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Abstract: Macrophages are cells of the immune system that protect organisms against invading pathogens by fulfilling 

critical roles in innate and adaptive immunity and inflammation. They originate from circulating monocytes and show a 

high degree of heterogeneity, which reflects the specialization of function given by different anatomical locations. Differ-

entiation of monocytes towards a macrophage phenotype is also accompanied by an increase of resistance against various 

apoptotic stimuli, a required characteristic that allows macrophages to accomplish their function in a stressful environ-

ment. 

Apoptosis, a form of programmed cell death, is a tightly regulated process, needed to maintain homeostasis by balancing 

proliferation with cellular demise. Caspases, a family of cysteine proteases that are highly conserved in multicellular or-

ganisms, function as central regulators of apoptosis. FLIP (FLICE-inhibitory protein), anti-apoptotic members of the Bcl2 

family and inhibitors of apoptosis (IAP) are the main three groups of anti-apoptotic genes that counteract caspase activa-

tion through both the extrinsic and intrinsic apoptotic pathways.  

Modulation of the apoptotic machinery during viral and bacterial infections, as well as in various malignancies, is a well-

established mechanism that promotes the survival of affected cells. The involvement of anti-apoptotic genes in the sur-

vival of monocytes/macrophages, either physiological or pathological, will be described in this review. How viral and 

bacterial infections that target cells of the monocytic lineage affect the expression of anti-apoptotic genes is important in 

understanding the pathological mechanisms that lead to manifested disease. The latest therapeutic approaches that target 

anti-apoptotic genes will also be discussed. 
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INTRODUCTION 

 Cells of the monocytic lineage are specialized phagocytes 
responsible for ingesting and eliminating senescent or in-
fected cells. Macrophages are key players in innate immunity 
because they respond to infectious microorganisms by pro-
ducing cytokines that act as mediators of subsequent immune 
responses. Processing and presentation of antigens also con-
tribute to T cell activation, with direct consequences on the 
development of both the humoral and cell-mediated immu-
nity. Because of their crucial role in immunity, regulation of 
monocyte/macrophage life span is important in both physio-
logical and pathological processes.  

 Apoptosis is a self-destructive cellular process important 
in tissue development and immune regulation that generally 
culminates with the sequential activation of caspases, the 
cysteine proteases responsible for cleavage of specific pro-
teins that ultimately results in cellular demise [1]. Classi-
cally, there are two pathways that can result in apoptosis 
depending on the origin of the apoptotic signal. The extrinsic 
pathway is initiated by ligand binding to the molecules of the  
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death receptor family whereas the intrinsic pathway gets 
activated when damage of the mitochondrial membrane 
causes release of cytocrome c (Cyt-C) in the cytosol and 
subsequent caspase activation. Both pathways converge with 
the activation of effector caspases 3 and 7 [2]. 

 There are three classes of anti-apoptotic proteins that act 
at different stages throughout caspase activation to counter-
act death-inducing signals and prevent over-activation of the 
apoptotic machinery (Fig. 1). 

1.  The FADD-like IL-1  converting enzyme (FLICE) 
inhibitory protein (FLIP) is the main anti-apoptotic 
mechanism in the extrinsic pathway. It prevents acti-
vation of caspase 8 (also known as FLICE) following 
ligation of death receptors like Fas and the TNF-
related apoptosis inducing ligand (TRAIL) receptors 
and subsequent cleavage of effector caspases (e.g. 
caspase 3) [3]. Due to structural homology with 
caspase 8, FLIP is able to bind and form FLIP-FLICE 
heterodimers that prevent subsequent activation of 
FLICE [4].  

2.  The anti-apoptotic proteins of the Bcl2 family (e.g. 
Bcl-xL and Bcl2) maintain the integrity of the mito-
chondrial membrane and prevent activation of 
caspases due to Cyt-C release [5, 6]. The Bcl2 family 
also contains pro-apoptotic members such as Bax and 
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Bak that promote apoptosis by binding and inactivat-
ing their anti-apoptotic counterparts [7]. The balance 
between the two groups ultimately dictates cell fate. 

