PC dendrites or spines, but punctate staining was
observed juxtaposed to PC dendritic spines (50/208 spines) (Fig.
3A). This is consistent with labeling of PF varicosities. However, the
resolution of optical microscopy is not sufficient to identify un-
equivocally the element stained. Thus, we decided to use preem-
bedding immuno-electron microscopy (EM) to study the distribu-
tion of NMDARs. PF-PC synapses were identified following the
morphological criteria described by Palay and Chan-Palay. The
peroxidase-amplified immunostaining showed the presence of NR1
(Fig. 3 B and C), NR2A (Fig. 3 D and E) and to a lesser extent NR2B
subunits on PF boutons. PC spines or glial processes were very
rarely stained. The quantification of morphologically identified
PF-PC synapses revealed that at least 49% of PF-PC synapses
expressed NR1, whereas 23% expressed NR2A and only 10%
expressed NR2B (Fig. 3F). The subunit identity of the NMDARs
shown on PFs by immunohistochemistry fits with the pharmaco-
logical profile of the receptors involved in LTD induction.

Subunit-Specific Kinetics of NMDA Receptors Define the PF Frequen-
cies Resulting in Plasticity. Having identified the NMDAR subunits
involved in LTD induction, we then measured the deactivation rates
of recombinant receptors at near-physiological temperature be-
cause subunit-specific kinetic information was only available from
experiments carried out at room temperature.

Rapid application of 1 mM glutamate (100-ms steps) to HEK
cells expressing recombinant NMDARs induced inward currents as
shown in Fig. 4A. The recording temperature was 32 °C, as for our
synaptic experiments. To focus on the deactivation kinetics of the
receptors, currents were normalized to the amplitude at the end of
the agonist application (Fig. 4B). Deactivation kinetics were several
fold faster at 32 °C (same temperature as for LTD experiments)
than at room temperature. Values of the decay time constant were
extracted by fitting single exponentials. The deactivation time
constants � of NMDARs were 28.6 � 4.7 ms (n � 10), 193.2 � 14.9
ms (n � 10), and 217.6 � 37.6 ms (n � 8) for NR2A�, NR2B�,
and NR2C-containing NMDARs, respectively. The relative order
of the NR2 subunit deactivation time constants thus remained
consistent with that determined at room temperature (45, 46).

A comparison between the dependence of LTD on interspike
interval and the deactivation time courses at 32 °C of recombinant
NMDAR containing different NR2 subunits is shown in Fig. 4C.
The magnitude of LTD as a function of PF firing interval fits very
closely with the NR1�NR2A deactivation time course and does not
fit with those of NR1�NR2B or NR1�NR2C, thus verifying the
prediction of a precise temporal correlation between these two
processes. We conclude that the presynaptic frequency dependence
of LTD induction can be fully accounted for by the presence of
NR2A-containing NMDA autoreceptors on PFs.
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Discussion
NMDAR Signaling for LTD Induction Arises from PF Terminals.
NMDAR activation (14, 24) and transcellular NO signaling (20–22,
24) are necessary for cerebellar LTD induction. In many systems,
NO has been shown to be produced after NMDAR activation
(51–54). In the cerebellar cortex, GCs express nNOS (55, 56) and
NO signaling is the result of PF activity (21–23, 57).

We show that bursting activity of PFs is necessary for cere-
bellar LTD induction. The range of PF frequencies capable of
inducing LTD indicates that the system behaves as a high-pass
filter with a corner frequency �40 Hz (Fig. 1).

A heterosynaptic recruitment of glutamate receptors after re-
petitive activity (44, 58) does not seem to be involved in the
requirement for repetitive firing, because LTD can be induced
when the input is restricted to a single fiber (GC-PC paired
recordings in ref. 14). Furthermore, LTD can be induced in a sparse
set of synapses through GCL stimulation (Fig. 1E). Thus, the spatial
integration of multiple inputs because of spillover of glutamate to
neighboring synapses (41, 42) is not necessary.

