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Abstract
INTRODUCTION—In the latest edition of our series of neuroanatomical areas of importance for
neuropsychiatry, Wayne Drevets, MD, and Jonathan Savitz, PhD, have outlined the clinical
importance of the ventral anterior cingulate structures for the regulation of mood. This area was an
early target for interventional neurosurgery for depression some half a century ago, and today has
become one of the key sites of deep brain stimulation for affective disorders. The anterior cingulate
cortex was a part of the initial circuit of Papez thought to be related to the regulation of emotion.
However, since then, much experimental work has outlined different cingulate regions with differing
anatomical connectivity and functions. Drevets and Savitz draw attention to the subgenual area and
describe the local and distant anatomical connectivities that emphasize its relevance for several
neuropsychiatric disorders.

ABSTRACT—The anterior cingulate cortex (ACC) ventral to the genu of the corpus callosum has
been implicated in the modulation of emotional behavior on the basis of neuroimaging studies in
humans and lesion analyses in experimental animals. In a combined positron emission tomography/
magnetic resonance imaging study of mood disorders, we demonstrated that the mean gray matter
volume of this “subgenual” ACC (sgACC) cortex is abnormally reduced in subjects with major
depressive disorder (MDD) and bipolar disorder, irrespective of mood state. Neuropathological
assessments of sgACC tissue acquired postmortem from subjects with MDD or bipolar disorder
confirmed the decrement in gray matter volume, and revealed that this abnormality was associated
with a reduction in glia, with no equivalent loss of neurons. In positron emission tomography studies,
the metabolic activity was elevated in this region in the depressed relative to the remitted phases of
the same MDD subjects, and effective antidepressant treatment was associated with a reduction in
sgACC activity. Other laboratories replicated and extended these findings, and the clinical
importance of this treatment effect was underscored by a study showing that deep brain stimulation
of the sgACC ameliorates depressive symptoms in treatment-resistant MDD. This article discusses
the functional significance of these findings within the context of the preclinical literature that
implicates the putative homologue of this region in the regulation of emotional behavior and stress
response. In experimental animals, this region participates in an extended “visceromotor network”
of structures that modulates autonomic/neuroendocrine responses and neurotransmitter transmission
during the neural processing of reward, fear, and stress. These data thus hold important implications
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for the development of neural models of depression that can account for the abnormal motivational,
neuroendocrine, autonomic, and emotional manifestations evident in human mood disorders.

INTRODUCTION
The ventral anterior cingulate cortex (ACC) increasingly has been implicated in the modulation
of emotional behavior on the basis of neuroimaging studies in humans and lesion analyses in
experimental animals. In a neuroimaging study of mood disorders,1 it was discovered that this
region’s gray matter volume was abnormally reduced in familial bipolar disorder and major
depressive disorder (MDD). The magnetic resonance imaging- (MRI) based morphometric
measures acquired to demonstrate this abnormality were guided by positron emission
tomography (PET) images showing an abnormal reduction of cerebral blood flow (CBF) and
glucose metabolism in the prefrontal cortex (PFC) ventral to the corpus callosum genu (ie,
“subgenual”) in depression (Figure 1).1 Voxel-by-voxel analyses of neurophysiological data
from independent depressed samples versus controls localized the peak difference in activity
more specifically to the subgenual ACC (sgACC). Because antidepressant treatment did not
reverse these physiological abnormalities, MRI measures of gray matter volume of the sgACC
were obtained to determine whether the decrements in regional CBF and metabolism might be
accounted for by a corresponding reduction in cortex.2 This hypothesis was confirmed, as the
mean gray matter volume of the left sgACC was reduced in bipolar disorder and MDD
compared with healthy control samples.1

