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Synopsis

Traumatic stress has a broad range of effects on the brain. Brain areas implicated in the stress response
include the amygdala, hippocampus, and prefrontal cortex. Studies in patients with posttraumatic
stress disorder (PTSD) and other psychiatric disorders related to stress have replicated findings in
animal studies by finding alterations in these brain areas. Brain regions implicated in PTSD also play
an important role in memory function, highlighting the important interplay between memory and the
traumatic stress response. Abnormalities in these brain areas are hypothesized to underlie symptoms
of PTSD and other stress-related psychiatric disorders.

EFFECTS OF TRAUMATIC STRESS ON THE INDIVIDUAL

Traumatic stressors including childhood abuse can lead to posttraumatic stress disorder
(PTSD), as well as depression [1,2], substance abuse [3,4], dissociative disorders [5],
personality disorders [6,7], and health problems [8]. For many trauma victims, PTSD, which
affects about 8% of Americans at some time in their lives [3], may be a life-long problem [9].
However, the development of effective treatments is limited by gaps in knowledge about the
underlying neurobiological mechanisms that mediate symptoms of trauma related disorders
like PTSD. Until twelve years ago, no brain imaging studies had been performed in patients
with PTSD or other stress-related psychiatric disorders. The past decade has seen an explosion
of research using brain imaging to assess the effects of traumatic stress on the brain [10]. These
studies have implicated the amygdala, hippocampus, and medial prefrontal cortex (including
anterior cingulate) in PTSD and other stress related psychiatric disorders. This chapter reviews
brain imaging studies looking at the effects of traumatic stress on the brain, and integrates them
with basic science findings on the neuroscience of stress.

NEURAL CIRCUITS OF PTSD

PTSD is characterized by specific symptoms, including intrusive thoughts, hyperarousal,
flashbacks, nightmares, and sleep disturbances, changes in memory and concentration, and
startle responses. Symptoms of PTSD are hypothesized to represent the behavioral
manifestation of stress-induced changes in brain structure and function. Stress results in acute
and chronic changes in neurochemical systems and specific brain regions, which result in long-
term changes in brain “circuits” involved in the stress response [11-14]. Brain regions that are
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felt to play an important role in PTSD include the hippocampus, amygdala, and medial
prefrontal cortex.

Preclinical and clinical studies have shown alterations in memory function following traumatic
stress [15] as well as changes in a circuit of brain areas, including hippocampus, amygdala,
and medial prefrontal cortex, that mediate alterations in memory [16]. The hippocampus, which
is involved in verbal declarative memory, is very sensitive to the effects of stress. Stress in
animals has been associated with damage to neurons in the CA3 region of the hippocampus
(which may be mediated by hypercortisolemia, decreased brain derived neurotrophic factor,
and/or elevated glutamate levels) and inhibition of neurogenesis [17-22].

Antidepressant treatments have been shown to block the effects of stress and to promote
neurogenesis [20,23-26]. Animal studies have demonstrated several agents with potentially
beneficial effects on stress-induced hippocampal damage. It has been found that phenytoin
blocks the effects of stress on the hippocampus, probably through modulation of excitatory
amino acid induced neurotoxicity.[27] Other agents, including tianeptine,
dihydroepiandosterone (DHEA), and fluoxetine have similar effects [23,24,26,28-33]. These
medications may share a common mechanism of action through upregulation of cAMP
response element binding protein (CREB), which leads to regulation of expression of specific
target genes involved in structural modeling of the hippocampus. Such treatment effects on
brain-derived neurotrophic factor (BDNF) and its receptor trkB mRNA can have long-term
effects on brain structure and function. There is new evidence that neurogenesis is necessary
for the behavioral effects of antidepressants [34,35], although this continues to be a source of
debate [32,36].

In addition to the hippocampus, other brain structures have been implicated in a neural circuitry
of stress including the amygdala and prefrontal cortex. The amygdala is involved in memory
for the emotional valence of events, and plays a critical role in the acquisition of fear responses
[37]. The medial prefrontal cortex includes the anterior cingulate gyrus [Brodmann’s area (BA)
32] and subcallosal gyrus (BA 25) as well as the orbitofrontal cortex. Lesion studies
demonstrated that the medial prefrontal cortex modulates emotional responsiveness through
inhibition of amygdala function [38]. Studies show that neurons of the medial prefrontal cortex
play an active role in inhibition of fear responses that are mediated by the amygdala [39,40].
Conditioned fear responses are extinguished following repeated exposure to the conditioned
stimulus (in the absence of the unconditioned aversive, e.g., electric shock) stimulus. This
inhibition appears to be mediated by medial prefrontal cortical inhibition of amygdala
responsiveness. Animal studies also have showed that early stress is associated with a decrease
in branching of neurons in the medial prefrontal cortex [41]. The insula also plays a critical
role in integrating the physiological stress response.

