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SUMMARY
Genetic networks for gene expression data are often built by graphical models, which in turn are
built from pairwise correlations of gene expression levels. A key feature of building graphical
models is evaluation of conditional independence of two traits, given other traits. When
conditional independence can be assumed, the traits that are conditioned on are considered to
“explain” the correlation of a pair of traits, allowing efficient building and interpretation of a
network. Overlaying genetic polymorphisms, such as single nucleotide polymorphisms (SNPs), on
quantitative measures of gene expression provides a much richer set of data to build a genetic
network, because it is possible to evaluate whether sets of SNPs “explain” the correlation of gene
expression levels. However, there is strong evidence that gene expression levels are controlled by
multiple interacting genes, suggesting that it will be difficult to reduce the partial correlation
completely to zero. Ignoring the fact that some set of SNPs can explain at least part of the
correlation between gene expression levels, if not all, might miss important clues on the genetic
control of gene expression. To enrich the assessment of the causes of correlation between gene
expression levels, we develop methods to evaluate whether a set of covariates (e.g., SNPs, or even
a set of quantitative expression transcripts), explains at least some of the correlation of gene
expression levels. These methods can be used to assist the interpretation of regulation of gene
expression and the construction of gene regulation networks.
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1. INTRODUCTION
To understand the complexity of the regulation of gene expression, gene pathways and
networks have been used [1-3], which provide graphical representations while reducing
complexity by modeling local “neighborhoods” of association of measures of gene
expression. Genetic networks are often constructed using probabilistic models [4], such as
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Gaussian graphical models [5-8]. Assuming that variables have a multivariate normal
distribution, a Gaussian graphical model can be built from the inverse of the variance-
covariance matrix, also called a concentration matrix, because this defines the conditional
independence of pairs of variables after taking other variables into consideration. A
Gaussian graphical model contains two parts: the vertices, corresponding to the variables in
a graph, and the edges that connect pairs of variables that are not independent, either
conditionally or unconditionally. Lack of an edge between two vertices represents
conditional independence, i.e., the partial correlation between two variables is zero when
conditioning on other variables. In contrast, the fact that some variables can reduce the
correlation between a pair of variables is often ignored if the partial correlation is not
reduced to zero. This could miss important information, because greater insights to gene
regulation can be gained by examining whether a set of covariates, either quantitative
measures of other expressed genes or genetic markers such as SNPs, can explain at least
some of the correlation between the levels of two expressed genes.

Study of correlated gene expression traits is important because genes that are strongly
correlated might have similar functions, a feature emphasized in both cluster analysis [9]
and gene network reconstruction [10], or might be regulated by a common mechanism. As
reviewed by Gibson and Weir [11], several studies show that an expression quantitative trait
locus (eQTL) can be correlated with multiple gene expression levels. Therefore, the
correlation between a pair of gene expression levels can be reduced when conditioning on a
set of genetic variants that regulates the expression levels. On the other hand, a number of
studies have illustrated that the regulation of gene expression is genetically complex,
influenced by multiple genes and their interactions [12]. For this reason, it may be difficult
to reduce the partial correlation between the levels of two expressed genes completely to
zero, especially when not all genetic factors are measured.

Elucidating the shared genetic components of correlated gene expression levels has been
accessed in different ways. Using a linkage-based design, Zhu et al. [13] defined a weighted
correlation measure to assess the degree of association of LOD scores. They reasoned that
associated LOD scores may indicate shared genetic components of correlated expression
levels. In a more elaborate model, [14] evaluated the relationship of two correlated
expression levels while allowing for complex interactions. Using likelihood ratio tests, they
evaluated whether the level of an expressed gene depends on the level of expression of a
second gene, as well as interaction of the level of expression of the second gene with its own
underlying eQTL. To evaluate whether an eQTL influences several traits (i.e., pleiotropy),
Li et al. [15] considered an eQTL to have pleiotropic effects on a pair of gene expression
levels if the LOD score for the first gene expression level was substantially different from
that when conditioning on the second gene expression level. Although these approaches
seem reasonable, their statistical properties are not clear and none of them addressed the
question whether the correlation between a pair of gene expression levels can be directly
explained by genetic markers. We address this question in a direct way by testing whether
the marginal correlation is statistically different from the partial correlation, conditional on
other variables.

