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Abstract Somatic embryogenesis (SE) is induced in vitro
in Medicago truncatula 2HA by auxin and cytokinin but
rarely in wild type Jemalong. The putative WUSCHEL
(MtWUS), CLAVATA3 (MtCLV3) and the WUSCHEL-
related homeobox gene WOX5 (MtWOX5) were investi-
gated in M. truncatula (Mr) and identified by the similarity
to Arabidopsis WUS, CLV3 and WOX5 in amino acid
sequence, phylogeny and in planta and in vitro expression
patterns. MtWUS was induced throughout embryogenic cul-
tures by cytokinin after 24—48 h and maximum expression
occurred after 1 week, which coincides with the induction
of totipotent stem cells. During this period there was no
MtCLV3 expression to suppress MtWUS. MtWUS expres-
sion, as illustrated by promoter-GUS studies, subsequently
localised to the embryo, and there was then the onset of
MtCLV3 expression. This suggests that the expression of
the putative MtCLV3 coincides with the WUS-CLAVATA
feedback loop becoming operational. RNAi studies showed
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that MtWUS expression is essential for callus and somatic
embryo production. Based on the presence of MtWUS pro-
moter binding sites, MtWUS may be required for the induc-
tion of MtSERFI, postulated to have a key role in the
signalling required for SE induced in 2HA. M:WOXS5
expressed in auxin-induced root primordia and root meris-
tems and appears to be involved in pluripotent stem cell
induction. The evidence is discussed that the homeobox
genes MtWUS and MtWOX5 are “hijacked” for stem cell
induction, which is key to somatic embryo and de novo root
induction. In relation to SE, a role for WUS in the signalling
involved in induction is discussed.

Keywords Medicago - Root development - Somatic
embryogenesis - Stem cell formation - WUSCHEL -
WUSCHEL-related homeobox genes

Abbreviations

Aux Auxin

CLE  CLV3/endosperm surrounding region
CLV3 CLAVATA3

Cyt Cytokinin

EST Expressed sequence tag

GUS  f-Glucuronidase

RNAi RNA interference

SAM  Shoot apical meristem

SE Somatic embryogenesis

WOX WUSCHEL-related homeobox
WUS  WUSCHEL

Introduction

The homeobox gene WUSCHEL (WUS) encodes a homeo-
domain transcription factor that has been shown to be a
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regulator of a pool of pluripotent stem cells in the apical
meristem (Mayer et al. 1998; Béurle and Laux 2005; Reddy
and Meyerowitz 2005; Shani et al. 2006). Zuo et al. (2002)
identified gain-of-function mutants, which caused somatic
embryo formation in Arabidopsis in a range of tissues and
organs. The responsible gene was found to be identical to
WUS. Overexpression of WUS could induce somatic
embryogenesis (SE). Zuo et al. (2002) concluded that WUS
had a key role in the vegetative-to-embryogenic transition
and in addition to having its well-known role in meristem
development, could act as an embryo organiser. Gallois
et al. (2004) have also investigated ectopic WUS expression
and found that shoots could be induced in the roots and
somatic embryos in the presence of auxin. This suggested
that pluripotent or totipotent cells could be induced by WUS
depending on the hormonal environment.

In the shoot meristem WUS expression is regulated by
the small protein CLAVATA3 (CLV3) (Brand et al. 2000;
Fiers et al. 2007). As the population of stem cells increases
there is an increase in the synthesis and secretion of CLV3,
which subsequently causes a decrease in the population of
stem cells (Beveridge et al. 2007). CLV3 is proposed to
bind to the CLV1/CLV?2 receptor complex, initiating a sig-
nalling cascade, which leads to down-regulation of WUS
expression in the cells of the organiser region of the apical
meristem (Brand et al. 2000; Fiers et al. 2007; Ogawa et al.
2008). However there is no direct biochemical evidence for
CLV3 interaction with a CLV1/CLV2 receptor complex as
opposed to a CLVI/CLV1 complex. Miiller et al. (2008)
have evidence that the novel receptor kinase CORYNE and
CLV2 may act together, and in parallel with CLV1 homo-
dimers to perceive the CLV3 signal.

If overexpression of WUS can induce somatic embryos,
then it would be expected that a similar result could be
achieved by preventing the CLV signalling. Mordhorst et al.
(1998), using the primordia timing (pt), clvl and clv3 mutants
and pt clv double mutants, found a correlation between
increased shoot apical meristem size and an increased fre-
quency of seedlings producing embryogenic seed lines.

There is a family of transcription factors related to WUS
known as the WUSCHEL-related homeobox (WOX) gene
family that includes WOXS5 (Haecker et al. 2004). In Ara-
bidopsis WOXS5 is expressed in quiescent cells of the root
apical meristem (Haecker et al. 2004). Stem cells surround
the quiescent centre (Scheres 2005). Investigations by Sar-
kar et al. (2007) have shown that WOXS5 acts to maintain
the stem cells of the root apex and can be considered analo-
gous to WUS that acts to maintain stem cells of the shoot
apex. WOXS expression occurs during in vitro root forma-
tion in cultured Medicago truncatula (Imin et al. 2007).

