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Abstract

Kingston, Diehl, Kirk, and Castleman (Journal of Phonetics, 2008) present a sophisticated 

experimental design and detection theoretic analysis of the internal auditory structure of 

phonological contrasts. However, a potentially important aspect of multidimensional detection 

theory – the covariance structure of assumed underlying multivariate Gaussian perceptual 

densities – was left unexplored. We discuss Kingston, et al.'s approach in the context of a general 

definition of multidimensional d′ and present a description of two distinct configurations of 

perceptual densities requiring fundamentally different interpretations that account equally well for 

the “mean-shift integrality” results reported by Kingston, et al. We end with a brief discussion of 

approaches to distinguishing these underlying configurations empirically.

1. Background

Kingston, Diehl, Kirk, and Castleman (2008; henceforth, KDKC) report an extremely 

interesting investigation of the internal auditory structure of phonological contrasts. We 

applaud this work, since we believe that this is an important and largely unexplored part of 

phonetics. KDKC's design is quite sophisticated, and their use of Signal Detection Theory 

(Green & Swets, 1966; henceforth SDT) in the study of auditory perception has much to 

recommend it.

This letter is intended to point out some additional subtleties of multidimensional SDT (also 

called General Recognition Theory, henceforth GRT; Ashby & Townsend, 1986, inter alia) 
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which are left unexplored by KDKC (and which suggest interesting areas for future work). 

Specifically, their analyses rely on potentially unwarranted assumptions about underlying 

multidimensional perceptual distributions. Alternative explanations are possible for at least 

some of their findings.

The common (unidimensional) SDT measure of sensitivity – d′ – relies on the assumption 

that the random perceptual effects of interest are normally distributed. Central to KDKC's 

design, though, are stimuli situated in various two-dimensional acoustic spaces. Under the 

assumption that the acoustic dimensions correspond to distinct perceptual dimensions, the 

random perceptual effects of the two-dimensional stimuli will produce bivariate (normal) 

perceptual distributions. A unidimensional normal distribution is completely specified by 

two parameters – a mean and a variance. On the other hand, a bivariate normal distribution 

requires five parameters – two means, two variances, and a covariance.

Although KDKC's design is fairly complex, for our purposes the discussion may be limited 

to a subset of their stimuli without loss of generality. Consider the stimuli employed in 

KDKC's experiment 2a, which consist of a factorial combination of low and high F1 and 

short and long voicing continuation (see KDKC's Figure 5, p. 40). Because both low F1 and 

long voicing continuation are cues for [+ voice] and consist of relatively more energy at low 

frequencies, while high F1 and short voicing continuation are cues for [– voice] and consist 

of relatively less energy at low frequencies, KDKC hypothesize that F1 and voicing 

continuation will be perceptually integral.

If F1 and voicing continuation are perceptually integral, the perceptual effect of F1 will 

depend on the amount of voicing continuation, and the perceptual effect of voicing 

continuation will depend on the frequency of F1. The complement of perceptual integrality 

is perceptual separability. We would say that F1 is perceptually separable from voicing 

continuation if the perceptual effect of F1 did not depend on the amount of voicing 

continuation. Similarly, we would say that voicing continuation is perceptually separable 

from F1 if the perceptual effect of voicing continuation did not depend on the frequency of 

F1.

KDKC hypothesize that the pair of stimuli whose components vary in the same natural way 

(i.e., low F1, long continuation vs. high F1, short continuation), which, following KDKC, 

we will refer to as the positively correlated pair, will be easier to distinguish than the pair 

whose components vary in an opposing manner (i.e., high F1, long continuation vs. low F1, 

short continuation), which we will call the negatively correlated pair. In addition, they 

hypothesize that this pattern of relative discriminability will be due to perceptual integrality 

of a specific form, namely mean-shift integrality. Figure 1 depicts four equal likelihood 

contours (i.e., sets of points at constant height above the F1-voicing continuation plane) for 

four bivariate normal densities (i.e., modeled perceptual distributions) configured to 

illustrate mean-shift integrality. Each bivariate density has equal (unit) variance on each 

dimension and zero covariance (i.e., zero [perceptual] correlation). Figure 1 here is 

analogous to KDKC's Figure 2b (p. 32), but here the (co)variance structure of each 

perceptual distribution is explicitly represented (whereas in KDKC's Figure 2b, (co)variance 

is not illustrated).
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Note that other forms of integrality (i.e., failures of separability) are possible. This is 

because the definitions of separability and integrality are, in a sense, asymmetric. For 

example, F1 would be said to be separable from voicing continuation if, and only if, the 

perceptual effect of F1 were identical across levels of voicing continuation, regardless of 

whether or not the perceptual effects of voicing continuation are identical across levels of 