Note that the marginal and partial correlation coefficients are themselves correlated, which
must be addressed in our statistical test. Tests of correlated correlation coefficients have
been used in both psychology and economics. For example, they have been used to test if a
correlation matrix changes over time, to discover equivalent but less expensive measures,
and to interpret outcomes from psychological studies. Although these types of statistical
comparisons of correlations have been performed in specialized areas of research, they have
not been used to evaluate gene expression levels, particularly for interpreting partial
correlations for building gene networks.
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This paper is organized as follows. We first introduce methods to test the equality of a
marginal and a partial correlation, which can be generalized to test two partial correlations.
We then propose a two-stage procedure that first selects a set of covariates to condition on
and then tests whether the set “explains” at least some of the correlation between two gene
expression levels. Simulations that evaluate Type I error rates and power of our methods are
presented. Application of the two-stage procedure to a real data set is presented to illustrate
our methods. Finally we discuss how our methods can be used to aid the interpretation of
gene expressions networks as well as possible extensions of our work to general studies of
multivariate traits.

2. STATISTICAL METHODS
Using the delta method, Olkin and Finn [16] provided the asymptotic variance for the
difference of the sample marginal and partial correlations, when the partial correlation
conditioned on a single covariate. Unfortunately, when the number of covariates increases, it
is difficult to obtain the analytical derivates that are required by the delta method.
Alternatively, Steiger and Browne [17] proposed a novel indirect approach for testing
equality of interdependent statistics, including the partial correlations. Their method has the
advantage that it does not require the complicated analytical derivations required by the
delta method, and they showed that their approach is asymptotically equivalent to the delta
method. In the following, we illustrate both the delta method and the composite method of
Steiger and Browne [17].

2.1 Methods for Testing Equality of Marginal and Partial Correlations
Throughout this paper, we use Y1 and Y2 to denote the two gene expression levels we wish
to correlate, and X1,…,Xp to denote the covariates we condition on. These covariates could
be quantitative measures of other expressed genes, or measures of genetic markers, such as
coding each SNP genotype as 0, 1, or 2 according to the number of copies of the rare allele.
The partial correlation coefficient ρY1Y2•X1,…,Xp is the correlation between Y1 and Y2 after
conditioning on X1,…,Xp. This partial correlation can be estimated either by inverting the
variance-covariance matrix of the Y's and the X's, or by calculating the correlation of the
residuals after regressing each of Y1 and Y2 on X1,…,Xp. When the null hypothesis of
equality of the marginal correlation, ρY1Y2, and the partial correlation, ρY1Y2•X1,…,Xp, is
rejected, the covariates can be considered to “explain” at least part of the correlation of the
two gene expression levels. A difficulty of testing the equality of the marginal and the
partial correlations comes from the correlation between them.

2.1.1 The Delta Method—The asymptotic variance of the difference between a sample
marginal correlation and a sample partial correlation can be partitioned into three parts:

(1)

For large sample sizes, it is well known [18] that the sample marginal and partial
correlations have variances

(2)
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where N is the sample size. Because both ρY1Y2 and ρY1Y2•X1,…,Xp are functions of the
marginal correlation coefficients, ρij 's, it is easy to use the delta method [19] to show that
the covariance between rY1Y2 and rY1Y2•X1,…,Xp can be calculated by

(3)

where the sum is over the (p + 2)(p + 1)/2 ordered pairs of {i, j} such that all marginal
correlations are considered. The covariance of two marginal correlations was first given by
Pearson and Filon [20] and later formalized by Olkin and Siotani [21]. For simplicity, we
use {i, j, k, l} to denote the indices of four variables. The asymptotic covariance of rij and rkl
is

(4)

In practice, when calculating formulas (1)-(4), sample correlations are substituted for
population correlations. The analytic derivatives were provided by Olkin and Finn [16]
when p=1. As mentioned by Steiger and Browne [17] and Lord [22], obtaining the analytic
formulas for p>1 is complicated. However, using matrix derivatives (Dwyer [23]), we
illustrate that the analytic formulas can be expressed in terms of the derivatives of the
inverse of the correlation matrix (see the Appendix). Although the formulas can be
implemented in standard software, the number of derivatives to evaluate increases
quadratically with p, leading to computational inefficiency.

2.1.2 The Indirect Method Based on Optimal Linear Composites—According to a
novel approach by Steiger and Browne [17], tests of marginal correlations can be applied
directly to correlations of “optimal linear composites”. By their Proposition 4, optimal linear
composites can also be used for partial correlations. Let s be the vector of the estimated
sample variances and covariances, let the corresponding vector for population parameters be
σ, let b be a function of s, and let c(s,b) be a differentiable vector-valued function of both s

and b. Suppose  satisfies

where N(σ) indicates a neighborhood of σ. Clearly,  is a saddle point of c(s,b). It also
provides the weights for a linear composite of variables to optimize c(s,b) with respect to b.

If  is also differentiable, then Proposition 4 of Steiger and Browne (1984) states that:

1.