Medicago truncatula is a model legume (Rose 2008) that
has been used to investigate the mechanisms of in vitro
somatic embryo (Rose and Nolan 2006) and root formation
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(Rose et al. 2006; Imin et al. 2007). When leaf explants were
cultured on basal medium with auxin and cytokinin, somatic
embryos were induced and when cultured on basal medium
plus auxin then roots were produced (Nolan et al. 2003).

The ability of plant cells to be directed into different
developmental pathways in vitro provides systems that can
be utilised to improve the understanding of plant stem cell
biology. In this study we have further investigated the tran-
scription factors WUSCHEL and WOXS of M. truncatula
that are important regulators of stem cell maintenance in vivo
in relation to the induction of SE and root formation in vitro.
The data obtained are consistent with a role for homeobox
genes in the production of stem cells to produce either
embryos or roots depending on the hormonal environment.

Materials and methods
Plant material

The M. truncatula cultivars Jemalong 2HA (2HA) and wild
type Jemalong were grown in standard potting mix under
glasshouse conditions. 2HA is a highly embryogenic
mutant of Jemalong produced in our laboratory (Rose et al.
1999). The nature of the mutation is not known. We have
suggested that the difference between Jemalong and 2HA is
likely to be epigenetic (Rose 2008). The wild type Jem-
along used was an accession (SA1619) from the Australian
National Medicago collection, South Australian Research
and Development Institute (SARDI), Adelaide. Cultured
M. truncatula leaf explants were obtained from glasshouse-
grown plants.

Cultured leaf explants

The standard leaf culture procedure and media were as
described by Nolan et al. (2003). Explants were cultured on
P4 10:4 for 3 weeks before transfer to P4 10:4:1 (10 uM
NAA, 4 pM BAP and 1 uM ABA added at 3 weeks). In
some experiments 1 pM ABA was added at the beginning
of culture in the P4 10:4:1 medium as we have found
recently that this increases embryo number. Other treatments
used 10 uM NAA alone or 4 uM BAP alone.

Sequence analysis and construction of phylogenetic trees

Multiple alignment analyses were performed with Clu-
stalW using the Clustal 2.0.8 software in Clustal default
colours. Phylogenetic trees were constructed using the
bootstrap neighbour-joining method (1,000 rounds) (Saitou
and Nei 1987) included in the Clustal 2.0.8 software. Phy-
logenetic trees were drawn using TreeView (Win32) 1.6.0
software (Page 1996).
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Real-time PCR

Total RNA was isolated from intact leaves as a calibrator
and from calli and other tissues, using the Qiagen RNeasy
Plant Mini Prep Kit (Qiagen Pty Ltd, Doncaster, VIC,
Australia) as per the manufacturer’s instructions. cDNA syn-
thesis was performed using the Superscript II™ First-Strand
Synthesis System for RT-PCR (Invitrogen, Carlsbad, CA,
USA) starting with 1 pug of total RNA with oligo (dT)15
primers. Real-time PCR was performed using SYBR®
GreenER™ gPCR SuperMix Universal Kit (Invitrogen)
and analysed in the DNA Engine Opticon® 2 Continuous
Fluorescence Detection System (Bio-Rad, Gladesville,
NSW, Australia). Primers designed to quantify the expression
levels for MtWUS were 5'-CTTACAACATTTCATCTG
CTGGGCT-3" (forward) and 5'-CGACATGATGACCA
ATCCATCCTAT-3’ (reverse), for MtWOXS5 were 5'-CAAG
CACTGATCAAATTCAGAAAAT-3" (forward) and 5'-GA
AAAAGCTCAAGAGTCTCAATCAC-3' (reverse), and for
MtCLV3 were 5'-ATGGCTTCTAAGTTCATCTTTTC
TT-3" (forward) and 5'-TCAAGGGTTTTCAGGCTTAA
TAGGG-3’ (reverse), which were normalised to those of
glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
primers 5'-TGGTCATCAAACCCTCAACA-3’ (forward)
and 5'-CCTCGTTCTTTCCGCTATCA-3' (reverse), in each
sample every run. The tubes were then cycled at 94°C for
30 s, annealed at 60°C for 60 s, and extended at 72°C for
60 s. A melting curve was generated at the end of every run
to ensure product uniformity. PCR reactions were performed
in triplicate in at least two biological repeats. Transcript
abundance was estimated using a modification of the
comparative threshold cycle (Ct) method and was calculated
as E-*CL where  AACt = (Ctyyppe; — Cloappr)Time x —
(Ctygrger — Ctappr)Catibrator and E is the estimated amplifi-
cation efficiency, which was calculated employing the
linear regression method on the log(fluorescence) per
cycle number data for each amplicon using the LinRegPCR
software (Ramakers et al. 2003).

In-situ hybridisation

To generate the RNA probes, a 893-bp fragment of MiWUS
was first amplified by PCR with the primers 5'-ATGGAA
CAGCCTCAACAACAACAA-3’ (forward) and 5'-GGTG
ACCTACAGCCGTAAGAGTTGA-3' (reverse). Then, the
promoter sequences of T7 and SP6 RNA polymerase were
introduced to this fragment by a two-step PCR. The first
primers used were 5'-GAGGCCGCGTATGGAACAGCC
TCAACAACA-3' (forward) and 5'-ACCCGGGGCTGGT
GACCTACAGCCGTAAGA-3’ (reverse). The second set
of primers used were 5'-TTATGTAATACGACTCACT
ATAGGGAGGCCGCGT-3’ (forward) and 5'-CCAATTT
AGGTGACACTATAGAAGTACCCGGGGCT-3’ (reverse).