3.  The third group comprises the family of inhibitors of 
apoptosis (IAPs) proteins. These proteins are the ma-
jor regulators of cell survival because they act on 
caspases activated either through the extrinsic or the 
intrinsic pathway. Initially discovered in baculovi-
ruses as an iap gene [8], there are now eight mammal-
ian IAPs: cellular IAP1 (c-IAP1), c-IAP2, X-
chromosome-linked IAP (XIAP), neuronal apoptosis 
inhibitory protein (NAIP), survivin, livin, IAP-like 
protein 2 (ILP2) and baculovirus inhibitor of apopto-
sis repeat containing ubiquitin-conjugating enzyme 
(BRUCE) [9]. IAPs share variable numbers of bacu-
loviral IAP repeat (BIR) motifs, structural domains 
that are important for binding and inactivation of both 
initiator and effector caspases [10, 11]. 

 As monocytes differentiate into macrophages, they also 
increase their resistance to spontaneous and induced apopto-
sis, a beneficial mechanism during immune responses 
against pathogens. Enhanced survival of macrophages is 
even more important in various pathological conditions in 
which cells of the monocytic lineage are key players such as 
infections with intracellular viral and bacterial pathogens, 
inflammatory conditions and monocytic malignancies, where 
the enhanced survival of this cell type is no longer beneficial 
and becomes a main factor in pathogenesis. Apoptosis is a 
very important weapon of host immunity against intracellu-
lar pathogens like Human Immunodeficiency Virus (HIV) 
and Mycobacterium tuberculosis (M.tb). Apoptosis of in-
fected cells serves several following purposes: 1) killing or 
reducing the viability of intracellular pathogens, 2) prevent-
ing dissemination of the microbes, 3) providing other antigen 
presenting cells (APCs) with microbial antigens in apoptotic 
bodies and 4) preventing persistence and formation of reser-
voirs [12]. Various arguments and evidence suggest that in-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Overview of apoptosis and the main anti-apoptotic molecules: Binding of death receptors (Fas, TNF-R, TRAIL-R) to their 

ligands (Fas-L, TNF, TRAIL) initiates the extrinsic apoptotic pathway. Association of adaptor molecules (FADD - Fas-associated death do-

main protein, TRADD–TNF receptor associated death domain protein) induces the formation of DISC (death inducing signaling complex), 

which activates caspase 8 and subsequently caspase 3. FLIP is the main anti-apoptotic molecule of this pathway, as it prevents caspase 8 

activation. Release of cytochrome c from the mitochondria in response to cellular stress initiates the intrinsic apoptotic pathway. Cytochrome 

c associates with Apaf-1 and procaspase 9 to form the apoptosome, a multimeric protein complex that induces cleavage of inactive caspase 9 

to its active form. Both pathways converge with activation of caspase 3, the main effector caspase. The two pathways are also connected by 

the ability of active caspase 8 to activate Bid (BH3-interacting domain death agonist) – tBid (truncated Bid) is a proapoptotic molecule that 

can induce release of cytochrome c from the mitochondria and thus initiate the intrinsic pathway. The two main antiapoptotic families are 

Bcl2 and IAPs. Anti-apoptotic Bcl2 members maintain mitochondrial integrity, while IAP can inactivate caspases. IAP activity is antago-

nized by Smac (also known as Diablo), a proapoptotic molecule released from the mitochondria [1, 9, 12]. 
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tracellular pathogens may evade apoptosis of infected mono-
cytic cells by up regulating various host anti-apoptotic genes 
that dysregulate both extrinsic and intrinsic apoptotic path-
ways in these cells. In this review we will discuss the role of 
these anti-apoptotic proteins in the increased survival of 
macrophages in both physiological and pathological condi-
tions, with an emphasis on HIV and M.tb. infections, intra-
cellular pathogens that target cells of phagocytic system.  