2.
 and  have the

same asymptotic distribution.
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As shown by Steiger and Browne (1984), several optimal correlation coefficients, including
the partial correlation coefficient, meet all the requirements of their Proposition 4.
Therefore, we can test the hypothesis that the marginal and partial correlations are
equivalent based on optimal linear composites. Let Y3 = Y1•X1,…,Xp and Y4 = Y2•X1,…,Xp
denote the residuals after regressing each of Y1 and Y2 on X1,…,Xp, respectively. Denote

corr(Yi,Yj) as . Noting that , we treat the Yi's as observations and test H0 :
. By Proposition 4 of Steiger and Browne (1984), we merely need to calculate

the sample correlation coefficients, the 's (1 ≤ i ≤ j ≤ 4), based on the Yi 's, and then plug
them into formula (4). Compared with the delta method, this indirect approach is much more
computationally efficient because it does not require the derivatives of the partial correlation
with respect to the (p + 2)(p + 1)/2 marginal correlations.

Notice that covariance formula (3) is a weighted sum of the covariances between rY1Y2 and
rij, where the weights are the derivatives. As displayed in the Appendix, the derivatives are
functions of only the following partial correlations (i.e., elements of the inverse of the
correlation matrix): partials involving Y1 with each of the Xi 's, partials involving Y2 with
each of the Xi 's, and the partial of Y1 and Y2. Note that we can ignore any partial
correlations between Xi and Xj for 1 ≤ i < j ≤ p. Therefore, besides the theoretical support by
Proposition 4 of Steiger and Browne [17], the approach based on the delta method and that
based on the optimal linear composites use similar information from the correlation matrix.
When conditioning on one variable, we can prove that the statistic based on the optimal
linear composites is exactly the same as that based on the delta method (not shown). When
conditioning on two to five variables, we calculated both statistics using Splus (Insightful
Corp., Seattle, WA), with different population parameters, and found that the two statistics
agreed up to four significant digits. Presumably, the slight differences were caused by
rounding errors. In this article, all the results are based on this optimal linear composites
method.

A subtle point to consider for calculating the variance of the difference between the
marginal and partial correlations for small sample sizes is that we need to replace N - 1 with
N - 1 - p for the variance of the partial correlation and its covariance with the marginal
correlation, because of the p degrees of freedom required when regressing each of Y1 and Y2
on X1,…,Xp. Also notice that the variance of rY1Y2 has a factor 1/(N - 1), while the variance
of rY1Y2•X1,…,Xp has a factor 1/(N - 1 - p). Thus, the covariance of rY1Y2 and rY1Y2•X1,…,Xp
requires the factor  instead of 1/(N - 1), as displayed in equation (4).
Therefore, when the number of covariates, p, to be conditional on is not small, relative to the
sample size, instead of using

(5)

one should use the adjusted formula,

(6)

Although the above derivations are for comparing the marginal and partial correlations, the
methods of Steiger and Browne [17] can be extended to test equivalence of two partial

correlations,  and , where  is a vector of p1 covariates and  is a vector of p2
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covariates. Again, this is achieved by using optimal linear composites ,
and .

2.2 Fisher's z-transformation
The Fisher's z-transformation for a correlation r is defined as

which has mean 1/2log[(1 + ρ)/(1 - ρ)] and variance 1/(N - 3 - p). If r represents a marginal
correlation, then p equals 0. The corresponding test statistic,

has an asymptotic normal distribution with mean 0 and variance 1. Because it converges to
the normal distribution much more rapidly than the correlation coefficient, it has been
favored as the test statistic rather than the correlation coefficient [24,25]. Using Fisher's z-
transformation for the marginal and partial correlations and then the delta method, we have

(7)

Applying the small sample adjustment for the covariance in formula (7), we have

(8)

2.3 The Two-stage Procedure
A difficulty in reconstructing gene expression networks is the computational complexities
brought by the large number of variables. When the number of the variables is greater than
the sample size, the covariance matrix is not of full rank so its inverse cannot be calculated.
Even when the sample size is greater than the number of variables, the inverse of a matrix
might not be robust due to small eigenvalues [26]. One way to handle the large number of
variables is to use a step-wise procedure, as used by [27,28] for developing a dependency
network. Similar to these authors, we initially evaluated a step-wise forward procedure to
search for a set of covariates that can explain the maximum portion of the correlation
between a pair of gene expression levels by testing equality of two partial correlations
sequentially. However, when a covariate explains only a small to moderate portion of the
correlation between two gene expression levels, the power to detect its effect is weak. To see
this, assume the sample size is 50 and the two gene expression levels Y1 and Y2 are sums of
independent variables:

(9)
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where Xi has a Normal distribution with mean 0 and variance 20 and ε1 and ε2 are
independent random errors with variances 20. Further, assume X1, X2, and X3 are observed
but Xu is not. The marginal correlation between Y1 and Y2 is 0.8; conditional on X1, the
correlation between them is reduced to 0.75. Using the formula in the Appendix, the squared
test statistic has an asymptotic chi-square distribution with one degree of freedom and
noncentrality parameter 3.05. Based on the nominal Type I error rate 0.05, this value leads
to power of only 0.42. Therefore, for each step of the step-wise procedure, we have limited
power to include a new variable.