For MtWOX5, a 659-bp fragment of full length cDNA
sequence was first amplified by PCR with primers 5'-G
TAAAAACATCTAGAATTGAAATATGG-3" (forward)
and 5'-TCCTAAACATTTTTCATATTATGCT-3' (reverse).
Sites for T7 and SP6 RNA polymerase were introduced
through two-step PCR as for MtWUS. The first primers
used were 5'-GAGGCCGCGTGTAAAAACATCTAG
AATTGA-3" (forward) and 5'-ACCCGGGGCTTCCTA
AACATTTTTCATATT-3" (reverse). The second set of
primers was the same as for MtWUS. This PCR product
was subsequently used as a template for in vitro transcrip-
tion employing T7 and SP6 RNA polymerase to synthesise
digoxigenin-labelled sense and anti-sense single-stranded
RNA probes respectively using a DIG RNA Labelling Kit
(Roche, Basel, Switzerland). Four- to five-week-old calli
and other tissues were fixed in 4% formaldehyde in
0.025 M phosphate buffer at pH 7.2, dehydrated through an
ethanol and ethanol: histolene (Fronine, Lomb Scientific,
Taren Point, NSW, Australia) series, embedded in paraffin,
sectioned, and hybridised with the digoxigenin-labelled
sense and anti-sense probes as described previously
(Mantiri et al. 2008a, b). The hybridisation was detected
using a Fluorescent Antibody Enhancer Set for DIG detec-
tion (Roche) and was visualised as a red/purple colour after
the NBT/BCIP colour reaction (Roche). Sense-strand
probes were used as controls.

Construction of promoter-GUS fusions and inducible
RNAI plasmids

For MtWUS promoter::GUS construction, a 3,182-bp
fragment of promoter region was amplified by PCR with
the primers 5'-CTAACTTCCGTTATCCGAGAATCTT-3’
(forward) and 5'-TGTTCCATGTTTTTGTTGGACTGAA-3’
(reverse). For MtWUS RNAI construction, a 204-bp frag-
ment was amplified by PCR with the primers 5'-CTTAC
AACATTTCATCTGCTGGGCT-3' (forward) and 5'-CG
ACATGATGACCAATCCATCCTAT-3" (reverse). For
MtWOXS5 promoter::GUS construction, a 1,024-bp frag-
ment of promoter region was amplified by PCR with
the primers 5'-TTCCCAACATAATTTGTAACCTCAT-3’
(forward) and 5'-CATGCTCTCTTCCATATTTCAATTC-3’
(reverse). For the empty vector control, 88 bp of DNA was
taken from the multiple cloning site of the vector pASK-
IBA44, (5'-CCGGGGATCCCTCGAGGTCGACCTGCAG
GGGGACCATGGTCTCAGGCCTGAGAGGATCGCATC
ACCATCACCATCACTAATAAGCTT-3") (IBA, Géttingen,
Germany). The gene-specific PCR products were cloned
into the vector pCR8/GW/TOPO (Invitrogen). After extrac-
tion of the plasmids, the Gateway LR recombination
reaction (Invitrogen) was carried out according to the
manufacturer’s protocol to insert the gene-specific frag-
ment into the binary T-DNA destination vector pMDC164

@ Springer



830

Planta (2009) 230:827-840

for promoter-GUS fusion constructs (Curtis and Grossniklaus
2003) or pOpOff2(hyg) (Wielopolska et al. 2005) for
inducible RNAi constructs. The resulting constructs were
introduced into Agrobacterium tumefaciens strain AGL1 by
electroporation.

Transformation of M. truncatula

Transformation of M. truncatula 2HA leaf explants was
carried out as described by Wang et al. (1996). The leaf
explant preparation procedure was as described by Nolan
et al. (2003). The 2HA sterilised explants were dipped into
the Agrobacterium suspension and co-cultured on agar
medium and incubated in the dark at 26°C for 2-3 days.
The explants were washed with sterilised water and
500 ug ml~! timentin before placing on P4 10:4 solid
medium plus 500 ug ml~! augmentin and 15 pg ml™!
hygromycin and incubated in the dark at 27°C. Hygromy-
cin was used for transformed callus selection. The explants
were subcultured every 4 weeks until somatic embryo
development. For the RNAI studies transformed callus
was used and RNAi constructs were induced by 2.5 uM
dexamethasone.

For the MtWOX5 promoter::GUS studies transformation
was carried out as above, but with auxin alone as the plant
hormone to produce transformed roots.

Results
The Medicago truncatula WUS and WOXS5 orthologs

Using the Arabidopsis WUS and the WOX genes described
by Haecker et al. (2004), together with WOX family genes
from other species; M. truncatula WUS and 12 potential
WOX genes were found in M. truncatula by BLAST
searches on the NCBI and TIGR databases. Alignment of
the homeodomain sequences was then carried out as seen in
Fig. 1. The putative MtWUS homeodomain showed an 84%
identity with AtWUS (and high identity with other species)
and the putative MtWOX5 homeodomain showed an 89%
identity with AtWOX5.