An alternative hypothesis for the frequency dependence of LTD
induction would involve the activation of mGluR1 receptors in PCs.

mGluR1 receptors are known to contribute to the Ca signal
required for LTD induction (17, 36, 39, 59). However, mGluR1
activation may not be necessary in experimental situations where
the Ca entry through voltage-dependent channels in PCs is optimal
(60) (Fig. 1 and Fig. S3). Bypass of mGluR1 activation may be
achieved when depolarization-induced Ca spikes are present during
induction (see Materials and Methods). Nevertheless, we cannot
exclude the possibility that, in physiological conditions, a require-
ment for mGluR1 activation may increase the gain for discrimina-
tion in favor of repetitive activity patterns. Indeed, LTD is of a
smaller amplitude when induced by GCL stimulation (Fig. 1 E vs.
D), an experimental situation where mGluR activation is reduced
(43, 44).

Finally, the frequency dependence of LTD induction may orig-
inate from the mode of activation of presynaptic NMDARs. In Fig.
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was aligned with the 0-ms interval for LTD induction and 0 NMDA current was
aligned vertically with zero LTD.
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5 we present a schematic view of the events leading to autoreceptor
opening. First, after a release event, glutamate binds to NMDARs.
However, the depolarization associated with the action potential is
short, and by the time glutamate binds to the receptor and promotes
its opening (61), the Mg block precludes receptor opening. Per-
meation through NMDARs will only occur if a second action
potential is elicited before glutamate dissociates.

This hypothesis makes a precise prediction. The time of residence
of glutamate on NMDARs will define the interval of PF firing
effective for LTD induction. Because glutamate unbinding is
strongly dependent on the subunit composition of the receptors, the
time course for effective LTD induction should match the prop-
erties of the combination of subunits present in PFs. We have
measured the kinetics of different recombinant NMDARs (Fig. 4).
Only the kinetics of NR2A-containing NMDARs are compatible
with the effective LTD induction interval (Fig. 4C). Immunohis-
tochemistry and the pharmacological characterization of LTD
reinforce our hypothesis (Figs. 2 and 3).

The existence of NMDARs on PFs has been controversial (24,
13). However, we provide direct evidence for the existence of
NMDARs on PFs and for their involvement in LTD induction.
Immunoelectron microscopy shows that PFs do express NMDARs
(Fig. 3). These receptors are essentially composed of NR1 and
NR2A subunits. The presence of NR2A subunits on PFs matches
both the pharmacological and the kinetic properties of LTD

induction (Figs. 2 and 4). These results strongly support the idea
that NMDAR-NOS signaling during LTD takes place directly in
PFs. The NMDAR-NOS Ca signaling domain would be indepen-
dent of that serving transmitter release, because pairing in the
presence of APV is unable to induce plasticity (14) (Fig. 1) and
NMDAR activation does not affect transmitter release (5). This
separation would imply the existence of specific and different
molecular scaffoldings for the ‘‘release domain’’ (VDCC and
release machinery) and the ‘‘plasticity domain’’ (NMDAR and
nNOS).

NMDA Autoreceptors Define the Temporal Properties of the Plasticity
Rule. We show that in addition to the well-known detection of the
temporal correlation between CF and PF activities, LTD induction
at PF-PC synapses also relies on a temporal integration of PF
activity: PFs must fire at least twice within a short time window.
Interestingly, in previous experiments, we successfully induced
LTD at room temperature using pairs of stimuli separated by as
much as 60 ms (14). This is in contrast with the narrower timing
profile shown here at 32 °C, but is explained by the slower kinetics
of NMDAR at lower temperatures (45–47). Indeed, slight changes
in experimental temperature may shift the corner frequency for
plasticity induction, which is probably somehow higher at 37 °C than
the 40 Hz measured here. The onset kinetics of the NMDAR
activation might be expected to determine the upper limit of the
frequency range resulting in plasticity. However, at physiological
temperature, the gating of NMDARs (47) occurs on the same time
scale as the absolute refractory period of the PF action potential
(26, 62).