Note that if a covariate can reduce the correlation between Y1 and Y2, it has to be correlated
with at least one of them because

(10)

Furthermore, we have good power to reject ρY1X1=0 because the sample correlation between
X1 and Y1 is . Based on the variance formula (2), the square of the test
statistic has an asymptotic chi-square distribution with one degree of freedom and
noncentrality parameter 15.6, and with corresponding power greater than 0.99. Now, if two
of the three observed covariates are found to be significantly associated with either Y1 or Y2,
the marginal correlation of 0.8 is reduced to a partial correlation of 0.67, leading to a
noncentrality parameter with value 6.99 and power of 0.75 for testing the equality of the
partial and marginal correlations. Ideally, all three observed covariates are identified, in
which case the partial correlation is reduced to 0.5, giving a noncentrality parameter of 13.6
and power of 0.96. Therefore, to increase the power of detecting covariates that can explain
at least part of the correlation of two gene expression levels, we propose a two-stage
procedure:

1. Find the set of covariates to be conditioned on. We considered two methods:

a. A “union” method that selects covariates that are associated with either Y1
or Y2, i.e., the set LUnion = {Xi : ρY1Xi ≠ 0 or ρY2Xi ≠ 0};

b. An “intersection” method that selects covariates that are associated with
both Y1 and Y2, i.e., the set LIntersect = {Xi : ρY1Xi ≠ 0 and ρY2Xi ≠ 0}.

2. Test the equality of the marginal and partial correlations.

Note that the two methods to select the set of covariates to be conditioned on lead to
different explanations. Formula (10) indicates that the partial and marginal correlations will
differ even when a set of covariates is correlated with only one gene expression level. When
LUnion is used, covariates correlated with either of the two gene expression levels will be
selected. In this situation, a difference of marginal and partial correlations can result from
identification of determinants of the expression level of one of the genes, and not necessarily
from sharing of genetic components between the two expressed genes. This strategy is
related to Gaussian graphical models, where a partial correlation between a pair of variables
is calculated conditional on all other covariates. On the other hand, LIntersect considers
shared covariates of two gene expression levels, which focuses on selecting covariates that
“explain” the correlation between a pair of gene expression levels. In our simulation studies,
we considered both the union and intersection strategies.

When selecting covariates, a Type I error rate for each test, α, should be chosen such that the
family-wise error rate can be controlled at a desired level, such as 0.05. With the Bonferroni
correction, we can choose α to be 0.05 / p. It is well known that the Bonferroni correction is
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conservative when variables are correlated, which worsens when markers of high density are
used because they tend to be in strong linkage disequilibrium (LD). Alternatively, we may
consider dividing 0.05 by the effective number of independent covariates. Using λ to denote
the vector of the eigenvalues of the correlation matrix for covariates to be tested, Nyholt
[29] and Cheverud [30] defined the effective number of independent covariates as

(11)

This is based on the fact that at the two extremes, i.e.,λ = (p,0,0,…,0) and λ = (1,1,1,…,1),
the variance of λ reaches its maximum value of p and its minimum value of 0, respectively.
The first extreme is for when all covariates are perfectly correlated so no correction is
necessary. In contrast, the second extreme is for when all covariates are mutually
independent and the Bonferroni correction is appropriate to use. By estimating Var(λ), the
effective number of independent variables, peff, can be estimated by formula (11).

3. SIMULATION METHODS AND RESULTS
We used simulations to investigate the performance of the indirect test of equality of the
marginal and partial correlations based on optimal linear composites and the two-stage
procedure. For the indirect test, we focused on evaluating its Type I error rate and simulated
data based on predefined marginal correlations. For the two-stage procedure, we studied
both Type I error rates and power.

3.1 Test Equality of Marginal and Partial Correlations
Variables were assumed to be jointly Gaussian distributed, each with a marginal mean of 0
and variance of 1. We considered sample sizes 50, 100, and 500 and used a variety of
correlation structures. Similar to Steiger and Browne [17], we set

such that the population parameters satisfy the null hypothesis ρY1Y2 = ρY1Y2• X1. In addition
to the 15 conditions they evaluated (see Table 2 of Steiger and Browne [17]), we added
another two conditions which represent situations when the marginal correlation coefficients
ρY1X1 and ρY2X1 are very small.