F1. Mutatis mutandis for the perceptual separability of voicing continuation from F1. On the 

other hand, perceptual integrality is anything other than this. To paraphrase Tolstoy, pairs of 

perceptually separable dimensions are all alike; every pair of perceptually integral 

dimensions are perceptually integral in their own way.

Failures of perceptual separability between F1 and voicing continuation are evident in the 

marginal panels of Figure 1. In the bottom panel, the dashed line marginal densities, which 

represent the perceptual effect of F1 for stimuli with long voicing continuation, are shifted 

relative to the solid line marginal densities, which represent the perceptual effect of F1 for 

stimuli with short voicing continuation. The same type of failure of perceptual separability 

on the other dimension is shown in the left panel. In this example, all marginal variances are 

the same.1

The diagonal d′ values of interest to KDKC would, in this case, be measured along the 

dashed and solid lines in the main (square) panel of Figure 1. KDKC observed statistically 

significantly larger d′ values for the same sign pair than for the opposite sign pair in their 

experiment 2a (as well as 2b). Careful inspection of Figure 1 should make it clear that this 

configuration of perceptual distributions would produce exactly this pattern of results.2 The 

positively correlated pair appear ‘farther apart’ from one another than do the negatively 

correlated pair.3

2. Generalized d′, separability, and independence

Unidimensional d′ is defined as the distance between the means of two univariate normal 

densities relative to their common or pooled standard deviation. When extended to a 

multidimensional situation, this d′ definition must take into account the complete covariance 

structure of both stimulus distributions. Thomas (1999, 2003) defined a generalization of the 

unidimensional d′, referred to as a generalized  :

1Note that it is logically possible for separability to hold on one dimension but not the other. Cast in terms of mean-shift integrality, 
the marginal perceptual effects of F1 could be identical across levels of voicing continuation (i.e., in Figure 1, only two marginal 
distributions would appear in the bottom panel, as in the bottom panel of Figure 2), whereas the perceptual effects of voicing 
continuation could shift across levels of F1 (i.e., the marginal distributions in the left panel could appear as they do in Figure 1). 
Preliminary analyses of simulated data indicate that the experimental manipulations and analyses described at the end of this paper are 
able to detect this kind of asymmetric failure of separability.
2With the appropriate decision rule, discussion of which is beyond the scope of this response letter.
3Notions of distance should be treated with care, as generalized d′ is not a metric (i.e., measure of distance) in that it violates the 
triangle inequality, though it does obey the minimality and symmetry conditions (Thomas, 2003).
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where  and σi are the mean vector and covariance matrix for the density corresponding to 

the ith stimulus, and superscript T indicates the vector transpose.

Conceptually, this  measures a “distance” between the stimulus means relative to a pooled 

standard deviation from the univariate random variables that arise from projecting the 

multivariate densities onto a chord connecting the means of the two stimuli whose 

sensitivity is being scaled. This  emanates from a decision strategy whereby the observer 

places an experienced percept into the response category whose perceptual mean is the 

closest in the Euclidean sense (Thomas, 2003) which is a reasonable strategy for the 

experimental condition typically used to compute a diagonal d′. Because of this, the pattern 

of d′ values observed by KDKC can also be produced by a configuration of perceptual 

densities wherein the two dimensions are mutually perceptually separable and statistical 

independence fails.

The parameters employed here were chosen to closely approximate the d′ values observed 

by KDKC, using Thomas' (1999, 2003) formula for generalized . A configuration 

exhibiting perceptual separability and negative covariance within perceptual densities is 

illustrated in Figure 2. In this configuration of perceptual distributions, because perceptual 

separability holds across the board, the perceptual effect of F1 is identical across levels of 

voicing continuation (as can be seen in the bottom panel), and the perceptual effect of 

voicing continuation is identical across levels of F1 (as can be seen in the left panel). 