In pursuing the nature of these neuroimaging abnormalities, Ongür and colleagues3 undertook
postmortem assessments of brain tissue taken from the sgACC of subjects diagnosed as having
bipolar disorder, MDD, schizophrenia, or no psychiatric disorder. The sgACC implicated by
the neuroimaging data consisted of Brodmann area (BA) 24b and, to a lesser extent, BA 24a
anteriorly, and area 25 posteriorly (Figure 2).4 Although the PET data showed that the posterior
and anterior sgACC were affected, the peak difference between groups localized to the anterior
sgACC. Thus, initial histopathological assessments targeted the section of BA 24 located
ventral and posterior to the corpus callosum genu (Figure 3). These assessments confirmed the
reduction in mean sgACC gray matter volume in bipolar disorder and MDD versus healthy
controls, and associated this deficit with a reduction in glia and no equivalent loss of neurons.
3 The neuronal density appeared increased, as would be expected in association with a reduction
in neuropil (moss-like layer of gray matter containing axons and dendrites that occupies most
of the cortex volume).

SPECIFICITY OF STRUCTURAL NEUROIMAGING ABNORMALITIES IN THE
SUBGENUAL ANTERIOR CINGULATE CORTEX

Other studies have shown that this volumetric reduction existed early in the illness course of
MDD and bipolar disorder5,6 and was also evident in young adults at high familial risk for
MDD7,8 Furthermore, this abnormality persisted during antidepressant treatment and was
present in the manic and depressed phases of bipolar disorder.1 The volumetric deficit applied
to males8,9 and females,5 to psychotic unipolar and bipolar depression,6,10,11 and to bipolar-
spectrum illness.12

The variability of the volumetric measures of gray matter volume in the sgACC across subjects
was high, the ranges of values in ill and normative groups overlapped substantially, and not
all studies replicated these findings (Tables 1–4). Such variability is typical of neurobiological
data acquired from mood disordered samples, partly because MDD and bipolar disorder appear
heterogenous with respect to etiology, and studies generally find that subsets, rather than entire
samples, of subjects meeting criteria for these disorders manifest biological markers for
affective disease. For example, elderly MDD subjects with late-onset depression show an
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increased prevalence of neuroimaging correlates of cerebrovascular disease, including
nonspecific signs of atrophy, but did not show evidence of focal reductions.7 Research by
Drevets and colleagues13 limited the sample selection to early-onset MDD and bipolar disorder
cases, who have shown volumetric abnormalities that are localized more specifically to some
PFC and temporal lobe structures.

In unipolar depressives, to further enhance the sensitivity for identifying neurobiological
markers for affective illness, Drevets and colleagues1 initially selected cases according to
criteria for “familial pure depressive disease,” a condition defined by having an MDD subject
with a first-degree relative with MDD, but no first-degree relative with mania, alcoholism, or
sociopathy.21 In contrast to MDD samples with familial pure depressive disease or familial
bipolar disorder, subjects who met criteria for depression spectrum disease (MDD subjects
who have a first-degree relative with alcoholism or sociopathy21 did not differ significantly
from healthy controls with respect to the mean sgACC glucose metabolism29 or volume) (J.
Savitz, PhD, et al, unpublished data, 2008).

Drevets and colleagues1 also enhanced the likelihood of identifying biological markers in
bipolar disorder by selecting subjects who had first-degree relatives with bipolar disorder. The
extent to which the neuroimaging abnormalities in the sgACC also extend to non-familial cases,
thus, remained unclear. An MRI study from an independent laboratory6 found that the mean
sgACC gray matter volume (defined using the same anatomical landmarks we used) was
reduced significantly versus controls in bipolar disorder subjects with mood disordered first-
degree relatives, but not in bipolar disorder subjects without mood disordered first-degree
relatives. Consistent with these data, McDonald and colleagues42 showed that reduced volume
of a right “perigenual” ACC region that included both the sgACC and the ACC situated anterior
to the corpus callosum genu (ie, “pregenual”; pgACC) was associated with increasing genetic
risk for bipolar disorder (based upon the numbers of affected relatives). Boes and
colleagues8 found that the left pgACC (sgACC plus pgACC) volume was smaller in boys with
sub-clinical depressive symptoms, and that the negative correlation between left sgACC
volume and depression symptoms was particularly robust in boys with a family history of
depression.