When conditioning on only one variable, for given ρY1X1 and ρY2X1, there is a unique ρY1Y2
that satisfies ρY1Y2 = ρY1Y2•X1. For general values of p, the situation is much more
complicated and there are an infinite number of solutions satisfying ρY1Y2 = ρY1Y2•X1,…,Xp.
To simplify our simulations, for givenρY1X1 and ρY2X1, we made the following restrictions:

1. ρY1Xj = ρY1X1, j = 2,…,p,

2. ρY2Xj = ρY2X1, j = 2,…,p,

3. ρXiXj = 0, 1 ≤ i < j ≤ p.

Under these conditions, the p × p variance-covariance matrix for X1, X2,…,Xp is diagonal.
Therefore, using the standard variance formula for the joint distribution of Y1 and Y2
conditional on X1, X2,…,Xp, it can be shown that ρY1Y2 = ρY1Y2•X1,…,Xp has the unique
solution
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The empirical Type I error rate is the chance of obtaining a p-value that is less than the
nominal value of 0.05, among 10000 simulations. To compare the effect of Fisher's z-
transformation and the small sample adjustment for the covariance, we report results using
four different statistics based on: correlation coefficients (formula (5)), correlation
coefficients with adjusted covariance (formula (6)), Fisher's z-transformation (formula (7)),
and Fisher's z-transformation with adjusted covariance (formula (8)).

The results for N=50 and N=500 are presented in Tables I-IV. Because the results for N=100
were similar to those for N=50, these results are not shown. In each table, the fourth to the
eighth columns are the empirical Type I error rates for tests based on correlation
coefficients, Fisher's z-transformation, correlation coefficients with small sample covariance
adjustment, and Fisher's z-transformation with small sample covariance adjustment. Similar
to the findings of Steiger and Browne [17], the empirical Type I error rates based on optimal
linear composites were generally close to their nominal values, except when the correlation
between rY1Y2 and rY1Y2•X1 is very high. When ρY1X1 and ρY2X1 are close to zero, it can be
shown that the correlation between rY1Y2 and rY1Y2•X1 is very high and the variance of (rY1Y2
-rY1Y2•X1) is near zero (see the variance and covariance formulas (2) and (3)). This can cause
conservative Type I error rates, which tend to be extremely conservative when the sample
size is small. Conditions 1-3 in Tables I-IV were in this situation. As a result, the
corresponding Type I error rates based on all four test statistics were much less than the
nominal level. It has been shown elsewhere that Fisher's z-transformation converges to a
Normal distribution more rapidly than the correlation coefficient. We found that tests based
on Fisher's z-transformation gave Type I error rates slightly closer to 0.05 than tests based
on correlation coefficients. This advantage was more obvious for smaller sample sizes (N =
50 and N = 100). Tables I and III also show that using small sample covariance adjustment
is slightly more beneficial than the unadjusted statistic.

3.2 Identify “Explanatory” Covariates using the Two-Stage Procedure
All simulations in this section were based on a sample size of 50. We assumed that Y1 and
Y2 each had variance 100, and that each were sums of subsets of mutually independent
covariates Xi (i = 1,…,10,u). Each covariate had a Normal distribution with mean 0 and
variance σ2, and ε1 and ε2 were independent random errors with variances such that the total
variance of each of Yi was 100. In real data, it is possible that not all covariates shared by Y1
and Y2 are measured. Therefore, we assumed Xi (i = 1,…,10) were measured but Xu was not.
To cover different situations, we varied the variance σ2to be 10, 15, and 20. In each
simulation, we applied our two-stage procedure, with the first step of selecting X's based on
the Bonferroni correction and the second step of testing equality of the marginal and partial
correlations based on Fisher's z-transformation with the small sample covariance adjustment
(formula (8)). For each set of chosen parameters, we repeated the simulation 1000 times and
estimated power or Type I error rates by the frequency of observing a p-value less than 0.05
in the second stage.

3.2.1 Type I Error Rate of Two-Stage Procedure—We first considered the situation
when Xu was the only variable that contributed to gene expression levels other than random
error, i.e.,
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(Model 1)

Under this assumption, conditioning on a set of observed covariates X1,…,X10, the
theoretical partial correlation is the same to the theoretical marginal correlation. The Type I
error rates using both LUnion and LIntersect were conservative (Table V). These small Type I
error rates agreed with the results shown in Tables I-IV; the Type I error rates for testing the
equality of a marginal and a partial correlation are generally conservative when the ρXiYj 's
are very small.