However, because there is negative covariance in each density,  for the same sign pair 

3.62, and  for the opposite sign pair is 2.39. By way of comparison, for the illustrative 

parameters employed in generating Figure 1,  for the same sign pair is 3.54, while  for 

the opposite sign pair is 2.83 (cf. Figure 6, KDKC, p. 42, shaded bars).

Figure 3 illustrates the univariate densities for the positively and negatively correlated pairs 

(i.e., the projections of the bivariate densities onto the chords connecting these pairs' means) 

for the mean-shift integrality and failure of stochastic independence examples illustrated in 

Figures 1 and 2, respectively. In each case, the x-axes are scaled by the common standard 

deviation of the two densities to facilitate comparisons across panels. As is readily apparent, 

diagonal d′ alone is unable to distinguish between mean shift integrality and separability 

with failure of stochastic independence. Furthermore, because d′ is not a metric, the 

marginal d′s do not bear any useful relationship to the diagonal d′s (cf. KDKC's discussion 

on p. 35); these two cases cannot be disambiguated even with knowledge of d′ for F1 at each 

level of voicing continuation and d′ for voicing continuation at each level of F1.

3. Discussion

To be clear, no claim is being made in this letter that the alternative explanation is correct or 

that the explanation proffered by KDKC is incorrect. The point here is simply that a 

potentially important aspect of the multidimensional SDT model – the covariance structure 

of the bivariate perceptual distributions – was left unexplored in KDKC's analyses. 

Importantly, the two configurations of model parameters illustrated above produce patterns 
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of diagonal d′ essentially identical to those observed by KDKC, yet the interpretations of the 

underlying perceptual spaces differ substantially. As KDKC point out, if true mean-shift 

integrality underlies their data, this suggests that F1 and voicing continuation are mapped 

incompletely onto a single dimension. On the other hand, if the dimensions are separable but 

stochastic independence fails, this suggests that there is covarying perceptual noise in the 

(separable) processing channels for F1 and voicing continuation. Of course, it is also 

possible that both mean shift integrality and failure of independence underlie the data. The 

same basic argument applies to each case in which this particular pattern of diagonal d′s is 

observed.

It is important to note that these two theoretical possibilities – mean-shift integrality and 

(negative) within-stimulus perceptual covariance – are empirically indistinguishable using 

data obtained from a discrimination of the positively correlated pairs versus negatively 

correlated pairs, as they are mathematically equivalent in terms of predicted response 

probabilities. This fact may not be particularly important if one simply embraced one 

interpretation (e.g., mean-shift integrality) over the other (negatively covarying percepts) as 

the definition of perceptual interaction. However, in numerous publications, Ashby, 

Thomas, and their colleagues (Ashby & Townsend, 1986; Ashby, 1989, 2000; Thomas, 

2001, 2002) have argued that these sources of interactions are conceptually different, and 

hence, are, in principle, empirically distinguishable when probed using designs of sufficient 

complexity.

One such successful attempt to disambiguate these two possibilities can be found in Olzak & 

Wickens (1997) who examined the nature of the perceptual interaction between components 

of compound sine-wave gratings in visual discrimination tasks. Using enough response 

categories and stimulus conditions, they were able to convincingly argue in favor of a true 

mean-shift integrality for one pair of stimulus dimensions (see Fig. 10, p. 1116). Their 

interpretation of this observed integrality was that information from the two stimulus 

attributes were combined in a summing circuit and that the observer's responses were 

actually made on the basis of the univariate result of that summing circuit. This conclusion 

is fundamentally different from a covarying noise conclusion, in which channels that process 

the stimulus dimensions remain separate but may experience cross-talk or be influenced by a 

common third mechanism.