In more recent research, morphometric MRI studies4 divided this region into anterior and
posterior sgACC regions, which corresponded approximately to BAs 24 and 25, respectively
(Figure 2). The posterior sgACC appears homologous with the infralimbic cortex (BA 25) of
the rodent and monkey on the basis of cytoarchitectonic and connectional features.4 The
posterior sgACC volume was reduced in MDD cases with psychotic features, but not in a
psychiatric control group with schizophrenia.10 Only the MDD group showed an increase in
posterior sgACC gray matter after a 2-year follow-up period (of naturalistic treatment). For
the MDD subjects, but not for the subjects with schizophrenia, the Global Assessment Scale
scores during follow-up correlated positively with cortical depth at baseline and with volume
increases during follow-up. Thus, the volumetric abnormalities in this region may predict and
reflect the course of depressive illness.

The finding that the posterior sgACC volume may increase in association with prolonged
clinical improvement is noteworthy based upon cross-sectional studies (Neumeister et al,
unpublished data, 2008) of MDD cases studied during long-term remission. Despite the finding
that the sgACC volume deficit in MDD showed no significant change during antidepressant
treatment for a mean of 4 months,36 subjects with a history of MDD who were selected for
their capacity to remain in remission while unmedicated for at least 3 months (and a mean of
several years) showed sgACC volumes that were significantly higher than those of controls.
These cross-sectional data did not allow determination of whether such subjects had manifested
reduced sgACC volume during depression that then had increased during prolonged remission,
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or whether these subjects were instead resilient to the pathophysiologcal process that led to the
reduction in sgACC volume during MDD. Longitudinal studies are needed to elucidate this
issue, but the possibility that such individuals possess (a) resilience factor(s) that allows them
to recover from major depressive episodes without the development of chronic illness would
hold great potential clinical importance in mood disorders research.

However, chronic lithium treatment, which exerts robust neurotrophic effects in animal
models, has been associated with increasing gray matter volume toward normal in treatment
responders in the sgACC and other PFC areas (Figure 3).50

Partly compatible with these data, Bearden and colleagues47 reported that the volumes of the
left ACC, including of the sgACC, were greater in lithium-treated bipolar disorder subjects
than both healthy controls and bipolar disorder subjects not receiving lithium. In magnetic
resonance spectroscopy studies of bipolar disorder, chronic lithium treatment also was
associated with increased concentrations of N-acetyl-aspartate (NAA), a marker of neuronal
integrity.52

ANATOMICAL SPECIFICITY OF SUBGENUAL ANTERIOR CINGULATE
CORTEX ABNORMALITIES

Most neuroimaging studies have not identified significant differences between mood
disordered and healthy control groups in the volumes of the whole brain, although several
groups have reported gray matter loss in other portions of anterior or posterior cingulate cortex.
62 In the ACC, abnormalities in CBF/metabolism, tissue volume, and glial cells have been
demonstrated in the ACC situated anterior to the corpus callosum genu (ie, pgACC}. This
region includes portions of BAs 24 and 32, an area that also forms an integral part of the ventral
“emotion” circuit implicated in affective illness.63

The sgACC shares similarities with the pgACC area situated immediately adjacent to the
sgACC, such that distinctions of the cortex at the actual sgACC/pgACC interface seem
arbitrary. The anterior sgACC and the adjacent ventral pgACC both are cytoarchitectonically
BA 24 (Figure 4), and they share similar anatomical connectivity.4 Moreover, the abnormal
reductions of glia in MDD extend to the pgACC (BA 24)64 as well as to the orbitofrontal and
dorsal anterolateral PFC (BA 9)65–67 and the amygdala.68,69 Hence, the term “perigenual”
ACC is often applied to the ACC near the genu, and for comparison we listed findings in the
pgACC together with those in the adjacent sgACC in Tables 1–4.