ROLE OF ANTI-APOPTOTIC GENES IN HEMA-
TOPOIESIS  

 Members of the Bcl2 family have been shown to be dif-
ferentially implicated in hematopoiesis of the myeloid line-
age. Granulocytes and monocytes/macrophages are two dis-
tinct lineages that originate from a common myeloid precur-
sor. In vitro studies with CD34+ progenitor cells [13] and the 
promonocytic cell line HL60 [14] induced to differentiate by 
chemical agents revealed an increased expression of Bcl-xL 
in cells committed to the monocyte/macrophage lineage, but 
not when cells were induced to differentiate to granulocytes. 
Bcl-xL upregulation throughout the monocytic lineage is 
accompanied by down regulation of anti-apoptotic Bcl2 pro-
tein [15-17] suggesting divergent roles among anti-apoptotic 
members of this family in determining the enhanced lifespan 
of monocytes over granulocytes.  

 Differential involvement of Bcl2 and Bcl-xL in hema-
topoiesis is also illustrated in mouse model studies. Bcl-xL 
knockout mice die during embryogenesis with massive apop-
tosis of cells of the hematopoietic and central nervous sys-
tem [18]. In contrast, Bcl2 knockout mice are born with or-
gan malformations but they survive without major disrup-
tions in hematopoiesis [19]. These studies suggest that while 
Bcl2 is necessary for normal morphogenesis, Bcl-xL is vital 
for hematopoiesis. Interestingly, when macrophages are ob-
tained from immature bone marrow precursors cultured in 
the presence of M-CSF, Bcl2 expression shows a different 
pattern, being upregulated in both human [20] and mouse 
models [20, 21]. Although the expression of Bcl-xL was not 
examined in these studies, one possible explanation for these 
divergent results would be that immature bone marrow pre-
cursors are highly susceptible to apoptosis and require M-
CSF for survival, which may trigger a different pattern of 
anti-apoptotic gene(s) expression in order to overcome 
higher susceptibility to apoptosis.  

ANTI-APOPTOTIC GENES INVOLVED IN MONO-

CYTE TO MACROPHAGE DIFFERENTIATION  

 Monocytes migrate from the blood stream to inflamma-
tory sites where they differentiate into macrophages [22]. 
During differentiation, monocytes lose their ability to prolif-
erate but increase their phagocytic and enzymatic capacity to 
become terminally differentiated cells [23]. This process 
affects not only their function, but also their susceptibility to 
apoptosis. Monocytes have a short lifespan when cultured in 
vitro. Even in the presence of growth factors, these cells sur-
vive only for a few days [24]. However, differentiated 
macrophages become resistant to both spontaneous and in-
duced apoptosis [25], a characteristic necessary for them to 
perform their functions in a stressful microenvironment 
while fighting invading pathogens.  

 Although an enhanced resistance to apoptosis of mono-
cyte-derived macrophages (MDMs) is known for many years 
[26], the precise molecular mechanisms are still not fully 
elucidated. Monocytic cells, unless activated by various 
stimuli such as inflammatory cytokines or growth factors, 
undergo spontaneous apoptosis when cultured in vitro [26-
29]. Activated monocytes are more resistant to various apop-
totic stimuli such as death receptor ligands (Fas-L, TNF) [30, 
31], reactive oxygen species [32], DNA damage [33], and 
proteasome inhibitors [34, 35]. While the extrinsic apoptotic 
pathway was responsible for spontaneous apoptosis of 
monocytes through activation of the Fas-Fas ligand pathway, 
this interaction seemed not to be operating in macrophages, 
suggesting that protection is the result of events downstream 
of the death receptors [24]. Interestingly, our recent results 
have suggested that spontaneous cell death occurs in primary 
monocytes but depends on the autophagy (“cellular self eat-
ing”) pathway rather than on classical apoptosis [36]. Spon-
taneous cell death could not be blocked by neutralizing 
TRAIL and Fas death receptors antibodies, or by a general 
caspase inhibitor. However, this spontaneous cell death was 
diminished significantly with the autophagy inhibitors 3-
methyladenine and chloroquine. Moreover, LC3-II expres-
sion, an autophagy marker, was upregulated spontaneously 
in cultured monocytes. At the molecular level, we observed 
that blocking the Signal Transducer and Activator of Tran-
scription (STAT) or phosphatidylinositol-3-kinase (PI3K)/ 
AKT signalling pathways inhibited LC3-II expression and 
cell death in response to IFN-  [36].  