A phylogenetic analysis was then carried out with the
sequences shown in Fig. 1 showing that MtWUS is in the
WUS clade and MtWOXS5 is in a clade that includes
AtWOXS and is most closely related to AtWOXS5 (Fig. 2).
After phylogenetic analysis of the homeodomains we
also performed full length protein alignments against close
homologs from Arabidopsis (not shown). This enabled
us to conclude that we had identified putative MtWUS,
MtWOX1, MtWOX3, MtWOX4, MtWOXS5 and MtWOX9
genes. No MtWUS EST had been previously identified and
we amplified the cDNA corresponding to the coding region.
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The expression of the genes we designated MtWUS and
MtWOXS5 was determined in different tissues that based on
Arabidopsis studies would show different expression pat-
terns. In the case of MfWUS there was an expression pattern
(Fig. 3a) consistent with the expression of AtWUS in the
organiser centre of the apical meristem (Mayer et al. 1998;
Baiurle and Laux 2005) and also in floral meristems (Miiller
etal. 2006). WUS was also expressed in the developing
embryo of Arabidopsis (Mayer et al. 1998) and expression
would be expected in the somatic embryo. In relation to
zygotic embryos supplementary data (Supplementary
Figure 1) have been provided for pods where the MtWUS
expression correlates with embryogenesis. There was no
WUS expression in the leaf or the auxin-induced cultured
roots.

Further more detailed cellular studies were carried out
using in-situ hybridisation with shoot meristems, heart-
stage zygotic embryos and ovules (Fig. 4a—d). In the shoot
meristem and heart stage embryos WUS mRNA was local-
ised in the centre of the shoot meristem in the third or
fourth outermost cell layers similar to Arabidopsis (Mayer
etal. 1998). There was hybridisation in the young ovules
reflecting WUS expression as shown by the GUS studies in
Arabidopsis by Béurle and Laux (2005).

In the case of MfWOXS5 there was an expression pattern
consistent with what is known of ArWOXS5 expression
(Fig. 3b). AtWOX5 is expressed in the quiescent centre of
the root meristem (Sarkar et al. 2007) and in the developing
embryo (Haecker et al. 2004). MtWO0X5 was expressed in
cultured roots and in the somatic embryo (Fig. 3b) and in
the embryogenesis stage of M. truncatula pods (Supple-
mentary Figure 1). There was little if any expression of
MtWO0X5 in the shoot apex, developing flower or leaf
(Fig. 3b). Previous work on MtWOX5 by Imin et al. (2007)
in M. truncatula showed that the apical part of the plant
root has 57 times higher MtWOXS expression compared to
the elongation zone. In-situ hybridisation of seedling root
tips (Fig. 4e) showed expression of MtWOX5 in the region
of the quiescent centre. The signal was however consis-
tently weaker than that of the MtWUS signals (Fig. 4a—d).

The sequence and expression data are consistent with the
MtWUS and MtWOXS5 being indeed functional orthologs of
AtWUS and AtWOX5. The promoter::GUS studies sup-
ported the qRT-PCR studies.

Expression dynamics of MtWUS and MtWOX5
in relation to the induction of somatic embryogenesis
and roots in culture

Given that ectopic expression of AtWUS can induce
somatic embryos (Zuo et al. 2002), it was important in
understanding the mechanism of induction of SE in
M. truncatula to know the time course pattern of MtWUS



Planta (2009) 230:827-840

831

MEWOX1
V.vi_10
Mt64
P.tr_11
P.tr_12
V.vi_13
ALWOX1
ALWOX6
V.vi_9
ALWOX3
MEWOX3
ALWOX2
V.vi_8
ALWOX4
Gm_16
Vv.vi_15
MEWOX4
P.tr_14
PhWUS
LeWUS
MtwWUs
Ccs_5
AtWUS
MtWOX5
V.vi_19
P.tr_17
P.tr_ 18
AtWOXS5
ALWOX7
AtWOX11
AEWOX12
V.vi_24
P.tr_23
ME72
MtWOX9
AtWOX9
P.tr_4
Slyc_ 3
Ph 2
V.vi_ 1
Mt05
AtWOX8
Mt47
v.vi 20
Vv.vi 21
P.txr 22
AtWOX13
Mt80
Mto6
AtWOX10
AtWOX14

Fig. 1 Alignment of the WOX homeodomain protein sequences. Fif-
ty-one peptide sequences from dicotyledonous species were used. At
Arabidopsis thaliana, Mt Medicago truncatula MtWOX1(AC137078),
MtWOX3(AC169182), MtWOX4(AC148486), MtWOX5(CU326389),
MtWUS(CT009654/FJ477681), MtWOX9(AC199760), Mt64(AC14
1864), Mt8O(TC104580), Mt47(BG581947), Mt96(AC232696), Mt72
(AC157472), Mt05(AC198005), Petunia (Ph) (2-EF187281, 6-PhWUS),
Populus trichocarpa (P. tr)(4-AM234761, 23-AM234764, 22-AM

expression and its response to the plant hormones in the
medium. In the standard auxin plus cytokinin medium
MtWUS expression was induced early in the culture process
(consistently within 2 days) and peaked after 7 days
(Fig. 5a). The first somatic embryos were not visible to the
eye until between 28 and 35 days when expression started
to increase again. The increased MtWUS expression was
cytokinin dependent. Auxin alone did not induce MtWUS
expression. MtWUS expression unlike MtWOXS5 expression
(see below) was not associated with in vitro root formation.