Fortunately, recent developments in the GRT framework may be able to disambiguate these 

alternatives. For example, Thomas (2001, 2002), Wickens (1992), and Silbert, Townsend, 

and Lentz (2007) have developed parameter estimation techniques and comparative model 

fitting analyses of visual (Thomas and Wickens) and auditory perception experiments 

(Silbert, et al.) in which complete factorial combinations of stimulus attributes (i.e., not just 

pairs) are presented. Analysis of response times has also proven useful in this regard (Ashby 

& Maddox, 1994; Thomas, 2001).

To give a brief outline of one suggested method for disambiguating failure of perceptual 

independence and failure of perceptual separability, Silbert, et al., presented complete 

factorial sets of stimuli in multiple stimulus presentation base rate conditions (e.g., in terms 

of KDKC's dimensions, one base rate condition would have long voicing continuation 
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stimuli presented more often than short voicing continuation stimuli, another would shift 

base rates in the opposite direction; analogous shifts in the presentation rate of high and low 

F1 stimuli could also be employed). Each base rate conditions produces a separate confusion 

matrix; the data aggregated across conditions then have degrees of freedom sufficient to 

constrain a fully general Gaussian GRT model (i.e., a model in which perceptual covariance 

and perceptual integrality may be modeled separately). In essence, multiple base rate 

conditions provide multiple observations of the shape and location of perceptual 

distributions. To the extent that negative covariance within distributions and shifts of means 

across distributions produce distinct patterns of identification confusions, they should be 

empirically distinguishable. We are currently carrying out simulations to test the ability of 

base rate manipulations and parameter estimation to distinguish between a large number of 

combinations of perceptual and decisional (failures of) independence and separability.

KDKC's work is, as it stands, exciting and very interesting; the role of auditory processing 

in speech perception deserves sophisticated study, which KDKC provide in generous 

measure. As the reader is undoubtedly aware, speech is an extremely complex signal, and 

the dimensions investigated by KDKC represent a small subset of the acoustic dimensions 

the could be profitably probed using GRT. We hope that everyone's interests will eventually 

be advanced through the application of more general, and more powerful, GRT tools to the 

perception of speech. KDKC's work shows the value of these tools in studying the structure 

within phonetic categories; they may also be productively applied to the structure between 

phonetic categories (e.g., Silbert, et al., 2007).
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Appendix: Illustrative Parameter Values

Mean Shift
Integrality

High F1
Short Voicing

High F1
Long Voicing

Low F1
Short Voicing

Low F1
Long Voicing

μx 0 0.25 2.25 2.5

μy 0 2.25 0.25 2.5

Failure of
Independence

High F1
Short Voicing

High F1
Long Voicing

Low F1
Short Voicing

Low F1
Long Voicing

μx 0 0 2 2

μy 0 2 0 2

For mean shift integrality: ; for failure of independence: 
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Figure 1. 
Example of Mean Shift Integrality. In the square panel (top right), the circles indicate equal 

likelihood contours of four bivariate normal densities. The plus signs indicate the means of 

the densities. The dashed line connects the positively correlated pair, and the solid line 

connects the negatively correlated pair. The bottom and left rectangular panels show the 

marginal (univariate normal) densities. In each marginal panel, solid-line densities 

correspond to the closer pair and dashed-line densities correspond to the more distant pair of 

bivariate densities.
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Figure 2. 
Illustrative Example of Separability and Failure of Stochastic Independence. In the square 

panel (top right), the ellipses indicate equal likelihood contours of four bivariate normal 

densities with negative covariance. The plus signs indicate the means of the densities. The 

dashed line connects the positively correlated pair, and the solid line connects the negatively 

correlated pair. The bottom and left rectangular panels show the marginal (univariate 

normal) densities. Because perceptual separability holds here, there are only two (solid line) 

marginal densities visible in each marginal panel.
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Figure 3. 
Projected 'Diagonal' Univariate Densities. Each panel depicts projected univariate densities 

for 'diagonal' pairs of stimuli. The top panel shows projected densities for the positively 

correlated pair in the mean shift integrality case illustrated in Figure 1. The second panel 

from the top shows projected densities for the negatively correlated pair in the mean shift 

integrality case. The third panel from the top shows projected densities for the positively 

correlated pair in the failure of stochastic independence case illustrated in Figure 2. The 

bottom panel shows projected densities for the negatively correlated pair in the failure of 

stochastic independence case.
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