 To unravel the mechanisms of protection in activated 
monocytes, the apoptotic pathway affected by monocyte 
activation has been investigated. Perera et al. showed that 
LPS activation induced the expression of anti-apoptotic Bfl-1 
gene of the Bcl2 family and decreased caspase 8 expression 
suggesting their role in enhanced survival of activated 
monocytes in response to various apoptotic stimuli [33]. 
Subsequently, Perlman et al. demonstrated that the resistance 
of MDMs to spontaneous and Fas-FasL mediated apoptosis 
was attributed to the upregulation of FLIP anti-apoptotic 
protein throughout differentiation [25]. An enhanced tran-
scription of the FLIP gene was detected on day 3 of differen-
tiation and its role was confirmed using antisense oligonu-
cleotides that were able to abrogate the resistance to Fas-L 
apoptosis by inhibiting the activation of caspase-8. Further-
more, differentiated MDMs require constitutive activation of 
NFkB [37, 38] and PI3K/Akt pathways [39] in order to sus-
tain their viability. These two pathways independently in-
duce the sustained expression of two different genes of the 
Bcl2 family, A1 for NFkB and Mcl-1 for phosphatidylinosi-
tol-3-kinase (PI3K)/Akt pathway, both of which are respon-
sible for maintaining mitochondrial integrity.  

 In addition to FLIP and genes of the Bcl2 family, mono-
cyte to macrophage differentiation has also been shown to 
affect the third group of anti-apoptotic genes, IAPs. XIAP 
has been shown to be up-regulated in many experimental 
models of monocyte differentiation: human [20] or mouse 
[21] bone marrow-derived macrophages, human macro-
phages differentiated from promonocytic cell lines in the 
presence of PMA [16, 40] or from THP1 cells in the pres-
ence of bryostatin-1 [35], its upregulation being responsible 
for the enhanced resistant phenotype of macrophages. 
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 Recently, a new mechanism of anti-apoptotic gene in-
volvement in monocyte differentiation has been proposed. 
Plenchette et al. demonstrated that c-IAP1 translocates from 
the nucleus to the Golgi apparatus in both mouse and human 
monocytes induced to differentiate into macrophages. There 
was no nucleo-cytoplasmic redistribution of cIAP1 in cells 
whose differentiation was prevented, such as in Bcl2 over-
expressing cells and monocytes from patients with chronic 
myelomonocytic leukemia [41]. The functional nuclear ex-
port signal was restricted to its caspase recruitment domain 
(CARD), a motif that is classically involved in protein inter-
actions and caspase aggregation [42]. Although caspase acti-
vation was not evaluated during c-IAP1 translocation, the 
same group also showed that monocytic cells undergoing 
macrophage differentiation require a basal level of caspase-3 
and -9 activation that does not result in apoptosis, but is nev-
ertheless essential for optimal differentiation [43-45], thus 
extending our knowledge about the key role of caspases in 
monocyte differentiation (for a review see [46]). The 
contribution of anti-apoptotic genes in the regulation of 
caspase activation during monocyte differentiation is yet to 
be determined. However, these observations suggest a 
relationship between various levels of anti-apoptotic genes 
that are known to prevent caspase activity and the activation 
status of caspases in monocytes undergoing differentiation. 
Overexpression of the Bcl2 gene has been shown to inhibit 
differentiation of U937 monocytic cell line in the presence of 
phorbol ester [43] or bleomycin [47], so it is tempting to 
speculate that the mechanism of this inhibition would be 
prevention of caspase activation.  