CHANGES IN BRAIN STRUCTURE IN PTSD AND STRESS RELATED
DISORDERS

Studies have demonstrated several consistent changes in cognition and brain structure
associated with PTSD, including verbal declarative memory deficits [15,42—44]. Patients with
PTSD secondary to combat [45-49] and childhood abuse [50,51] have been reported to have
deficits in verbal declarative memory function based on neuropsychological testing. Using a
variety of measures [including the Wechsler Memory Scale (WMS), the visual and verbal
components of the Selective Reminding Test, the Auditory Verbal Learning Test, Paired
Associate Recall, the California Verbal New Learning Test, and the Rivermead Behavioral
Memory Test], investigators have found specific deficits in verbal declarative memory function
with a relative sparing of visual memory and 1Q [45-49,51-60]. These studies have been
conducted in patients with PTSD related to a variety of etiologies including Vietnam combat
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[45-49,52,55-57,59], rape [53], the Holocaust [60-62], adults with early childhood abuse
[51], and traumatized children [54]. Returning Iraq soldiers were shown to have diminished
verbal memory performance compared to their pre-deployment baselines, with greater verbal
memory deficits in veterans with high levels of PTSD symptoms [63]. These findings suggest
that traumas such as early abuse with associated PTSD result in deficits in verbal declarative
memory.

Several studies of PTSD have showed changes in hippocampal volume associated with the
disorder. We first demonstrated this in Vietnam veterans with PTSD, who had an 8% reduction
in right hippocampal volume based on MR relative to controls matched for a variety of factors
including alcohol abuse and education (p<.05); smaller volume was correlated with deficits in
verbal declarative memory function as measured by the WMS (Figure 1) [64]. A second study
from our group showed a 12% reduction in mean left hippocampal volume in 17 patients with
childhood abuse-related PTSD compared to 17 case-matched controls; this group difference
was significant after controlling for confounding factors [65]. Smaller hippocampal volume
has been shown to be specific to PTSD within the anxiety disorders, and has not been
demonstrated in panic disorder [66]. Gurvits et al. [67] showed bilateral hippocampal volume
reductions in combat-related PTSD compared to combat veterans without PTSD and normal
controls. Combat severity was correlated with volume reduction. Stein et al. [68] found a 5%
reduction in left hippocampal volume. Other studies of PTSD also have found smaller
hippocampal volume and/or reductions in N-acetylaspartate (NAA), a marker of neuronal
integrity [69-82]. We have reported smaller hippocampal volume in PTSD subjects compared
to trauma-exposed non-PTSD subjects [70] while other investigators have observed reductions
in both trauma-exposed non-PTSD and trauma-exposed PTSD relative to healthy comparison
subjects [83]. Studies in childhood [84-86] PTSD did not find hippocampal volume reduction,
although reduced NAA was found in medial prefrontal cortex in childhood PTSD [87].
Although some studies of new onset or recent PTSD have not found changes in hippocampal
volume [88,89], others have showed reductions [90]. In a recent meta-analysis, we pooled data
from all of the published studies and found smaller hippocampal volume for both the left and
the right sides, equally in adult men and women with chronic PTSD, and no change in children
[91]. Another recent meta-analysis had similar findings [92]. More recent studies of holocaust
survivors with PTSD did not find a reduction in hippocampal volume [93] although subjects
who developed PTSD in response to an initial trauma had smaller hippocampal volume
compared to those who developed PTSD after repeated trauma, suggesting that a small
hippocampal volume may impart vulnerability [94]. Several studies have shown that PTSD
patients have deficits in hippocampal activation while performing a verbal declarative memory
task [70,75] or a virtual water maze task [95]. Both hippocampal atrophy and hippocampal-
based memory deficits reversed with treatment with the selective serotonin reuptake inhibitor
(SSRI), paroxetine, which has been shown to promote hippocampal neurogenesis in preclinical
studies [96]. We hypothesize that stress-induced hippocampal dysfunction may mediate many
of the symptoms of PTSD which are related to memory dysregulation, including both explicit
memory deficits as well as fragmentation of memory in abuse survivors. It is unclear at the
current time whether these changes are specific to PTSD, whether certain common
environmental events (e.g., stress) in different disorders lead to similar brain changes, or
whether common genetic traits lead to similar outcomes.