NEUROPHYSIOLOGICAL IMAGING STUDIES OF SUBGENUAL ANTERIOR
CINGULATE CORTEX ACTIVITY

Nevertheless, the functions of the anterior sgACC and more dorsal regions of the pgACC
appear distinct with respect to some neuroimaging studies of emotional behavior. The tissue
near the sgACC/pgACC junction shows increased hemodynamic activity during a variety of
emotional-behavioral tasks, including tasks involving sadness induction70,71; exposure to
traumatic reminders72; selecting sad or happy targets in an emotional go-no-go study73;
monitoring of internal states in individuals with attachment avoidant personality styles74; and
extinction learning to previously fear-conditioned stimuli.75 These findings suggest in humans
roles the ACC in the automatic regulation of emotional behavior. In contrast, more dorsal
regions of the pgACC show physiological responses to more diverse types of emotionally
valenced or autonomically arousing stimuli.76–78 In mood disorders, the sgACC activity
frequently has been shown to correlate positively with the severity of depressive symptoms,
79 whereas the pgACC activity has more consistently been linked to treatment outcome.80
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The reduction in resting sgACC CBF and metabolism that we initially observed in depressed
bipolar disorder and MDD subjects has been replicated by other studies of MDD20,26,38 and
bipolar disorder (Tables 1 and 2).24,37–39 These findings also were extended by data showing
that metabolic reductions predate the onset of clinical symptoms, as Kumano and
colleagues31 found that cancer patients who went on to develop depression had lower baseline
metabolic rates of the sgACC compared with cancer controls who did not become depressed.
However, other studies reported increased metabolic activity in the sgACC in primary15,16,
19,28,30,41,45,81 or secondary depression.82

These apparently discrepant results may be explained by the interrelationships between deficits
in gray matter volume and physiological imaging data. The reduction in sgACC volume is
sufficiently prominent (ranging in magnitude from 15% to 50% across positive studies [Tables
3 and 4]) to produce partial volume effects in functional brain images due to their relatively
low spatial resolution. Therefore, although relative to controls, the depressed MDD and bipolar
disorder subjects showed metabolic activity that appeared reduced in the sgACC,1 when this
volumetric deficit was taken into account by correcting the metabolic data for the partial volume
averaging effect associated with the corresponding gray matter reduction, metabolism instead
appeared increased in the sgACC in the unmedicated-depressed phase and normal in the
medicated-remitted phase.83

Consistent with the conclusions of these partial volume corrections, researchers consistently
show that the sgACC metabolism is elevated in the depressed phase relative to the remitted
phase of the same MDD subjects. For example, in studies of remitted MDD subjects, the sgACC
metabolism increases during depressive relapse induced during either tryptophan depletion84

or catecholamine depletion.85 Moreover, the sgACC metabolism decreases during effective
antide-pressant treatment. For example, Drevets and colleagues,1 Drevets and colleagues,38

Holthoff and colleagues,25 and Mayberg and colleagues16 reported a remission-associated
decrease in the activity of this region during antidepressant treatment, Nobler and
colleagues86 obtained analogous results after ECT administration, and Mayberg and
colleagues28 showed that CBF decreased in the sgACC and other ventromedial PFC regions
during improvement associated with deep brain stimulation of the sgACC. Also consistent with
these data, several studies have shown that in MDD the depression severity correlates positively
with blood flow or metabolism in the sgACC79 compatible with evidence that blood flow
increases in the sgACC in healthy humans during experimentally induced sadness.70,71

Finally, the abnormal elevation of sgACC metabolism that Mah and colleagues43 and
others39 observed in depressed bipolar disorder subjects were limited to cases who were
medicated chronically with lithium or divalproex. Chronic lithium treatment resulted in
increased gray matter volume in the sgACC (Figure 3),3 consistent with evidence from
preclinical studies87 indicating that lithium and divalproex exert neurotrophic and
neuroprotective effects in the frontal cortex of experimental animals. If the increase in sgACC
tissue is sufficient to reduce the partial volume averaging effect in PET images, then metabolic
activity would be imaged as being elevated in such depressed subjects versus controls (Table
5), Longitudinal imaging studies acquired both pre- and post-mood stabilizer therapy are
needed to characterize relationships between volume and metabolism.