 These observations suggest the existence of multiple 
seemingly redundant mechanisms directed at preventing the 
release of Cyt-C from the mitochondria, a crucial event of 
apoptosis that is controlled by Bcl2 proteins. However, the 
mechanism responsible for the differential involvement of 
some members of the Bcl2 family over others in regulating 
macrophage survival remains unknown. Modulation of anti-
apoptotic genes that act at various stages of the apoptotic 
pathway seems to be the main mechanism by which differen-
tiation confers macrophages enhanced surviving abilities. 
This complex process does not involve just one key player or 
anti-apoptotic molecule, but multiple mechanisms that vary 
with the nature of the stress signal, a situation that is to be 
expected for a cell type that is often the first line of defense 
in immune responses. 

SURVIVAL OF MONOCYTE/MACROPHAGES IN 

HIV INFECTION 

Viral Reservoirs: Lymphocytic Versus Monocytic Cells  

 Along with CD4+ T cells, cells of the monocytic lineage 
represent a major viral reservoir during HIV infection [48, 
49]. However, there are major differences between virus 
biology within these two cellular systems: viral replication in 
T cells is highly cytopathic and as the virus replicates and 
the disease state advances, the number of CD4+ T cells is 
ultimately reduced. The formation of viral reservoirs in T 
cells is correlated with the antigen-induced T cell activation 
and proliferation. The infected lymphocytes that survive the 
viral cytolytic effect return to a resting state which corre-
sponds to memory T cell establishment [50] which is inca-

pable of supporting active viral replication. Since these cells 
contain integrated virus, viral replication can be reactivated 
by stimulation with the cognate antigen [51-53]. It seems 
that the virus adapts itself perfectly for long-term survival by 
hijacking the normal mechanism of long-lived memory cell 
establishment. Hence, there is no clear evidence to suggest 
that latency in CD4+ T cells has evolved as a viral mecha-
nism to promote persistence in this cell type. On the other 
hand, macrophages get infected early during infection and 
survive active viral replication [54, 55], serving as a con-
tinuous source of viral progeny especially during the late 
phases of infection, when CD4+ T cells are being lost [56]. 
Investigations on viral reservoir formation have received a 
lot of attention, most of it being focused on memory T cells 
and the regulation of viral transcription [57]. However, it is 
clear that different mechanisms operate in T cells and mono-
cytic cells, susceptibility to the virus cytopathic effect being 
one of them.  

 As mentioned, monocyte to macrophage differentiation 
induces an increased resistance to a multitude of apoptotic 
stimuli. However, comparative studies of monocyte and 
macrophage susceptibility to apoptosis in the context of HIV 
infection have been hampered by the monocytes’ lack of 
susceptibility to in vitro HIV infection [58, 59]. Monocyte 
differentiation increases their permissiveness to viral replica-
tion, with macrophages making up a primary source of HIV 
reservoirs [60]. Persistently-infected monocytes have also 
been isolated from the peripheral blood of HIV-infected pa-
tients in particular those under antiretroviral treatment [61-
63] suggesting that lack of susceptibility to infection of 
monocytes in vivo is not absolute.  

ROLE OF BCL2 IN RESISTANCE TO APOPTOSIS IN 
HIV-INFECTION  

Evidence from Cell Lines 

 It is now clear that HIV affects the apoptotic pathways  
differently in monocytic and lymphocytic cell lines chroni- 
cally infected with HIV. Chronically infected monocytic U1  
cells were found to be more resistant to apoptosis induced by  
-irradiation or TNF  plus cycloheximide compared to the  

chronically infected lymphocytic cell line ACH-2. At the  
same time, the Fas/FasL death receptor pathway was less  
functional in both cell lines compared to their uninfected  
counterparts [64]. Although the mechanisms responsible for  
the discrepancies between the two cell types were not inves- 
tigated, these results confirmed earlier observations on the  
decreased sensitivity to death receptor-induced apoptosis of  
HIV-infected monocytic cells [65, 66]. Even though the  
mechanism underlying increased apoptosis resistance of per- 
sistently infected monocytic cells is not clear, it is reasonable  
to hypothesize that differential expression of anti-apoptotic  
molecules may contribute to this resistance. Recently, Fer- 
nandez-Larrosa et al. [67] showed that the increased resis- 
tance to staurosporine- and H2O2-induced apoptosis in  
chronically HIV-infected monocytic cell lines was modu- 
lated through the mitochondrial pathway, with an increased  
Bcl2/Bax ratio in the infected cells favoring an anti-apoptotic  
phenotype. More importantly, this resistance to apoptosis  
was independent of the magnitude of viral replication, which  
suggests that controlling the apoptotic pathway is a major  
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factor that influences viral persistence beyond continuous 
replication. 