Although it was known that MtWOXS is expressed in
auxin-induced root formation in vitro (Imin et al. 2007), it
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234762, 11-AM234756, 12-AM234757, 14-AM234759, 17-AM 234766,
18-AM234765), Vitis Vinifera (V. vi) (13-AM439847, 10-AM 463144,
9-AM429035, 8-AM488389, 15-AM447494, 19-CAAPO 2003786,
1-AM488026, 21-AM463736, 20-AM486367, 24-AM43 5207), 3-Sola-
num lycopersicum (S. lyc) (FJ190667), 7-tomato(Le) LeWUS),
16-Glycine max (Gm) (DQ336954), 5-Citrus sinensis (Cs) (EU032533).
Numbers at the beginning of the gene accession refer to the corre-
sponding genes for the phylogenetic tree in Fig. 2

remained important to understand its time course of expres-
sion to ascertain its relationship to root induction from pro-
cambial cells that we had previously described (Rose et al.
2006). MtWOX5 expression was induced by 2 days and was
clearly auxin dependent (Fig.5b). Maximum MtWOX5
expression occurred much later when roots were visible to
the unaided eye.

MtWUS expression and the MtCLV3 relationship

If MtWUS expression was associated with a process similar
to that acting in the apical meristem, then one could expect
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Fig. 2 Phylogenetic tree of Mt80

WOX genes. Dendrogram based — AWOX10
on the sequence of the homeodo- %,

mains. Bootstrap (1,000 rounds) EX
was applied and the tree drawn
using Dendroscope (Huson et al.
2007) with “majority” settings
for consensus. Numbers and
names are the same as on Fig. 1
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Fig. 3 Expression profiling by qRT-PCR of MtWUS (a) and MtWOX5 leaves of normally-grown plants, tips of cultured roots and somatic em-
(b) in different M. truncatula tissues by qRT-PCR. The expression was bryos (latter one in 2HA). Expression was related to the expression lev-
investigated in the shoot apices, developing flowers (buds) and mature el of somatic embryos. Values are £ SE (n = 3)

Fig. 4 MtWUS RNA in-situ
hybridisation in heart stage
zygotic embryos (a, b), apical
meristem (c) and ovules (d) at
early stage of development of
wild-type Jemalong. MtWOX5
RNA in-situ hybridisation in the
root meristem of a seedling root
(e). VC vascular cylinder (red
arrows), RC root cap and black
arrow indicates the quiescent
centre. Bar 100 pm

&y e i e S AT e

a relationship with CLV3 functionally similar to that in the =~ genomic region was used to obtain AC151522. Figure 6
apical meristem. Information obtained from Oelkers et al. ~ shows the phylogram for the CLAVATA3/ENDOSPERM
(2008) and closer analysis of the Medicago MtCLE68 SURROUNDING REGION (CLE) peptides based on the
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Fig. 5 Expression profiling by qRT-PCR of MtWUS (a) and MtWOX5
(b) in tissue culture with different hormones. The expression was
investigated in auxin plus cytokinin (Aux + Cyt, square-line), auxin

Days

alone (Aux, diamond-dash line), and cytokinin (Cyt, triangle-dot line)
treatments in 35 days in 2HA. Expression calibrated to the expression
level of 0 day of 2HA. Values are + SE (n = 3)

Fig. 6 Phylogram for CLEs HCLEGS AtCLE22
based on the. CLE domain AtCLE21
sequence. Fifty-five genes were AtCLE19
alveed and ed i MtCLE71
analysed and are detailed in - O — AtCLE16
Oelkers et al. (2008) [except AtCLE17 MECLES
AC.1§I522]. Blac/f arrow AtCLE20
indicates the location GmCLE23
of MtCLV3 MtCLE73
MtCLE39
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—  —— atcies
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0.1

CLE domain sequence. MtCLV3 was predicted to be
AC151522 and is consistent with the data in Fig. 7.
MtCLV3 expression was not initiated until embryos
began to form, i.e., until anatomical structures were differ-
entiated (Fig. 8). Importantly, wild-type Jemalong that does

I AtCLE27
AtCLE25
MtCLE36
MtCLE64

not produce embryos, did not show detectable MrCLV3
expression.

In order to investigate the role of MtWUS expression in
callus formation and somatic embryo induction callus
transformed with dexamethasone-inducible RNAi for
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MtCLV3 expression

0.8 EJemalong

0.6 O2HA

0.4

relative expression

0.2

0 - - - - - - -

shoot apex flower bud leaf root tip somatic
embryo

Fig.7 Expression profiling by qRT-PCR of MrCLV3 in different tis-
sues of 2HA and Jemalong. Jemalong (grey bricks) and 2HA (white).
Expression normalised to the expression level in somatic embryos.
Values are + SE (n=3)

MtWUS was used. It was found that callus proliferation
(Fig.9) and somatic embryo induction (Fig. 10) was
strongly inhibited. This suggested a role for MtWUS in both
callus formation and somatic embryo induction. Further
investigations on MtWUS were carried out using promoter-
GUS fusions and RNA in-situ hybridisation.