NEUROPATHOLOGICAL MEASURES: CORRELATIONS WITH RODENT
MODELS OF REPEATED STRESS

Although it remains unclear whether they reflect a neurodevelopmental abnormality or an
acquired effect of recurrent illness, it is noteworthy that in regions that appear homologous to
areas where gray matter reductions are evident in depressed humans (ie, medial PFC,
hippocampus), repeated stress results in dendritic atrophy and reductions in glial cells in
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rodents.88–92 Dendritic atrophy putatively would be reflected by a decrease the volume of the
neuropil. These data suggest that impaired emotion regulation may contribute to the volumetric
abnormalities found in these structures in MDD, by permitting stress responses that are
exaggerated in magnitude or duration.92 Such changes could, in turn, exacerbate the emotion
dysregulation associated with bipolar disorder, as in rodents dendritic atrophy arising in the
medial PFC during repeated stress resulted in impaired modulation (ie, extinction) of
behavioral responses to fear-conditioned stimuli.91 Notably, when rats were subjected to
repeated stress, the dendritic atrophy could be reversed by lithium administration,90 resembling
the effects of lithium on the gray matter reductions in bipolar disorder (Figure 3).

The stress-induced dendritic remodeling process depends upon interactions between the
increased N/-methyl-D-aspartate receptor stimulation and glucocorticoid secretion associated
with repeated stress.92 The depressive subtypes (eg, bipolar disorder, familial pure depressive
disease) who show regional reductions in gray matter volume also show evidence of increased
cortisol secretion during stress94 and glutamatergic transmission (eg, elevated glucose
metabolism predominantly reflects corresponding increases in glutamatergic transmission.95

Notably, impaired sgACC function in mood disorders may conceivably contribute to cortisol
hypersecretion in depression.96 Diorio and colleagues97 showed that glucocorticoid receptors
expressed in the ventral ACC play a major role in the negative feedback effect of glucocorticoid
secretion during stress, and that lesions of the prelimbic and infralimbic portions of the ACC
increase the adrenocorticotropic hormone and corticosterone (CORT) responses to restraint
stress. Conversely, CORT implants in these regions decreased the adrenocorticotropic
hormone and CORT responses to restraint stress.

Another potential predisposition for undergoing excessive remodeling in the sgACC may be
the “short” allele of the serotonin transporter promoter length polymorphism. This
polymorphism was associated with reduced gray matter in the sgACC, reduced functional
connectivity between the amygdala and the sgACC, and higher temperamental anxiety in
otherwise healthy s-carriers.97 Conceivably, this effect may prove maladaptive under severe
stress, potentially underlying the increased risk the s-allele confers for developing depression
within the context of stress.98

RELATIONSHIP BETWEEN STRUCTURAL ABNORMALITIES IN THE
SUBGENUAL ANTERIOR CINGULATE CORTEX AND OTHER REGIONS

The sgACC shares substantial, predominantly ipsilateral anatomical connections with the
amygdala and subiculum, and it is possible that the left-lateralized volumetric reductions in
these structures are related. In the amygdala, left-lateralized reductions in glia have been
demonstrated in MDD,68,69 although the literature disagrees about the direction and existence
of volumetric changes in mood disorders. In the hippocampus, MDD subjects showed greater
decrements in volume following fixation (implying a deficit in the neuropil),99 while, more
specifically, in the hippocampal subiculum/ventral CA1 region, bipolar disorder subjects had
reductions in synapses and synaptic proteins100,101 and left-lateralized reductions in gray
matter102 compared with controls.

