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Low Dose Radiation Overcomes Diabetes-induced Suppression of

Hippocampal Neuronal Cell Proliferation in Rats

We investigated the effect of low dose radiation on diabetes induced suppression
of neurogenesis in the hippocampal dentate gyrus of rat. After 0.01 Gy, 0.1 Gy, 1
Gy and 10 Gy radiation was delivered, the dentate gyrus of hippocampus of strep-
tozotocin (STZ)-induced diabetic rats were evaluated using immunohistochemistry
for 5-bromo-2-deoxyuridine (BrdU), caspase-3, and terminal deoxynucleotidyl trans-
ferase-mediated nick end-labeling (TUNEL) staining. The number of BrdU positive
cells in the non-diabetic rats, diabetic rats without radiation, diabetic rats with 0.01
Gy radiation, diabetic rats with 0.1 Gy radiation, diabetic rats with 1 Gy radiation
and diabetic rats with 10 Gy radiation were 55.4 == 8.5/mm?, 33.3 + 6.4/mm?, 67.7
+10.5/mm?, 66.6 &= 10.0/mm?, 23.5 1 6.3/mm? and 14.3 = 7.2/mm?, respectively.
The number of caspase-3 positive cells was 132.6 = 37.4/mm?, 378.6 = 99.1/mm?,
15.0 = 2.8/mm?, 57.1 £ 16.9/mm?, 191.8 +44.8/mm? and 450.4 &=58.3/mm?, res-
pectively. The number of TUNEL-positive cells was 24.5 1 2.0/mm?, 21.7 £ 4.0/mmn?,
20.4+2.0/mnm?, 18.96 + 2.1/mm?, 58.3 &= 7.9/mm?, and 106.0 == 9.8/mm?, respec-
tively. These results suggest low doses of radiation paradoxically improved diabetes
induced neuronal cell suppression in the hippocampal dentate gyrus of rat.
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INTRODUCTION

Diabetes mellitus causes learning and memory deficits (1,
2) and cognitive impairment (3), resulting in dementia in se-
vere cases (4). The impact of diabetes mellitus on brain pathol-
ogy is increasingly being recognized. A recent study showed
that streptozotocin-induced diabetes produced a dramatic
decrease in cell proliferation in the rat dentate gyrus as com-
pared to controls (5). The dentate gyrus in the hippocampus
has been implicated in learning ability and memory capacity.
The results from this study suggest a potential role for alter-
ations in neurogenesis in the cognitive decline observed in
diabetes mellitus. Neurogenesis occurs in the hippocampal
dentate gyrus in a variety of mammals, including humans
(6). The factors related to cell proliferation in the dentate gyrus
are serotonin (7), enriched environment (8), estrogen (9), and
physical exercise (10). Conversely, adrenal steroid hormones
(11), stress (12), and aging (13) have been identified as neu-
rogenesis-inhibiting factors.

Radiation is also known to cause neuronal cell death in the
developing brain (14), reduced neurogenesis (15-17) and cog-
nitive impairment (18). However, low dose radiation shows
an adaptive protection effect in most mammalian cells (19).
If cells that had been exposed to a very low dose (1 cGy) of
radiography were subsequently exposed to a relatively high
dose (1 Gy), approximately half as many chromosome breaks
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were induced (20). Feinendegen et al. reported that except for
apoptosis and terminal cell differentiation, all protective respon-
ses to single exposures tend to be expressed maximally after
about 0.1 Gy and very little after more than about 0.5 Gy X-
or gamma-radiation (21). Because of this protective response,
we investigated the effect of low dose radiation for the dia-
betes-induced neuronal cell damage.

MATERIALS AND METHODS
Animals and treatments

Male Sprague-Dawley rats weighing 250+ 10 g at 7 weeks
of age were used in this experiment. All experimental proce-
dures were performed in accordance with the animal care gui-
delines established by the National Institute of Health (NIH)
and the Korean Academy of Medical Sciences. The animals
were housed under laboratory conditions at a controlled tem-
perature (20 = 2°C) and maintained under light-dark cycles,
each cycle consisting of 12 hr of light and 12 hr of darkness
(lighting from 7 AM to 7 PM) with food and water available
ad libitum.