Using promoter-GUS fusions, MtWUS expression was
consistent with the qRT-PCR data (Fig. 7). GUS expression
was visualised very early in the explant and expression con-
tinued throughout the explant except at the cut edges
(Fig. 11a). When strong callus growth occurred at the edges
of the explant, there was strong GUS expression (Fig. 11b),
but as callus developed and the explant became fully call-
used the expression was restricted to clusters of expression
(Fig. 11c). GUS expression was present in the somatic
embryos when they developed (white arrow in Fig. 11d). In
regenerated transgenic M. truncatula plants there was GUS
expression in ovules of the developing flower and later
in zygotic embryogenesis. Similar results were found in

Fig. 8 Expression of MtWUS
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Fig. 9 The effect of dexamethasone-induced RNAi expression for

MWUS in tissue cultures (as well as an empty vector control) devel-

oped in auxin plus cytokinin medium. The callus sizes were investi-

gated by callus imaging and are normalised with 0 day as 100. Values
are = SE (n = 3)

Arabidopsis (Bdurle and Laux 2005). The GUS staining at
the early stage of the explant culture shown in Fig. 11a was
surprising. However, cleared whole mounts stained with
fuschin shows that cell division occurs throughout the
explant, particularly associated with the small veins. Later
in culture there is intense callus formation at the explant
edges (Rose and Nolan 2006) and this is a focus of GUS
expression (Fig. 11b). WUS expression in the early somatic
embryos (Fig. 11d) was further investigated by in-situ
hybridisation (Fig. 12). There is staining throughout the
globular stage embryo and much less in the surrounding
callus (Fig. 12a, b). In the embryo shown in Fig. 12c and d
where the suspensor is visible, expression is greater in the
top part of the embryo.

MtWOX 5 expression and root meristem induction

In-situ hybridisation studies to monitor the WOXS
expression during the formation of root primordia and

Expression MtWUS and MtCLV3 in tissue culture

and MtCLV?3 in tissue culture of 4500 180
Jemalong and 2HA lines with 4000 1 1160
auxin plus cytokinin in the medi- [22) /}_ - — M{CLV3 g
um. The expressions of MtWUS g 3500 Tt~ T 140 d
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Jem, triangle-dot line) were '% 2000 4+ lgo -2
investigated over 77 days. 2 §
MtCLV3 expression only occurs g 1500 + oo %
in the highly embryogenic 2HA 2 1000 + T4 o
line as wild-type Jemalong does g g

. = 500 120 =
not produce somatic embryos. 2 e
Expression normalised to the 0T +0
expression level of 0 day of 500 : “ } : } } : } 20
2HA. Values are &+ SE (n = 3) 0 2 7 14 28 35 49 63 77

Days
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Fig. 10 Transgenic calli trans-
formed with dexamethasone-
induced RNAi for MtWUS

(a) and empty vector control
(b) developed in auxin plus
cytokinin culture. Somatic
embryos can be seen in the
control, but not in MtWUS RNAi
transformed callus

Fig. 11 MtWUS::GUS expression at the early stages of somatic em-
bryo induction in tissue culture. Blue-green colouring indicates the
GUS signal. The signals were investigated in 3 days (a), and 14 days
(b) cultured explants, 28 days callus (c¢), and older callus (d) with
somatic embryos (white arrow). Bar 500 pm

root meristems in the auxin-induced root formation is
shown in Fig. 13. The developmental morphology has pre-
viously been documented (Rose et al. 2006). The arrow
labelled 1 in Fig. 13a shows centres of expression that are
what we have called vein-derived cells that emanate from
the procambial cells (Rose et al. 2006). The position of the
root primordium (Fig. 13a, arrow labelled 2), the root meri-
stem (Fig. 13e, arrow labelled 3) and the vascular tissue
(Fig. 13e, arrow labelled 4) are indicated.

Promoter::GUS studies (Fig. 14a) followed by section-
ing of the material showed MfWOX5 expression in the stem
cell areas adjacent to the quiescent centre. MtWOXS5 expres-
sion can be seen in the pericycle and procambium area
(Fig. 14b).

Discussion
WUSCHEL and somatic embryogenesis induction

The putative M. truncatula WUS gene ortholog was
obtained using the genome sequence and isolating the cDNA.
Altogether eleven WOX genes from M. truncatula were
identified and five of them ascribed to particular ortho-
logs in Arabidopsis based on protein homology; MtWOX1,
MtWOX3, MtWOX4, MtWOXS5 and MtWOX0.

To obtain supporting evidence that the putative MtWUS
was an ortholog of A:fWUS, the expression pattern of
MtWUS was initially examined in the intact plant prior to
studying the expression in callus formation and SE. In the
intact plant, MtWUS was expressed in the shoot apex
(meristem and leaf primordium), in buds, and zygotic
embryos but it was not expressed in leaves or roots. The
expression pattern was similar to AtWUS in the shoot
meristem and the flower primordium (B#urle and Laux
2005; Miiller et al. 2006). With in-situ hybridisations gene
expression was present in the same positions in the shoot
apex and heart-stage embryo as in Arabidopsis (Mayer
et al. 1998). It seems clear that MtWUS is the AtWUS
functional ortholog.