The sgACC also projects to the ventromedial striatum and the accumbens area,4 which were
reported to be abnormally small in a postmortem volumetric study of mood disorders,103 and
to the periventricular and mediodorsal nuclei of the thalamus that line the third ventricle wall.
Although, third ventricle enlargement is consistently found in bipolar disorder, the specific
tissue where volume loss resulted in ex vaccuo changes in third ventricle size has remained
unclear.7,13 Nevertheless, taken together, these data suggest that mood disorders are associated
with a neuropathological process affecting circuits that involve the sgACC together with
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anatomically related parts of the orbitomedial PFC, amygdala, hippocampus, striatum, and
thalamus.

POTENTIAL CLINICAL CORRELATES OF SUBGENUAL PREFRONTAL
CORTEX DYSFUNCTION

In monkeys and other experimental animals, the putatively homologous cortex to the sgACC
shares extensive anatomical connections with the amygdala; subiculum; hypothalamus;
accumbens; ventral tegmental area (VTA); substantia nigra; raphe; locus ceruleus;
periaqueductal gray and brainstem autonomic nuclei; and other areas of the orbitomedial PFC.
4,76 These structures are implicated in the modulation of emotional behavior, raising the
possibility that abnormal synaptic interactions between these areas and the sgACC may
contribute to disturbances in emotional processing or regulation.3

Rats with bilateral lesions of the ACC and dorsal prelimbic cortex show exaggerated freezing
behavior and heart rate increases during exposure to fear-conditioned sensory and/or contextual
stimuli.104,105 In contrast, bilateral lesions involving the infralimbic and the ventral prelimbic
cortices result in reduced heart rate responses to fear-conditioned stimuli.105 Sullivan and
Gratton106 more specifically showed that rats with lesions involving the left infralimbic,
prelimbic, and anterior cingulate cortices demonstrated heightened sympathetic autonomic
arousal and exaggerated CORT responses to restraint stress relative both to control animals
and to animals with right-sided lesions of the same areas. In contrast, right-lesioned animals
showed attenuation of the CORT rise and the autonomically mediated gastric stress pathology
associated with restraint stress. From these data, Sullivan and Grattan106 concluded that left
ventromedial PFC lesions disinhibit the function of the right ventromedial PFC, which
mediates the heightened sympathetic autonomic, affective, and hypothalamic-pituitary-adrenal
axis arousal seen in the left-lesioned animals. In mood disorders, an altered balance between
left and right sgACC function conceivably may contribute to the heightened affective,
neuroendocrine, and sympathetic autonomic arousal seen in depression.

For example, depression has been associated with a reduction in the parasympathetic-to-
sympathetic tone that is hypothesized to contribute to the elevated risks for developing
ventricular tachycardia, myocardial infarction, and sudden death in depressed patients with
cardiovascular disease.107 The extensive interconnections between the posterior sgACC (BA
25) and the nucleus tractus solitarious of the vagus nerve that mediate parasympathetic function
led to this region initially being termed “visceromotor cortex.”105 The anterior sgACC and
pgACC share more prominent projections with the PAG columns that mediate sympathetic
autonomic expression.108 Lesions of the ventromedial PFC also alter parasympathetic
autonomic function in rats in a manner that shows an intriguing parallel with autonomic
abnormalities reported in humans with MDD.105 Together, these data suggest the hypothesis
that dysfunction of the sgACC results in understimulation of parasympathetic tone in mood
disorders.

Humans with lesions that include the sgACC demonstrate abnormal autonomic responses to
emotional experiences, inability to experience emotion related to concepts that ordinarily evoke
emotion, and inability to use information regarding the likelihood of punishment versus reward
in guiding social behavior.109 Based partly upon these observations110 proposed that the ability
to evaluate the consequences of social behavior depends upon visceral feedback mediated
through interactions between the ventromedial PFC, hypothalamic autonomic centers, and
brain-stem monoaminergic neurotransmitter systems. Although the ventromedial PFC lesions
under consideration affected such a large region that it was not possible to draw specific
conclusions regarding the sgACC from such cases, these observations, combined with the
known connectivity of the sgACC, suggest the hypothesis that pathological modulation of
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visceral feedback may underlie the oversensitivity to failure and pathological guilt in
depression and the insensitivity to the negative outcome of pleasurable or violent behavior in
mania.