We then considered a situation when Y1 and Y2 were determined by a shared unobserved
covariate and different sets of observed covariates,

(Model 2)

Note that although this model reflects the hypothesis that no observed shared covariate
explains the correlation between Y1 and Y2, the partial correlation can still differ from the
marginal correlation. For example, conditional on covariates X1 and X4, the marginal
correlation between Y1 and Y2 is changed from 0.2 to a partial correlation of 0.25 when σ2 is
20. Therefore, when LUnion is used, the test in the second step of our two-step procedure can
detect a difference between the marginal and partial correlations even though there is no
overlap of the X's that are associate with the Y's. Our results (Table V) showed that when
LIntersect was used, Type I error rates were close to or smaller than 0.05. However, this was
not true for LUnion because the partial and marginal correlations differed under Model 2.

3.2.2 Power of Two-Stage Procedure—To assess power of the two-stage procedure,
we simulated data using two models:

(Model 3)

(Model 4)

In Model 3, each covariate had the same effect on Y1 and Y2. In contrast, for Model 4, the
effects of covariates X1 and X2 on Y1 and Y2 differed in complementary ways. Besides
power, we also report the frequency of detecting true shared observed covariates (Xi,
i=1,2,3) identified in the first stage. The results are illustrated in Table VI. Due to the small
sample size we used (N = 50), we had limited power to identify all three covariates that are
correlated with each Yi, even when using LUnion. For example, for the union method and the
data simulated by Model 3, we found that 19.3%, 44.6%, and 60.8% of the time all three
covariates were detected when σ2 had values of 10, 15, and 20, respectively. However, when
at least two of the covariates were selected in the first step of our two-step procedure, we
had large power to reject the equality of the marginal and partial correlations.

As expected, when LIntersect was used, power was smaller than that for LUnion. This is
because LIntersect uses a more rigorous method to select covariates to be conditioned on,
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which reduces the difference between the marginal and partial correlations. When covariates
contributed more to one gene expression level than the other, power was also reduced
because of the difficulty to detect significantly associated covariates to condition on (Table
IVb).

4. APPLICATION TO REAL DATA
4.1 Background

The expression of mRNA was measured on the genes that make up the proteasome. The
proteasome is a protein complex that degrades unwanted proteins into short polypeptides
and amino acids. Three of its beta subunits, β1, β2, and β5 are essential to break down
proteins. Because these subunits are functionally related, the amount of expression of these
genes tends to be highly correlated, as illustrated in Table VII. Our goal was to identify any
SNPs that tend to “explain” at least part of the correlations, since such SNPs might play an
important role in co-regulation of the expression of the beta subunits.

4.2 Methods
Gene expression levels of the three beta subunit genes (PSMB1, PSMB2, and PSMB5) were
measured, along with 90 single nucleotide polymorphisms (SNPs) within these three genes.
All measurements were made on 263 Coriell Cell Repository samples, representing
unrelated subjects from four ethnic groups (African American, Caucasian American, Han
Chinese American, and Mexican American). Excluding five subjects that had either missing
expression levels or missing SNP genotypes, we analyzed the remaining 258 individuals.
Because most of the measured SNPs had small minor allele frequencies (MAFs), only nine
SNPs with MAF greater than 0.05 were used in our analyses. Because the original gene
expression levels were skewed, we transformed them using logarithm base two. To avoid
possible confounding effects of ethnicity and gender, we regressed the gene expression
levels on indicators of ethnic group and gender and used the residuals in the two-stage
procedure. We first used only the nine SNPs as covariates in our two-step procedure, and
then repeated our tests for each pair of gene expression levels, using the SNPs and the
remaining gene expression level as covariates.

4.3 Results
4.3.1 Using only SNPs as Covariates—When using only SNPs as covariates with p=9
for the Bonferroni correction, no SNP was selected in the first stage, even when LUnion was
used. We then evaluated whether the effective number of independent covariates would be
more useful than the conservative Bonferroni correction. The variance of the eigenvalues of
the correlation matrix for the nine SNPs was 1.35. By formula (11), the effective number of
independent covariates was peff=7.8. Using this for the Bonferroni correction, SNP rs941718
in gene PSMB5 was correlated with gene expression level PSMB5. However, the marginal
and partial correlations were not statistically significantly different. Details about the
correlations are reported in Tables VIII-XI. Notice that the correlations did not change very
much after conditioning on individual SNPs. As a result, the partial and marginal
correlations were highly correlated.