Several studies have found smaller anterior cingulate volumes based on MRI measurements
in PTSD [97-99], including women with abuse and PTSD [91]. One study found a reduction
in the ratio of NAA to creatinine (Cr) measured with magnetic resonance spectroscopy [79],
while another found a decrease in gray matter density [100]. An important question is whether
these effects are reversible with treatment. Other findings related to volumetrics include smaller
volumes of the corpus callosum in neglected children [101] and adults with PTSD [102]. One
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study showed smaller volumes of the insula with voxel-based morphometry [103]. A study in
twins found smaller volumes of the cavum septum pellucidum [104].

FUNCTIONAL NEUROIMAGING STUDIES IN PTSD

Imaging studies of brain function in PTSD implicate dysfunction of the medial prefrontal
cortex, amygdala, and hippocampus [13,105-111]. Methodologies used in imaging studies of
PTSD are outlined in Table 1 and a summary of findings by author and brain region appears
in Table 2. Studies of resting cerebral blood flow or metabolism with positron emission
tomography (PET) and single photon emission tomography (SPECT) have showed alterations
at rest in the medial prefrontal, temporal, and dorsolateral prefrontal cortices, cerebellum, and
amygdala [112-114]. Stimulation of the noradrenergic system with yohimbine resulted in a
failure of activation in the dorsolateral prefrontal, temporal, parietal and orbitofrontal cortex,
and decreased function in the hippocampus [114]. Exposure to traumatic reminders in the form
of traumatic slides and/or sounds or traumatic scripts have been associated with an increase in
PTSD symptoms, decreased cerebral blood flow and/or a failure of activation in the medial
prefrontal cortex/anterior cingulate, including BA 25, or subcallosal gyrus, BA 32 and BA 24,
as measured with PET, SPECT or functional MRI (fMRI) [115-129] (Figure 2). Other findings
in studies of traumatic reminder exposure include decreased function in the hippocampus
[119], thalamus [118,120], visual association cortex [118,119,123,124], parietal cortex [119,
122,123,130,131], and inferior frontal gyrus [118,119,122,123,127,130,131], and increased
function in the amygdala [121,124,130], posterior cingulate [117,119,120,123], and
parahippocampal gyrus [117,119,121]. Shin and colleagues [124], found a correlation between
increased amygdala function and decreased medial prefrontal function with traumatic
reminders indicating that a failure of inhibition of the amygdala by the medial prefrontal cortex
could account for increased PTSD symptoms with traumatic reminders. Other studies have
found increased amygdala and parahippocampal function and decreased medial prefrontal
function during the performance of an attention task [125], and increased amygdala function
at rest [113], during a working memory task [132], during recall of traumatic words [133], and
with exposure to masked fearful faces [134,135], overt fearful faces [126], traumatic sounds
[121,136], and traumatic scripts [130].

Several studies have examined neural correlates of cognitive tasks in PTSD. During working
memory tasks patients showed decreased inferior frontal [137] and parietal function [132,
137]. Retrieval of emotionally valenced words [138] (e.g., “rape-mutilate™) in women with
PTSD from early abuse resulted in decreases in blood flow in an extensive area that included
orbitofrontal cortex, anterior cingulate, and medial prefrontal cortex (BA 9, 25, and 32), left
hippocampus, and fusiform gyrus/inferior temporal gyrus, with increased activation in
posterior cingulate, left inferior parietal cortex, left middle frontal gyrus, and visual association
and motor cortex [139]. Another study found a failure of medial prefrontal cortical/anterior
cingulate activation and decreased visual association and parietal cortex function during
performance of the emotional Stroop task (i.e., naming the color of a word such as “rape”) in
women with PTSD who were abused relative to abused women without PTSD [140]. Shin and
colleagues [127] showed increased posterior cingulate and parahippocampal gyrus and
decreased medial prefrontal and dorsolateral prefrontal during an emotional “counting” Stroop
paradigm with fMRI.

Declarative memory tasks have been used as specific probes of hippocampal function in PTSD.
We measured brain activation with a paragraph encoding task in conjunction with 150-water
PET measurements of cerebral blood flow. Women with PTSD and a history of abuse showed
a failure of hippocampal activation during the memory task relative to control subjects [70].

Women with PTSD who had been abused also had smaller hippocampal volumes as measured
with MRI relative to both abused women without PTSD and non-abused, hon-PTSD women.
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The failure of hippocampal activation was significant after controlling for differences in
hippocampal volume as well as accuracy of encoding. Shin and colleagues [75] also found a
failure of hippocampal activation with a memory stem completion task in PTSD.