Finally, the role of the ventral ACC in modulating the electrophysiological responses of VTA
dopamine neurons suggests this cortex may also participate in evaluating the salience of
rewards. Of the PFC areas that receive dopaminergic inputs, BA 24 of the ACC receives the
most dense dopamine innervation (principally from the VTA), and in rats, electrical or
glutamatergic stimulation of ventral ACC elicits burst-firing patterns of dopaminergic cells in
the VTA and dopamine release in the nucleus accumbens.76 The phasic, burst firing of
dopamine neurons and accompanying rise in dopamine release normally occur in response to
primary rewards and reward-predicting stimuli.111 The findings that glucose metabolism in
the sgACC is abnormally decreased in the depressed but increased in the manic phases of
bipolar disorder1 suggests the hypothesis that, in depression, reduced sgACC activity is
associated with diminished stimulation of mesolimbic dopamine release, resulting in the
absence of behavioral incentive, apathy, and anhedonia, whereas in mania increased sgACC
activity results in excessive stimulation of mesolimbic dopamine release, manifested by
exaggerated hedonic responses and elevated motivational drive.76

CONCLUSION: ROLE IN NEURAL CIRCUITS AFFECTED BY MOOD
DISORDERS

Neuroimaging, neuropathological, and lesion analysis data implicate an extended anatomical
network formed by the neural projections of the sgACC and other areas of the orbitomedial
PFC with the amygdala; hippocampus; superior and medial temporal gyri; ventral striatum;
mid- and posterior cingulate cortex; thalamus; hypothalamus; periaqueductal gray; and
habenula,4 in the regulation of the evaluative, expressive, and experiential aspects of emotion.
55 Impaired function within this network could conceivably dys-regulate emotional expression
and experience, conceivably giving rise to the clinical signs and symptoms of depression or
mania.7 CNS
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FIGURE 1. The area of reduced glucose metabolism in the subgenual PFC is illustrated in images
composed of voxel t-values that compare depressives and controls, shown in sagittal (left) and
coronal (right) sections1,2
This image was produced by a voxel-by-voxel computation of the unpaired t-statistic2 to
identify inherent differences in metabolism between samples of familial bipolar and unipolar
depressives relative to healthy controls.1 The t-images shown were generated to provide
optimal localization of a regional metabolic abnormality identified using other techniques,
which included comparisons involving independent subject samples,1 The negative t-values,
shown in a coronal section at 31 mm anterior to the anterior commissure (y=31 mm) and a
sagittal section at 3 mm left of the midline (x=−3 mm), correspond to areas where metabolism
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is decreased in the depressives relative to the controls. Both the stereotaxic center-of-mass of
the peak metabolic difference shown here (x=−2, y=32, z=−2; interpreted as in Table 1) and
that of the peak blood flow difference computed in an independent subject set(x=1, y=25, z=
−6) localized to the agranular region of the anterior cingulate gyrus ventral to the corpus
callosum. The mean normalized metabolism for each group is shown from Drevets and
colleagues.1 However, the area of reduced metabolism in the sgACC was at least partly
accounted for by a corresponding reduction in cortex in both the bipolar disordered and the
unipolar depressed groups relative to the control group (Figure 3). While the spatial resolution
of PET precludes clear laterality distinctions in midline structures, the MRI-based
neuromorphometric measures showed the grey matter volume reduction to be left-lateralized.
Anterior is to the left and dorsal toward the top.
* P<.025, control versus depressed.
† P<.05, control versus manic.
‡ P<.01, depressed versus manic.
PFC=prefrontal cortex; CC=corpus callosum; SgACC=subgenual anterior cingulate cortex;
PET=positron emission tomography; MRI=magnetic resonance imaging
Drevets WC, Price JL, Simpson JR Jr, et al. Subgenual prefrontal cortex abnormalities in mood
disorders. Nature. 1997;386:824–827.
Mazziotta JC, Phelps ME, Plummer D, Kuhl DE. Quantitation in positron emission computed
tomography, 5. Physical—anatomical effects. J Comput Assist Tomogr. 1981;5:734–743.
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FIGURE 2. Sagittal section through the midline of a human brain photographed postmortem and
marked to show the cytoarchitectonic areas established by dissection and histological
characterization of other human brain specimens*3
*The human subgenual (or “subcallosal”) anterior cingulate gyrus consists of agranular cortex
characterized as BA 24 anteriorly and BA 25 posteriorly.
C=cotex; BA=Brodmann area.
Ongür D, Ferry AT, Price JL. Architectonic subdivision of the human orbital and medial
prefrontal cortex. J Comp Neurol. 2003;460:425–449.
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FIGURE 3. Mean (±SEM) MRI-based volumes of the left sgACC gray matter differed between the
bipolar disordered, unipolar depressed, and control groups4