The WUS studies presented here support the predictions
from the WUS overexpression studies by Zuo et al. (2002),
namely that WUS expression is an essential for SE. In the
M. truncatula SE system MtWUS expression is induced in
the presence of auxin and cytokinin and also cytokinin
alone, but not by auxin alone. This is consistent with what
is known for the WUS and cytokinin relationships in the
regulation of WUS in the Arabidopsis meristem (Leibfried
et al. 2005). Further, Gordon et al. (2007) have shown cyto-
kinin-induced AtWUS expression in shoot induction in in
vitro cultures. The cytokinin-induced WUS expression in
M. truncatula is in itself not enough to produce SEs as wild
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Fig. 12 MtWUS RNA in-situ
hybridisation in embryogenic
callus of 2HA. The signals were
investigated in whole globular
stage somatic embryos. Anti-
sense probe indicating the
MWUS signals (a, ¢). Sense
probe controls (b, d). a and b are
40 um vibratome sections while
c and d are 8 pm paraffin-
embedded sections. The somatic
embryo (¢, d) has a suspensor
like structure. Bar 80 pm

type Jemalong, which does not produce SEs, also showed
cytokinin-stimulated WUS expression.

What is surprising is the rapid onset of MtWUS expres-
sion visualised as GUS staining across the whole leaf
explant. Recently however, whole explant studies in our
laboratory with explants cleared and stained with fuchsin
have clearly revealed cell proliferation all over the explant,
emanating from near the leaf veins.

During callus formation, groups of small cells with
MtWUS expression are scattered around the callus. These
clusters of cells are likely the source of cells that form
embryos; MtWUS expression is clearly linked to these pro-
cesses. However, as the embryogenic callus develops,
MtWUS expression is confined to the somatic embryos
themselves. These results indicate that MtWUS expresses in
both undifferentiated cells in the callus and in the somatic
embryo. This pattern is similar to ArWUS which is
expressed in callus induced by cytokinin, and the expres-
sion increasingly localises in the differentiating shoot
(Gordon et al. 2007). Our RNAi data also support a
MtWUS requirement for callus formation and somatic
embryo induction, which suggests that it also has a function
to maintain undifferentiated stem cells like AtWUS. WUS,
which has been suggested to be an embryo organiser (Zuo
et al. 2002), appears to be associated with the production of
totipotent stem cells, similar to the way it is involved in
stem cell formation and maintenance in planta.

@ Springer

In the globular stage somatic embryo, MtWUS expres-
sion occurred throughout the whole embryo, which is not
found in Arabidopsis zygotic embryos (Mayer et al. 1998).
However, there are two points to note here: the hormonal
environment is quite different in the somatic embryo devel-
oping in embryogenic callus, and the M. truncatula embryo
is not likely to be identical to Arabidopsis in its develop-
mental strategy. As the somatic embryo develops, MtWUS
tends to localise towards the shoot pole.

The gene we have designated MtCLV3 is similar to
AtCLV3 in peptide structure, genomic environment, and
expression pattern. MtCLV3 also expresses in the shoot
apex but not in flowers or leaves. It does not express in cal-
lus but is expressed in the shoot regions of later stage
somatic embryos. MtWUS is initially expressed at high lev-
els early in culture, unrestricted by CLV3 feedback, and as
CLV3 is expressed it reduces WUS expression till eventu-
ally the well-known CLV3-WUS feedback loop character-
istic of Arabidopsis shoot meristems is set up, i.e CLV3
down-regulates high WUS expression. Wild type Jem-
along, which does not produce SEs, does not show CLV3
expression in culture.

WUS was induced in 2448 h but the question remains
as to how this expression relates to the overall process of
SE induction. Previous work had shown that MtSERK]I
was expressed 48 h after the beginning of culture, just
after MtWUS expression, and it was associated with
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Fig. 13 MtWOX5 RNA in-situ
hybridisation during auxin-in-
duced de novo root formation.
The anti-sense probe (a—c).
Sense probe for controls (b, d, f).
The arrow labelled “I”” shows
centres of expression in what we
have called “vein-derived” cells
that emanate from the procam-
bial cells (Rose et al. 2006). The
arrow labelled “2” is pointing to
the root primordium. The arrow
“3” indicates the signal in the
root meristem and the arrow “4”
in the vascular tissue. Bar 80 um

Fig. 14 MtWOX5::GUS
expression in roots induced on
auxin medium. The GUS signals
in the root tip (a) and root matu-
ration zone (b) in 8 pm paraffin-
embedded sections. Two strong
areas of GUS signal are indi-
cated by red (distal) and black
(proximal) arrows in a. In b, the
GUS signal is indicated by a red
arrow. Bar 80 pm

developmental change, thus marking cells as they change
into a new developmental pathway (Nolan etal. 2003,
2009). MtSERF1 expression is evident after about 10 days
of culture and is dependent on ethylene as well as auxin and
cytokinin. It appears to act as a nexus between the stress of
excision and culture (the stress reflected in ethylene synthe-
sis) and the developmental hormones auxin and cytokinin
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driving cells into SE (Mantiri et al. 2008a, b). Importantly
there is some evidence that cytokinin-induced WUS may be
necessary for MtSERFI expression as binding sites for the
WUS transcription factor exist in the MtSERFI promoter
region (Mantiri et al. 2008a). It appears that MtSERF1, pos-
sibly in conjunction with WUS, is involved in regulating
downstream genes required for SE (Mantiri et al. 2008a, b).
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MISERF1 expression  commences  earlier  than
MtCLV3expression. MtCLV3 likely expresses when stem
cells start to be regulated. RNAi studies with MrCLV3
would help resolve this question.