Although multiple studies have used symptom provocation with traumatic scripts or similar
designs, little has been done in the area of fear conditioning in PTSD. To that end, we studied
women with a history of severe childhood sexual abuse and the diagnosis of current PTSD
(N=8) and women without childhood abuse or PTSD (N=11). All subjects underwent PET
measurements of cerebral blood flow and psychophysiological measurements of heart rate and
skin conductance during habituation, acquisition and extinction conditions, on a single day,
with scanning during a control condition on another day separated by one week from the active
condition. During habituation, subjects were repeatedly exposed to a blue square on a screen
[conditioned stimulus (CS)], during active fear acquisition exposure to the blue square (CS)
was paired with an electric shock to the forearm [unconditioned stimulus (UCS)], and during
extinction subjects were again exposed to the blue squares (CS) without shock (“active”
extinction). On a second day, subjects went through the same procedure with electric shocks
delivered randomly when the blue square was not present (unpaired CS-UCS). Acquisition of
fear was associated with increased skin conductance responses to CS exposure during the active
versus the control conditions in all subjects. There was increased skin conductance response
for PTSD during the first CS-UCS presentation. Extinction of fear was associated with
increased skin conductance responses to CS exposure during the active versus the control
conditions in all subjects. When PTSD and non-PTSD subjects were examined separately, skin
conductance response levels were significantly elevated in non-PTSD subjects undergoing
extinction following the active compared to the control condition during session one. PTSD
subjects showed activation of the bilateral amygdala during fear acquisition compared to the
control condition (Figure 3). Non-PTSD subjects showed an area of activation in the region of
the left amygdala. When PTSD subjects and control subjects were directly compared, PTSD
subjects showed greater activation of the left amygdala during the fear conditioning condition
(pairing of US and CS) relative to the random shock control than healthy women. Other areas
that showed increased activation with fear acquisition in PTSD included bilateral superior
temporal gyrus (BA 22), cerebellum, bilateral inferior frontal gyrus (BA 44, 45) and posterior
cingulate (BA 24). Fear acquisition was associated with decreased function in medial prefrontal
cortex, visual association cortex, and medial temporal cortex, inferior parietal lobule function,
and other areas. Extinction of fear responses was associated with decreased function in the
orbitofrontal and medial prefrontal cortex (including subcallosal gyrus, BA 25; and anterior
cingulate, BA 32), visual association cortex, and other areas in the PTSD subjects, but not in
the controls. Amygdala blood flow with fear acquisition was negatively correlated with medial
prefrontal blood flow with fear extinction (increased blood flow in amygdala correlated with
decreased blood flow in medial prefrontal cortex) in all subjects (r=—0.48; p<.05). Increased
amygdala blood flow with fear acquisition was positively correlated with PTSD (r=0.45),
anxiety (r=0.44) and dissociative (r=0.80) symptom levels in PTSD (but not non-PTSD)
subjects. There was a negative correlation between medial prefrontal blood flow during
extinction and anxiety as measured with the Panic Attack Symptom Scale (PASS) during
extinction in the PTSD group only, which was significant after correction for multiple
comparisons (r=—0.90; p=0.006) [141]. This study was consistent with increased amygdala
function with fear acquisition, and decreased medial prefrontal (anterior cingulate) function
during extinction in PTSD. This is consistent with the model of an overactive amygdala and a
failure of the medial prefrontal cortex to extinguish the amygdala when the acute threat is no
longer present.

We have tested the hypothesis that patients with trauma-related psychiatric disorders, which
have been described as “trauma spectrum” disorders [12], share in common abnormalities in
specific brain areas, including the amygdala, medial prefrontal cortex, and hippocampus. These
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disorders include abuse-related PTSD, depression associated with early abuse, borderline
personality disorder (BPD) associated with early abuse, and Dissociative Identity Disorder
(DID) with early abuse. To test this hypothesis, we exposed traumatized women with and
without BPD to the stress of a script outlining a personally upsetting abandonment scene in
conjunction with PET imaging of the brain [142]. Women with BPD exhibited a relative failure
of medial prefrontal activation during abandonment scripts compared to non-BPD subjects.
Women with BPD and abuse had increased psychophysiological responses to abandonment
scripts relative to trauma scripts, while women with PTSD and abuse had the opposite pattern
[143], indicating differential responses in these two disorders in spite of the common exposure
to early abuse. Studies of structural MRI have also shown smaller hippocampal volume across
several trauma spectrum disorders, including abuse-related PTSD [65,70], DID with early
abuse [144], BPD with early abuse [145,146], and depression with early abuse [147].