Evidence from Primary Cells 

 The involvement of Bcl2 family in increased survival of 
macrophages during HIV infection was also confirmed in 
studies that used in vitro infection of MDMs [68, 69]. In this 
model, HIV infection increased the expression of anti-
apoptotic Bcl2 and Bcl-xL and decreased proapoptotic Bax 
and Bad proteins [69]. We have recently shown that sponta-
neous cell death and IFN- -induced monocyte cell death was 
elevated in HIV+ patients compared to HIV- controls [70]. 
Interestingly, the anti-inflammatory cytokine IL-10 was able 
to reduce spontaneous and IFN- -induced monocyte cell 
death in both normal and HIV-infected patients (unpublished 
observations). However, a recent study demonstrated that 
monocytes from HIV+ patients under different conditions 
(CdCl2 and Fas) are more resistant to cell death compared to 
uninfected controls [71], even in the absence of productive 
infection. Even though the expression of Bcl2 and IAP fami-
lies was not evaluated, the enhanced resistance of monocytes 
isolated from HIV+ donors was linked with the virus ability 
to bind and activate CCR5, the main coreceptor for macro-
phage tropic viruses [72]. These results indicate that the ef-
fects of viral infection may extend beyond infected cells, and 
highlight the complicated role of apoptosis in HIV patho-
genesis. 

 Several HIV proteins such as Tat, Nef and Vpr can 
modulate the survival of monocytic cells depending on their 
stage of differentiation and through the expression of a vari-
ety of cytokines such as MIP-1 ,  and other proinflamma-
tory TNF-  or IL-6 cytokines.  

HIV Tat 

 The macrophages not only resist the cytopathic effect of 
HIV [73] but also contribute to an increased cell death of 
uninfected bystander CD4 T cells by upregulating the ex-
pression of FasL and interacting with Fas-expressing lym-
phocytes [74, 75] or by increasing TRAIL secretion [76]. 
The ability to contribute to lymphocyte apoptosis has also 
been demonstrated for monocytes. Consistent with bystander 
cell apoptosis, treatment of monocytes with HIV-Tat resulted 
in an increased secretion of TRAIL in the culture media 
which is more cytotoxic for uninfected than the CD4+ HIV-
infected T cells [77]. Interestingly enough, treatment of 
monocytes with HIV Tat was also shown to induce increased 
expression of Bcl2 which was able to protect monocytes 
against TRAIL-induced apoptosis [78]. The ability of Bcl2, a 
protein associated with maintaining mitochondrial mem-
brane integrity and anti-apoptotic activity through the intrin-
sic pathway, to protect against receptor-mediated cell death 
(extrinsic pathway) shows the complexity of cell survival 
regulation in this cell type. This may be the reason why the 
virus has evolved pathways to target this protein family to its 
advantage.  

HIV Nef 

 The Bcl2 family has also been implicated in the enhanced 
survival of macrophages in response to HIV-Nef [79, 80], an 
accessory protein known to protect lymphocytes from HIV 
cytopathic effects by inducing phosphorylation and inactiva-

tion of pro-apoptotic Bad [81]. Although other anti-apoptotic 
genes were not evaluated and a direct cause and effect rela-
tionship was not established, Nef expression was correlated 
with increased Bad phosphorylation and cell survival in a 
VSV-G HIV pseudovirus infection model of MDMs [79]. 
Similarly, Nef expression increased the survival of a TF-1 
macrophage precursor cell line after cytokine removal by 
enhancing Bcl-xL gene expression [80]. Recently, the ability 
of HIV-infected macrophages to resist TRAIL-mediated 
apoptosis was found to be associated with induction of the 
Bcl2 family of genes [82]. Although HIV infection up-
regulated a number of anti-apoptotic genes such as cIAP1, 
cIAP2, XIAP, Mcl-1 and Bfl-1, only Mcl-1 and Bfl-1 pro-
tected HIV-infected macrophages against TRAIL-induced 
apoptosis. Moreover, this resistance was found to be depend-
ant on secretion of M-CSF, a cytokine known to stimulate 
HIV replication [83]. In addition, this resistance to apoptosis 
was not detected in HIV strains deficient for the envelope 
gene [82].  