In order to induce diabetes in the experimental animals, a
single intraperitoneal injection of 50 mg/kg streptozotocin
(STZ) (Sigma Chemical Co., St. Louis, MO, U.S.A.) was given
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to each animal. Animals in the control group received injec-
tions of an equivalent amount of normal saline. Blood glu-
cose levels were determined 2 days after the STZ injections
using a blood glucose tester (Arkray, Kyoto, Japan). Only ani-
mals exhibiting blood glucose levels of 300 mg/dL or higher
were used in this study.

Radiation

Whole body radiation was delivered by a linear accelerator
(Clinac 2100 C, Varian, U.S.A.) using 6 MV of radiography.
For the determination of the dose-dependence of radiation on
cell proliferation in the hippocampal dentate gyrus, rats were
divided into three groups: the control group, the 0.1 Gy radi-
ation group, and the 1 Gy radiation group (n=>5 in each group).

For the determination of the effect of radiation on cell pro-
liferation and cell death in the hippocampal dentate gyrus of
STZ-induced diabetic rats, the animals were divided into six
groups: the control group, the STZ-induced diabetes group,
the STZ-induced diabetes and 0.01 Gy radiation group, the
STZ-induced diabetes and 0.1 Gy radiation group, the STZ-
induced diabetes and 1 Gy radiation group, and the STZ-in-
duced diabetes and 10 Gy radiation group (n=>5 in each gro-
up). Ten min before radiation exposure, the animals were in-
jected intraperitoneally with 50 mg/kg BrdU (Sigma Chemi-
cal Co., St. Louis, MO, U.S.A.) and were sacrificed 2 hr after
the injection.

Tissue preparation

The animals were first fully anesthetized with Zoletil 50®
(10 mg/kg, i.p.; Vibac Laboratories, Carros, France), transcar-
dially perfused with 50 mM phosphate-buffered saline (PBS),
and then fixed with a freshly prepared solution consisting of
4% paraformaldehyde (PFA) in 100 mM phosphate buffer
(PB, pH 7.4). The brains were then removed, postfixed in the
same fixative overnight, and transferred into a 30% sucrose
solution for cryoprotection. Coronal sections of 40 #m thick-
ness were produced using a freezing microtome (Leica, Nus-
sloch, Germany).

BrdU immunohistochemical staining

BrdU immunohistochemical staining was used for the de-
tection of newly generated cells in the dentate gyrus accord-
ing to a previously described method (22). An average of 10
sections within the hippocampal region spanning from Breg-
ma -3.30 mm to Bregma -4.16 mm, of which about 80 sec-
tions in average were available, were selected from each brain.
The sections were first permeabilized by incubation in a solu-
tion of 0.5% Triton X-100 in PBS for 20 min. The sections
were then incubated in 50% formamide-2x standard saline
citrate at 65°C for 2 hr, denatured in 2 N HCl at 37°C for
30 min, rinsed twice in 100 mM sodium borate (pH 8.5),

and incubated overnight at 4°C with a BrdU-specific mouse
monoclonal antibody (1:600; Boehringer Mannheim, Mann-
heim, Germany). The sections were then washed three times
with PBS and incubated for 1 hr with a biotinylated mouse
secondary antibody (1:200; Vector Laboratories, Burlingame,
CA. US.A), followed by another 1 hr incubation with VEC-
TASTAIN® (Elite ABC Kit, 1:100; Vector Laboratories). For
staining, the sections were incubated for 5 min in a reaction
mixture consisting of 0.02% 3,3 -diaminobenzidine contain-
ing nickel chloride (40 mg/mL) (nickel-DAB) and 0.03%
H.O:; in 50 mM Tris-HCl (pH 7.6). The sections were then
washed three times with PBS and mounted onto gelatin-coat-
ed slides. The slides were air-dried overnight at room temper-
ature, and coverslips were mounted using Permount® (Fish-
er Scientific, Fair Lawn, NJ, U.S.A.).