MtWOXS5 expression in relation to de novo root formation

MtWOXS5, based on the bioinformatics analysis is the puta-
tive ortholog of AtWOX5. The expression and in situ data
presented here are consistent with this and confirm other
recent work on MtWOX5 (Imin et al. 2007).

In-situ hybridisation of the roots induced in culture
has suggested that MtWOX5 is expressed in the procam-
bium cells and is associated with the induction of root
primordia. It has been shown previously in our labora-
tory that root primordia were derived from these cells
(Rose et al. 2006). In this it appears to have a somewhat
similar role to WUS involvement in SE stem cell forma-
tion. After the root primordia formed, the meristem
showed strong MtWOX5 expression, in what is the quies-
cent centre/stem cell area that is the source of the root
cells and root cap cells. MtWOXS5 expression was clearly
auxin-dependent, contrasting with MtWUS. The GUS
expression studies were not entirely consistent with the
hybridisation studies as there are two areas of expression
adjacent to the quiescent centre (Fig. 14a) as opposed to
the more uniform hybridisation signals in the root tip
(Fig. 13c, e). It is also possible that the promoter length,
based on the sequence information we had for this study,
was insufficient. Also there is the presence of the exoge-
nous auxin associated with an in vitro system. Neverthe-
less the strong WOXS5 expression in the primordium and
meristem is clear.

In the intact Medicago plant, Imin et al. (2007) showed
that there is low MfWOX5 expression in the root tip com-
pared to root forming calli. This difference is apparent from
the in situ studies presented here and suggests a strong
auxin response in vitro, and expression outside the quies-
cent centre associated with the induction and development
of the cultured roots. Auxin clearly up-regulates MtWOX5
expression (Fig. 5b) and we have observed in MtWOXS5::
GUS expressing meristems that increased auxin concentra-
tion increases the area of GUS expression. The Arabidopsis
root has a closed meristem (Dolan etal. 1993), while
M. truncatula being a legume has an open meristem
(Heimsch and Seago 2008). Our study also indicated that
there was MtWOX5 expression in the pericycle and pro-
cambial tissue of mature roots. It is feasible that this
expression was related to a capacity for lateral root forma-
tion in planta. Such expression was not reported for Ara-
bidopsis WOX5. The low expression of MtWOX5 in the
root tip in planta relative to the in vitro expression was
different to BBM (BABY BOOM) and PLT1 (PLETHORA 1)
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which expressed strongly in M. truncatula root-forming
calli and root tips in planta (Imin et al. 2007).

MtWOXS5 expression is very closely associated with root
meristem formation and expresses in the stem cell areas of
both the emerging primordium and in the cultured roots
(Figs. 13, 14). The expression in the intact root meristem is
likely confined to the quiescent centre as in Arabidopsis
(Blilou et al. 2005). This may well be due to the close regu-
lation by auxin which is different to the culture system
(Gonzali etal. 2005). There is a parallel here with the
MtWUS and SE induction as there is initial expression in
many cells until the precision of the in planta regulation is
set in train. However in vivo and in vitro WOX5 appears to
act as a stem cell signal and is intimately associated with
stem cell maintenance. RNAi studies would provide more
direct evidence. MtWOXS5 is also associated with embryo
development and as shown recently, there is some overlap
with WUS in their developmental roles (Sarkar et al. 2007).

Changes prior to WOX5 expression have not been well-
documented, but ROS production could most likely be an
initial event and the regulation of redox is an important
consideration in setting up a root meristem (Imin et al.
2007). Other studies in M. truncatula also indicate induc-
tion of PLETHORA and BABY BOOM (Imin et al. 2007)
known to be key players in stem cell maintenance in the
Arabidopsis primary meristem (Galinha et al. 2007). How-
ever, we do not know the time course of their transcription
in relation to WOX5.

Relationship between hormones and gene regulation
in SE and root formation

It is apparent that the production of the SEs with their bipo-
lar meristems and the production of the unipolar root meri-
stem have different requirements for the key developmental
and stress hormones. Through regulation of specific genes,
hormones and morphogens are able to exert regulatory
influence. In both cases the culture process has “hijacked”
key developmental genes to drive the induction of the in
vitro processes. Though these processes are not usual in the
M. truncatula life cycle, similar processes do occur in
nature. The relationship of ethylene to SE and in vitro root
formation is different. In the case of SE ethylene is essential
(Mantiri et al. 2008a, b) whereas for in vitro root formation
it is inhibitory (Rose et al. 2006), suggesting a priority for
reproduction.

MtWUS and MtWOX5 may have a similar function
in relation to stem cell induction in vitro

MtWUS and MtWOX5 may have similar functions in stem
cell initiation. WUS and WOX5 have been reported to have
related roles in maintaining stem cells (Sarkar et al. 2007),
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and also have similar roles in stem cell induction in Medi-
cago. WUS may induce stem cells for somatic embryos
with cytokinin being essential, and WOXS5, which is par-
tially suppressed by cytokinin, may induce stem cells for
root primordium formation with auxin being an essential
co-regulator. The requirement for cytokinin and auxin in
the regulation of the key genes is of course dependent on
the species, genotype and explant type as well as the culture
process.
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