The left subgenual PFC/whole brain volume ratio also was reduced in the bipolar and unipolar
groups relative to the control group. Although the bipolar subjects who underwent PET imaging
had been unmedicated prior to scanning, additional bipolar subjects were included in the MRI
portion of the study who had been chronically medicated with lithium (n=4) or divalproex
(n=2). The mean volume for this medicated subsample is shown separately, and differed
significantly (P<.05) from both the unmedicated bipolar disorder and MDD groups, but did
not differ significantly from the healthy control group.
SEM=standard error of the mean; MRI=magnetic resonance imaging; sgACC=subgenual
anterior cingulate cortex; PFC=prefrental cortex, Li/VPA=lithium/divalproex; MDD=major
depressive disorder; PET=positron emission tomography.
Drevets WC, Price JL, Simpson JR Jr. et al. Subgenual prefrontal cortex abnormalities in mood
disorders. Nature. 1997;386:824–827.
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TABLE 5
Neuroimaging and Histopathological Abnormalities Evident in the Visceromotor Network4 in Early-Onset, Recurrent
MDD, and/or Bipolar Disorder*,93

Gray matter volume Cell counts, cell markers Glucose metabolismCBF

Brain Regions Dep vs Con Dep vs Rem

Dorsal medical/anterolateral PFC(BA 9) ↓ ↓ ↓ ↑

Frontal polar cortex (BA 10) ↓ ↓ ↑ ↑

sgACC ↓ ↓ ↓/↑† ↑

pgACC ↓ ↓ ↑ ↑

Orbital cortex/Ventrolateral PFC ↓ ↓ ↑ ↑

Posterior cingulate ↓ ↑ ↑

Parahippocampal cortex ↓ ↓ BD ↑ ↑

Amygdala ↓/↑‡ ↓MDD ↑ ↑

Ventromedial Striatum ↓ ↓ ↑ ↑

Hippocampus ↓ ↓ BD NS NS

Superior temporal gyrus/Temporopolar cortex ↓ ↑

Medial thalamus ↑ ↑
*
Empty cells indicate insufficient data.

†
In the sgACC the apparent reduction in CBF and metabolism in PET images of depressed subjects is thought to be accounted for by the reduction in

tissue volume in the corresponding cortex, as after partial volume correction for the reduction in grey matter the metabolism appears increased relative to
controls.

‡
The literature is in disagreement with respect to the amygdala volume in mood disorders.

MDD=major depressive disorder; CBF=cerebral blood flow; Dep vs Con=unmedicated depressives vs healthy controls, Dep vs Rem=unmedicated
depressives vs themselves in either the medicated or unmedicated remitted phases; PFC=prefrontal cortex; sgACC=subgenual anterior cingulate cortex;
pgACC=pregenual anterior cingulate cortex; BD=bipolar disorder; NS=differences generally not significant.

Reproduced with permission from Drevets WC, Furey ML. Emotional disorders: depresssion and the train. In: Squire L, et al. (Eds), The New Encyclopedia
of Neuroscience, 4th ed. New York, NY; Elsevier Publishing, Inc.; 2008
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