Caspase-3 immunohistochemical staining

In order to detect caspase-3 expression, caspase-3 immuno-
histochemical staining was performed. Sections were drawn
from each brain and incubated overnight with mouse anti-
caspase-3 antibody (1:500; Santa Cruz Biotechnology, Santa
Cruz, CA, US.A.) followed by a 1 hr incubation with a bioti-
nylated mouse secondary antibody. The bound secondary an-
tibody was then amplified using a Vector Elite ABC kit® (Vec-
tor Laboratories). The antibody-biotin-avidin-peroxidase com-
plexes were visualized using 0.02% DAB and the sections
were mounted onto gelatin-coated slides. The slides were air-
dried overnight at room temperature, and coverslips were
mounted using Permount® (Fisher Scientific).

TUNEL assay

In order to detect apoptotic cell death, a TUNEL assay was
performed using the In Situ Cell Death Detection Kit (Roche,
Mannheim, Germany) according to a previously described
method (22). Briefly, the sections were mounted onto gelatin-
coated slides and air-dried overnight at room temperature.
The sections were post-fixed in ethanol-acetic acid (2:1) and
rinsed. The sections were then incubated with proteinase K
(100 pg/mL), rinsed, incubated in 3% H,O., permeabilized
with 0.5% Triton X-100, rinsed again, and incubated in the
TUNEL reaction mixture. The sections were rinsed and visu-
alized using a converter-POD with nickel-DAB. Mayer’s he-
matoxylin (Dako, Glostrup, Denmark) was used for counter-
staining. The slides were air-dried overnight at room temper-
ature, and coverslips were mounted using Permount® (Fish-
er Scientific).

Data analysis
The area of the dentate granular layer in the selected hip-

pocampus region was measured using Image-Pro Plus soft-
ware (Media Cybernetics, Silver Spring, MD, U.S.A.). The
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numbers of BrdU-positive, caspase-3-positive, and TUNEL-
positive cells in the dentate gyrus were counted hemilateral-
ly, and are expressed as the number of cells per mm? of the
granular layer. Statistical analysis was performed using a one-
way analysis of variance (ANOVA) followed by the Duncan
post-hoc test. The results are presented as the mean == standard
error mean (SEM). Differences were considered significant at
<0.05.

RESULTS

Effect of radiation on the neuronal cell proliferation in the
normal rats

The number of BrdU-positive cells in the dentate gyrus
was 45.9£3.4/mm? in the control group, 59.3 +5.2/mm?
in the 0.1 Gy radiation group, and 19.2+2.9/mm? in the 1
Gy radiation group (Fig .1). These results suggest that cell
proliferation in the dentate gyrus was suppressed by high-dose
radiation (1 Gy), in contrast to the low-dose radiation (0.1 Gy)
which enhanced cell proliferation.

Effect of radiation on the neuronal cell proliferation in the
diabetic rats

The number of BrdU-positive cells in the dentate gyrus
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Fig. 1. The effect of radiation on the number of 5-bromo-2'-deoxy-
uridine (BrdU)-positive cells in the dentate gyrus of normal rats.
Upper: Photomicrographs of BrdU-positive cells in the dentate gy-
rus. (A) Control group, (B) 1 Gy radiation group. A scale bar rep-
resents 50 um. Lower: The number of BrdU-positive cells in the
dentate gyrus in each group. (A) Control group, (B) 0.1 Gy radia-
tion group, (C) 1 Gy radiation group.
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was 55.4£8.5/mm? in the control group, 33.3 £ 6.4/mm?
in the STZ-induced diabetic rats, 67.7 £ 10.5/mm’ in the
STZ-induced diabetic rats with 0.01 Gy radiation, 66.6=%
10.0/mm? in the STZ-induced diabetic rats with 0.1 Gy radi-
ation, 23.5 = 6.3/mm? in the STZ-induced diabetic rats with
1 Gy radiation, and 14.3 £7.2/mm? in the STZ-induced dia-
betic rats with 10 Gy radiation (Fig. 2).