Few studies have involved imaging of receptors in the brain in PTSD. This study used single
photon emission computed tomography (SPECT) to show a decrease in benzodiazepine
receptor binding in the frontal cortex in combat-related PTSD.

BPD is associated with childhood sexual abuse in 52% to 71% of cases [148]. BPD is associated
feelings of internal emptiness and fear of abandonment and is often accompanied by self-
destructive behaviors such as self cutting. There are large overlaps in the neurobiological
correlates of BPD and PTSD [149,150]. Similar to PTSD, BPD is associated with reductions
in hippocampal volume [80,145,146] and a functional dysregulation of the prefrontal-limbic
axis [142,149,151-156], which may underlie the affective dysregulation seen in both BPD and
PTSD.

In summary, these studies are consistent with dysfunction of a circuit involving the medial
prefrontal cortex, dorsolateral prefrontal cortex, hippocampus, and amygdala, in PTSD patients
that we hypothesize underlie symptoms of PTSD and other stress-related psychiatric
conditions.

EFFECTS OF PHARMACOTHERAPY ON BRAIN FUNCTION AND
STRUCTURE IN PTSD

We have begun to assess the effects of pharmacotherapy on brain structure and function in
PTSD, and recently have evaluated the effects of phenytoin on brain structure and function
[157]. Studies in animals have showed that phenytoin, which is used in the treatment of epilepsy
and is known to modulate glutamatergic function, blocks the effects of stress on the
hippocampus [27]. We studied 9 patients with PTSD in an open-label function before and after
treatment with phenytoin. Phenytoin resulted in significant improvement in PTSD symptoms
[158], and further resulted in increases in both right hippocampal volume and right hemisphere
volume [159]. These findings indicate that phenytoin has an effect on symptoms as well as
brain structure in PTSD patients. In a second study, patients with PTSD were shown to have
an increase in hippocampal volume and memory function with paroxetine [96], and a decrease
in cortisol responsiveness to a stressful cognitive challenge [160]. One case report showed
decreased inferior frontal, prefrontal, and insula blood flow measured with PET in response to
war-related sounds. These changes normalized with successful treatment with the SSRI
fluoxetine [161]. Another study assessed resting cerebral blood flow with SPECT Tc-99m
HMPAOQ before and after 8 weeks of open-label treatment with the SSRI citalopram in 11 adult
patients with PTSD. Treatment resulted in a decrease in left medial temporal cortex blood flow;
decreased PTSD symptoms as measured with the Clinician-Administered PTSD Scale (CAPS)
were correlated with increased function in the medial prefrontal cortex [162].
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SUMMARY AND CONCLUSIONS

Traumatic stress has a broad range of effects on brain function. Brain areas implicated in the
stress response include the amygdala, hippocampus, and prefrontal cortex. These regions also
play a critical role in memory, highlighting the important interplay between memory and the
traumatic stress response. Preclinical studies show that stress affects these brain areas.
Furthermore, antidepressants have effects on the hippocampus that counteract the effects of
stress. In fact, promotion of nerve growth (neurogenesis) in the hippocampus may be central
to the efficacy of the antidepressants. Studies in patients with PTSD show alterations in brain
areas implicated in animal studies, including the amygdala, hippocampus, and prefrontal
cortex. Increased amygdala activation with acquisition of fear responses, and a failure of the
medial prefrontal cortex to properly mediate extinction, are hypothesized to underlie symptoms
of PTSD. Treatments that are efficacious for PTSD show a promotion of neurogenesis inanimal
studies, as well as promotion of memory and increased hippocampal volume in PTSD. Future
studies are needed to assess neural mechanisms in treatment response in PTSD. In addition,
studies need to move beyond assessments of brain function and to examine areas such as
neuroreceptor binding and changes in brain chemicals (e.g., with MR spectroscopy).
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Figure 1.
Hippocampal volume on MRI in PTSD. Smaller hippocampal volume in a representative
patient with PTSD (right) relative to a non PTSD subject (left).
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Figure 2.

Medial prefrontal dysfunction in PTSD. There was a failure of medial prefrontal activation in
a group of combat veterans with PTSD compared to combat veterans without PTSD during
exposure to traumatic combat related slides and sounds (yellow area in prefrontal cortex)
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Figure 3.

Amygdala activation during acquisition of fear learning in PTSD. There was an increase in
amygdala activation during acquisition of conditioned fear learning in women with PTSD
related to early childhood abuse. Yellow areas in the amygdala show areas of increased blood
flow during acquisition of fear learning in the group of women with abuse-related PTSD as a
group. Women with abuse-related PTSD had greater increases of amygdala activation during
fear learning than women without PTSD.
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