 Overall, it seems that Tat and Nef have overlapping ac-
tivities in terms of promoting survival of infected cells espe-
cially by targeting Bcl2 family of proteins (results summa-
rized in Table 1). Although results depend on different ex-
perimental settings and the models used to deliver viral pro-
teins, it is reasonable to conclude that modulation of the 
apoptotic pathway contributes to maintenance of viral reser-
voir status. The implications may also be extended to by-
stander uninfected cells, given the ability of infected cells to 
secrete viral proteins such as Tat in the extracellular medium 
[84].  

HIV Vpr 

 Despite the presence of a low number of infected mono-
cytes under in vivo conditions, monocytes can be affected by 
viral proteins that are secreted in the patient’s serum, sug-
gesting that experimental approaches using viral peptides 
may yield more relevant results. In order to study suscepti-
bility to apoptosis in the context of HIV in a manner that 
would circumvent the lack of in vitro productive infection, 
we have used Vpr (viral protein R) as an experimental model 
for monocyte apoptosis. Vpr has been shown to cause apop-
tosis in several cell types, including lymphocytes [85, 86], 
monocytes [87] and neurons [88-90]. By using a synthetic 
peptide encoding the C-terminal 52-96 amino acid sequence 
of Vpr, which contains the apoptosis inducing domain [91], 
we investigated the effect of Vpr in primary human mono-
cytes and in THP1 promonocytic cell line. Our results show 
that Vpr52-96 induced apoptosis in both cell types was 
caspase dependant and involved the activation of c-Jun-N-
terminal kinase (JNK) mitogen-activated protein-kinase 
(MAPK) [87]. Vpr also down regulated the expression level 
of Bcl2 and cIAP1 anti-apoptotic proteins downstream of 
JNK activation. After inhibition of the JNK pathway with 
pharmacological inhibitors and siRNA, both the apoptotic 
effect and the decreased expression of Bcl2 and cIAP1 were 
reversed, which linked the effect on monocyte survival to 
Vpr’s ability to modulate the expression level of these genes.  

 Our preliminary results suggest that the Vpr-induced 
apoptotic effect could be inhibited by pretreatment of mono-
cytes with certain Toll-like receptor (TLR) agonists such as 
LPS (TLR-4), PolyI:C (TLR-3), CpG (TLR-9) or the proin-
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flammatory cytokine TNF- . Furthermore, LPS and TNF-  
protected monocytic cells against Vpr-induced apoptosis by 
upregulating the cIAP2 gene, suggesting that different 
mechanisms are operative in regulating sensitivity/resistance 
to Vpr-induced apoptosis (unpublished observations). 
Moreover, we have also demonstrated the involvement of 
cIAP2 in LPS-induced protection of monocytes from 
staurosporine-induced apoptosis [92] indicating that this 
anti-apoptotic gene may play a key role in monocytic cell 
survival against multiple apoptotic stimuli. However, mono-
cytic cells obtained after differentiation as MDMs were no 
longer responsive to the Vpr-induced apoptotic effect (un-
published observation) suggesting that differentiated macro-
phages possess an enhanced survival phenotype that charac-
terizes these cells during HIV infection. Our results also 
suggest that resistance to apoptosis is linked to Vpr’s inabil-
ity to down regulate anti-apoptotic molecules in macro-
phages. If this is the case, it is tempting to hypothesize that 
targeting anti-apoptotic genes would provide a valuable 
therapeutic tool in eliminating this viral reservoir.  