4.3.2 Using both SNPs and Expression Phenotypes as Covariates—When we
used the Bonferroni correction that assumed that all covariates were independent and the
LIntersect set, the first step of our two-step procedure always selected the remaining gene
expression level when studying the correlation of a pair of gene expression levels. As shown
in Table VII, when conditioning on each of the three gene expression levels, namely
PSMB1, PSMB2, and PSMB5, the correlations of the other two expression levels were
greatly reduced: from 0.519 to 0.390 (p-value = 3.71×10-6) for PSMB1 and PSMB2; from
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0.408 to 0.182 (p-value = 2.28×10-10) for PSMB1 and PSMB5; and from 0.553 to 0.411 (p-
value = 4.84×10-6) for PSMB2 and PSMB5. Although we did not find a set of SNPs that
explained the pairwise correlations among the gene expression levels of PSMB1, PSMB2,
and PSMB5, our results suggest that these subunits might nonetheless be interacting with
each other. Conditional on one of them, the correlation between the other two can be
substantially reduced, although not to a zero level. Further studies are needed to understand
the genetic variants that might further explain these correlations.

5. DISCUSSION
We proposed a statistical framework to first select a set of covariates and then to test if the
set explains the correlation of two gene expression traits. This is based on the fact that if a
set of covariates causes the correlation between a pair of gene expression levels, then the
partial correlation between the two gene expression levels can be reduced relative to the
marginal correlation when conditioning on the set of covariates. An implicit assumption of
our methods is that relationships among variables are linear. If this is not true, but
relationships are monotonic, then our methods could be applied to Spearman correlations
and partial correlations, which can be achieved by replacing observations with their ranks.

We first introduced two asymptotic tests to test the difference between a marginal and a
partial correlation, which Steiger and Browne [17] showed to be asymptotically equivalent.
The results from our simulations suggest that the tests generally achieve the nominal Type I
error rate when the correlation between response Y and covariates (X's) is not small,
especially for the test based on Fisher's z-transformation with adjustment for small samples.
We also developed a two-stage procedure to first search for a set of covariates to condition
on, and then to test whether the partial correlation differs from the marginal correlation.
Currently we only focus on the relationship of a pair of gene expression levels. We may also
want to test whether the correlation matrix of a group of gene expression levels changes
after conditioning on some covariates. The work by Steiger and Browne [17] provides
guidelines for comparing whether two correlated correlation matrices are statistically
different or not. Notice that the null hypothesis, i.e., the partial and marginal correlations are
equal, indicates a special structure about the correlation matrix. Therefore, it can be tested
using methods derived for testing different structural equation models [31]. However, to do
that, we need to write the partial correlation as a function of all pairwise marginal
correlations. As mentioned by Lord [22] and Steiger and Browne [17], this again leads to
computational complexities.

In the first step of our two-step procedure, we proposed a “union” and an “intersection”
method to select covariates for conditioning at the second stage. The union method selects
covariates that are associated with at least one of the two gene expression levels, while the
intersection method selects covariates that are associated with both gene expression levels.
While the union method tends to follow the procedures of a Gaussian graphical model, the
intersection method is more closely related with testing whether a set of covariates
“explains” the correlation of two gene expression levels. It is possible, however, for the
union method to detect more subtle associations. For example, a covariate could be truly
associated with each of two expression levels, but achieve statistical significance for only
one of the traits due to random fluctuation, and perhaps limited power.

Our goal was to test whether a set of SNPs can explain the correlation between two gene
expression levels. If the linear correlation between two gene expression traits is completely
caused by a set of SNPs, and there are no other casual factors, then the expected partial
correlation will be reduced to zero. Although we expect the partial correlation to be closer to
zero than the marginal correlation, it is possible that this may not occur. The sign of the
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difference between marginal and partial correlations depends on several factors, such as
whether the effect of SNPs on a gene expression level is positive or negative, the sign of the
correlation between a pair of gene expression levels, as well as whether there are
unidentified or unmeasured factors. Similar to the decomposition of the marginal correlation
provided by Jones and West [32], a partial correlation can also be decomposed into sums of
“path” weights using marginal correlations in a gene relevance network [33] (i.e. a
covariance graph that is based on marginal correlations). Consider a situation where a set of
SNPs increases the expression level for one gene but decreases the expression level of
another gene, i.e.,

and all covariates are independent and have a normal distribution with mean 0 and variance
20. The two random errors are assumed independent with variances 20. With these
parameters, the marginal correlation between Y1 and Y2 is -0.4. In contrast, after
conditioning on the three covariates X1, X2, and X3, the partial correlation is 0.5. Therefore,
conditional on a subset of the shared covariates, the partial correlation can be on the
opposite side of zero from the marginal correlation. For this reason, we prefer two-sided
tests than one-sided tests in the second step of our two-step approach.

Zhu et al. [13] found that LD among genetic markers can influence the construction of
genetic networks. Suppose there are two SNPs in LD and that each SNP is associated with a
different gene expression level. Also assume that only one of the two SNPs was measured.
Then we might falsely draw the conclusion that the measured SNP explains the correlation
between the two gene expression levels, at least partially. Therefore, although we have used
the word “explain” throughout this paper, the results based on our methods can only be
interpreted in a statistical way, not in a biological way. In other words, our statistical tests
can only provide suggestive results whose biological meaning has to be further identified
and confirmed by carefully designed experiments.