These results suggest that the suppression of neuronal cell
proliferation in the STZ-induced diabetic rats was aggravat-
ed by high doses of radiation (1 Gy and 10 Gy). In contrast,
low doses of radiation (0.01 Gy and 0.1 Gy) enhanced cell pro-
liferation in the dentate gyrus of STZ-induced diabetic rats.
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Fig. 2. The effect of radiation on the number of 5-bromo-2'-deoxyuri-
dine (BrdU)-positive cells in the dentate gyrus of streptozotocin
(STZ)-induced diabetic rats. Upper: Photomicrographs of BrdU-
positive cells in the dentate gyrus. (A) Control group, (B) strepto-
zotocin (STZ)-induced diabetes group, (C) STZ-induced diabetes
and 0.01 Gy radiation group, (D) STZ-induced diabetes and 10 Gy
radiation group. A scale bar represents 50 um. Lower: The num-
ber of BrdU-positive cells in the dentate gyrus in each group. (A)
Control group, (B) STZ-induced diabetes group, (C) STZ-induced
diabetes and 0.01 Gy radiation group, (D) STZ-induced diabetes
and 0.1 Gy radiation group, (E) STZ-induced diabetes and 1 Gy
radiation group, (F) STZ-induced diabetes and 10 Gy radiation

group.
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Effect of radiation on the caspase-3 expression in the
diabetic rats

The number of caspase-3-positive cells in the hippocampal
dentate gyrus was 132.6+37.4/mm? in the control group,
378.6399.1/mm? in the STZ-induced diabetic rats, 15.0 %
2.8/mm? in the STZ-induced diabetic rats with 0.01 Gy radi-
ation, 57.1 £16.9/mm? in the STZ-induced diabetic rats with
0.1 Gy radiation, 191.8 =44.8/mm? in the STZ~induced dia-
betic rats with 1 Gy radiation, and 450.4 % 58.3/mm? in the
STZ-induced diabetic rats with 10 Gy radiation (Fig. 3). The
caspase-3 expression in the dentate gyrus was increased in the
STZ-induced diabetic rats. Radiation therapy suppressed cas-
pase-3 expression in the dentate gyrus of STZ-induced dia-
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Fig. 3. The effect of radiation on the number of 5-bromo-2'-deoxyuri-
dine (BrdU)-positive cells in the dentate gyrus of streptozotocin
(STZ)-induced diabetic rats. Upper: Photomicrographs of BrdU-
positive cells in the dentate gyrus. (A) Control group, (B) strepto-
zotocin (STZ)-induced diabetes group, (C) STZ-induced diabetes
and 0.01 Gy radiation group, (D) STZ-induced diabetes and 10 Gy
radiation group. A scale bar represents 50 ym. Lower: The num-
ber of BrdU-positive cells in the dentate gyrus in each group. (A)
Control group, (B) STZ-induced diabetes group, (C) STZ-induced
diabetes and 0.01 Gy radiation group, (D) STZ-induced diabetes
and 0.1 Gy radiation group, (E) STZ-induced diabetes and 1 Gy
radiation group, (F) STZ-induced diabetes and 10 Gy radiation
group.

betic rats in a dose-reversible manner, except for the 10 Gy
radiation group.

Effect of radiation on the apoptosis in the diabetic rats

The number of TUNEL-positive cells in the hippocampal
dentate gyrus was 24.5 £ 2.0/mm? in the control group,
21.7+4.0/mm’ in the STZ-induced diabetic rats, 20.4 =+
2.0/mm? in the STZ-induced diabetic rats with 0.01 Gy radi-
ation, 18.9*2.1/mm? in the STZ-induced diabetic rats with
0.1 Gy radiation, 58.3 =7.9/mm? in the STZ-induced dia-
betic rats with 1 Gy radiation, and 106.0 = 9.8/mm? in the
STZ-induced diabetic rats with 10 Gy radiation (Fig. 4). Low
doses of radiation (0.01 Gy and 0.1 Gy) did not have a signifi-