The plasticity rule we describe is physiologically relevant because
GCs have been shown to be active in vivo at frequencies ranging
from a fraction of a Hertz to �1 kHz (25, 26). The firing patterns
of GCs depend on mossy fiber (MF) input, intrinsic cellular
properties and the cellular circuitry of the GCL. MF input to GCs
can itself be composed of bursts (25) and the induction of LTP at
MF-GC synapses is able to increase the frequency of GC bursts
(63). In addition, the inhibition provided by Golgi cells may shape
the relationship between MF input and GC output. In this way,
GCL activity may define which inputs may be subject to plasticity
at the next synaptic relay.

We propose that the general function of NMDA autoreceptors
is the selection of bursting patterns. In cerebellar PFs, the NR2A
subunit confers relatively fast kinetics on NMDARs. This high-pass
filter defines the GC frequency range that results in plasticity. In
other systems, NMDA autoreceptors may be activated by bursting
activities at different frequencies depending on the NR2 subunits
present. Presynaptic NMDARs located on inhibitory terminals may
be activated following different rules. In some cases, such hetero-
receptors have been shown to be composed of NR2C or NR2D
subunits (64). Because these receptors show little sensitivity to Mg,
glutamate binding alone and therefore single action potentials may
be sufficient for presynaptic NMDAR activation.

Several studies have highlighted a correlation between presynaptic
firing frequency and events triggered by NMDA autoreceptors (15). In
the spinal cord, putative presynaptic NMDARs are involved in a
high-frequency-induced form of plasticity (4). In the visual cortex,
presynaptic NMDARs are necessary for the maintenance of neuro-
transmission during high-frequency firing (30 Hz) but not during
low-frequency firing (0.1 Hz) (8). We propose that the detection of
bursting patterns by NMDA autoreceptors constitutes a widespread
mechanism. When presynaptic, their biophysical property of coinci-
dence detection is translated into detection of repetitive activity. By
imposing a temporal integration mechanism, NMDA autoreceptors
implement a plasticity rule that depends on the temporal structure of
presynaptic action potential trains, further extending the richness and
complexity of synaptic plasticity rules in the brain.

5 ms

60 ms

PF firing interval

Vm
PF

NMDAR
gating

NMDAR
current

Mg2+ block

A

B

C

D

Mg2+ unblock

Fig. 5. NMDA autoreceptors as burst detectors. Schematic view of PF mem-
brane potential and associated states of presynaptic NMDARs. (A) Time course of
the PF membrane potential (Vm, PF) during high or low frequency activity (200 Hz
vs. 16.7 Hz). (B) Gating of NMDA autoreceptors activated by glutamate released
by the action potentials. Receptor kinetics have been extracted from those of
recombinant NR1�NR2A receptors measured in Fig. 4 (�on � 1.4 ms; �off � 28.6
ms). (C) Voltage-dependent Mg block of NMDARs. (D) Current flow through
NMDARs occurs only when receptors are gated and the Mg block is relieved. The
effective interval between two successive PF action potentials for NMDAR con-
duction is defined by the residence time of glutamate on NMDARs. The first
action potential provides the glutamate. By the time the receptor opens, the
membrane is repolarized and Mg blocks the channel. The second action potential
relieves the Mg block and Ca flows through the channel into the PF terminal only
if it arrives while glutamate is still bound to the receptor (200 Hz). If the second
action potential arrives after glutamate unbinding (16.7 Hz), little current flows.

14130 � www.pnas.org�cgi�doi�10.1073�pnas.0904284106 Bidoret et al.



Materials and Methods
Electrophysiology. Animal experimentation complied with French, European
and National Institutes of Health guidelines. Experiments were performed on
transverse cerebellar acute slices (300 �m) of rats (17- to 24-day-old). See detailed
electrophysiological methods in SI Text.

Immunohistochemistry. Antibody specificity was established by Western blot
(WB) analysis on extracts from Xenopus oocytes expressing recombinant
NMDARs. We also characterized the native NMDAR subunits in cerebellar

membrane preparations (Fig. S6). See detailed immunohistochemical meth-
ods in SI Text.
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