As shown by Brem and Krugylak [12], many expression traits are regulated by non-additive
genetic mechanisms. Therefore, studying gene-gene interactions (epistatsis) and gene-
environment interactions can be crucial to construct a realistic network. Because our current
procedure only considers covariates that are at least marginally correlated with gene
expression levels, interactions among covariates that represent gene-gene and gene-
environmental interactions with weak marginal effects may not be detected. In the future, we
plan to generalize our covariate selection method in the first stage such that interactions
among genetic markers, quantitative gene expression traits, and environmental factors can
be modeled in an effective way.

In the covariate selection step of our union and intersection methods, we selected covariates
that showed marginal effects. It is possible to enhance this step by penalization techniques
that improve regression model prediction and interpretation (e.g. parsimony), particularly
when the number of covariates is much larger than the sample size. Some recent
developments in this area are lasso regression, a penalized least squares method that imposes
an L1 penalty on the regression coefficients [34,35], and the elastic net penalty that uses a
convex combination of lasso and ridge regression penalties, and hence capitalizes on the
strengths of each [36]. Schäfer and Strimmer [37] found that the maximum likelihood
estimate or the unbiased empirical covariance matrix is not an accurate estimate of the true
covariance matrix when the number of variables is similar to or greater than the number of
observations. To obtain an accurate and reliable estimate of the covariance matrix, they
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proposed a shrinkage approach. Note, however, that substituting alternative covariate
selection methods or estimators for covariance matrices still allows use of our general
procedures.

Our methods might be useful while attempting to construct genetic networks by integrating
gene expression levels and SNPs. This could be achieved by treating all the gene expression
levels other than the pair of interest, as well as the SNPs, as candidate covariates that might
explain the correlation. Evaluating whether the partial correlation differs from the marginal
correlation can generate more insights to underlying biological processes than simply testing
conditional independence, i.e., whether the partial correlation differs from zero, the
approach taken by traditional Gaussian graphical models. Note that Kulp and Jagalur [14]
also developed regression models to integrate gene expression levels with SNPs. Their
approach considered one expressed gene to be a target (dependent variable in regression)
and another to be a regulator (independent variable), and allowed the SNPs of the regulator
gene to interact with the level of expression of the regulator, building a model for trans-
acting regulators where the expression of the target gene depends on both the genotype and
expression of the regulator. Our approach is more general as a screening tool, because the
SNPs and expression levels we condition on can be anywhere in the genome.

Finally, although our work was motivated to evaluate whether some genetic components can
explain at least part of the correlation between a pair of gene expression levels, our proposed
methods to test the equality of a marginal and a partial correlation can be used in many other
multivariate settings. For example, in an epidemiological study, one could test if the
correlation between measures of calcium and low density lipid is due to variation in a set of
risk factors, such as body mass index, hypertension, smoking, and diabetes. Our proposed
procedure can be used to test if individual risk factors or a set of risk factors can explain at
least part of the correlation between traits of interest.
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APPENDIX

Derivative of ρY1Y2•X1,…,Xp with respect to a marginal correlation
To follow the notation used by Dwyer [23], let Z1 = Y1, Z2 = Y2 and Zi+2 = Xi. Let Σ denote

the correlation matrix of  and 〈Σ〉ij denote the (i, j) element of Σ. It is
easy to show that

By results from Dwyer (1967), the derivative of ρ12•34,…,(p + 2) with respect to a matrix Σ is
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where Kij is a (p + 2)×(p + 2) matrix with the (i, j) element equal to 1 and 0 elsewhere.
Notice that each ρij appears twice in Σ. Therefore,

Because the above formula involves many manipulations of sparse matrices, we may further
simplify the derivative as
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Table V

Type I error rates of the two-stage procedure

Model 1 Model 2

Union Intersection Union Intersection

σ2=10 .002 .000 .039 .025

σ2=15 .001 .001 .089 .039

σ2=20 .001 .002 .346 .050
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Table VII

Correlation coefficients and p-values for test of equality of marginal and partial correlations

PSMB1 PSMB2 PSMB5

PSMB1 .519 .408

PSMB2 .390 (3.71e-06) .533

PSMB5 .182 (2.28e-10) .411 (4.84e-06)

Values in upper triangle are marginal pairwise correlations. Values in lower triangle are partial correlations for pairs of phenotypes conditional on
the remainder phenotype and values in the parentheses are p-values for test of equality of marginal and partial correlations.
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