150

=

o

o
T

Number of TUNEL-positive cells (mm?)
(o)
o
T

o

Il mal

Fig. 4. The effect of radiation on the number of terminal deoxynu-
cleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-
positive cells in the dentate gyrus of streptozotocin (STZ)-induced
diabetic rats. Upper: Photomicrographs of TUNEL-positive cells in
the dentate gyrus. (A) Control group, (B) streptozotocin (STZ)-in-
duced diabetes group, (C) STZ-induced diabetes and 0.01 Gy ra-
diation group, (D) STZ-induced diabetes and 10 Gy radiation gro-
up. A scale bar represents 50 yum. Lower: The number of TUNEL-
positive cells in the dentate gyrus in each group. (A) Control group,
(B) STZ-induced diabetes group, (C) STZ-induced diabetes and
0.01 Gy radiation group, (D) STZ-induced diabetes and 0.1 Gy ra-
diation group, (E) STZ-induced diabetes and 1 Gy radiation group,
(F) STZ-induced diabetes and 10 Gy radiation group.
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cant effect on the number of TUNEL-positive cells. Howev-
er, high doses of radiation (1 Gy and 10 Gy) increased the
number of TUNEL-positive cells in the dentate gyrus of the
STZ-induced diabetic rats.

DISCUSSION

The hippocampal dentate gyrus is a region of active prolif-
eration and neurogenesis within the adult brain. The influ-
ence of diabetes mellitus on these processes in the dentate gy-
rus is increasingly becoming recognized. For instance, it has
been reported that neuronal cell proliferation in the dentate
gyrus is decreased in STZ-induced diabetic rats (23). Accord-
ing to this study, STZ-treated type 1 diabetes rats showed
marked astrogliosis and neurogenesis deficit in the hippocam-
pus and increased expression of hypothalamic neuropeptides.
Our results showed that the number of BrdU-positive cells-
an indicator of the level of cell proliferation-in the STZ-induc-
ed diabetic rats was decreased to about 60% that of normal
rats. In addition, the suppression of neuronal cell prolifera-
tion in the STZ-induced diabetic rats was aggravated by high
doses of radiation (1 Gy and 10 Gy). In contrast, low doses
of radiation (0.01 Gy and 0.1 Gy) enhanced cell proliferation
in the dentate gyrus of STZ-induced diabetic rats. The dose
0.1 Gy was determined to be the threshold point. This was
consistent with other studies that reported that normal tissue
showed a protective response to a single exposure of radiation
around the 0.1 Gy dose. It has been demonstrated that except
for apoptosis and terminal cell differentiation, all protective
responses to single exposures tend to be expressed maximal-
ly after about 0.1 Gy and very little after more than about 0.5
Gy radiation (21, 24, 25). Feinendegen et al. reported that
depending on type of adaptive protection in a given cell sys-
tem, in most mammalian cells so far examined, the expres-
sion of adaptive protection had a maximum above 0.05 Gy
and below about 0.2 Gy (19, 21).

The present results show that caspase-3 expression increased
in the dentate gyrus of STZ-induced diabetic rats with high
dose radiation. However, the number of TUNEL-positive
cells did not change significantly in the dentate gyrus of the
STZ-induced diabetic rats as compared to normal rats. These
findings are similar to other reports (26, 27). Our present re-
sults demonstrate that high doses of radiation resulted in an
increase in the number of TUNEL-positive cells in the den-
tate gyrus of the STZ-induced diabetic rats. With low dose
radiation, 0.01 Gy and 0.1 Gy, the diabetes-induced increase
in caspase-3 expression in the dentate gyrus was suppressed.
The number of TUNEL-positive cells did not change as a re-
sult of low doses of radiation in the STZ-induced diabetic rats.

In this study, we have demonstrated that low doses of radi-
ation enhance cell proliferation in the dentate gyrus in both
normal and STZ-induced diabetes rats, with no concomitant
alterations in the rate of apoptotic neuronal cell death. These
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results suggest that low doses of radiation may improve dia-
betes induced neuronal cell suppression in the hippocampal
dentate gyrus.
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