TUBERCULOSIS INFECTION AND ANTI-

APOPTOTIC GENES: THE HOST’S PERSPECTIVE 

 It is well established that M.tb establishes persistence in 
infected macrophages by exploiting their phagocytic ma-
chinery and by preventing acidification of phagolysosomes 
[93]. Reports of host autophagic machinery being possibly 
used by M.tb for the same purpose has been also been re-

cently elucidated [94]. Another major mechanism evolved by 
M.tb to establish persistence is prevention of apoptosis in 
infected macrophages and monocytes [93-96]. There is am-
ple evidence to suggest that M.tb, like HIV, evades apoptosis 
of infected monocytic cells by upregulating several host’s 
anti-apoptotic genes responsible for dysregulating both ex-
trinsic and intrinsic apoptotic pathways.  

INDUCTION OF PRO- AND ANTI-APOPTOTIC 

GENES BY VIRULENT AND AVIRULENT M.TB 

STRAINS 

 Literature on whether virulent M.tb induces or prevents 
apoptosis in infected cells has been somewhat controversial 
[97]. Studies using different mouse strains, cells and systems 
have reported variable results. Some studies claim that M.tb 
infection induces apoptosis in infected macrophages [98]. 
However, there are equally convincing reports of M.tb in-
ducing protection against apoptosis in infected cells [93, 96, 
99]. Even though differences in mode of infection, experi-
mental techniques and cells used may account for some of 
these differences, one of the important reasons behind these 
discordant results is the differential regulation of apoptotic 
genes by virulent, avirulent and attenuated strains of M.tb. 

 Katarzyna-Sablinska et.al. (1998) demostrated that viru-
lent and avirulent M.tb strains induce different types and 
degrees of cell death in infected macrophages [95]. Both, 
avirulent H37Ra and virulent H37Rv strains induce apopto-
sis in infected human alveolar macrophages (AMs) [100]. 

Table 1. The Effect of HIV Infection and Viral Proteins on the Expression Levels of Pro/Anti-Apoptotic Genes in Monocytic Cells. 

The Impact on Cell Survival or Death, the Molecular Mechanisms Implicated (when Investigated) and the References are 

also Indicated 

Experimental Setting Cell Type Molecules 

Involved 

Effect Mechanism References 

in vitro HIV infection, 
HIV Tat protein 

human monocyte 
derived macrophages 

Bcl2 upregulation   [68] 

Bcl2 

Bcl-XL 

upregulation in vitro HIV infection human monocyte 
derived macrophages 

Bax 

Bad 

downregulation 

increased survival of 
infected cells 

increased TNF  
secretion in culture 

media 

[69] 

expression of HIV-Nef 
by retroviral 

transduction 

TF1 macrophage 
precursor cell line 
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However H37Ra infection in U937 cells induced higher lev-
els of apoptosis compared to the H37Rv infected cells that 
showed signs of necrosis [93, 96]. Similarly, extremely viru-
lent Beijing strain of M.tb was shown to induce even less 
apoptosis than H37Rv strain and strongly induced necrosis in 
THP1-derived macrophages and in murine macrophages 
[101, 102]. Why virulent M.tb strains would drive host cells 
towards necrosis can be explained by the fact that apoptosis 
of host cells severely reduces bacterial viability whereas ne-
crosis has no effect on bacterial viability as confirmed by 
colony forming units (CFUs) formed by monocytic cells 
infected by H37Ra and H37Rv strains [103].  

 The stage of cell differentiation also determines whether 

M.tb infection will induce apoptosis or protection. Monocyte 
derived macrophages from healthy tuberculin positive do-

nors are more prone to undergo M.tb-induced apoptosis as 

compared to monocytes from the same donors [104]. 
Moreover, U937 cells treated with purified protein deriva-

tives (PPDs) underwent necrosis whereas U937-derived 

macrophages died of apoptosis upon PPD treatment [99]. 
Another factor that may influence induction of apoptosis or 

necrosis in monocytic cells infected by M.tb is the bacterial 

dose or multiplicity of infection (m.o.i). Murine macro-
phages infected with H37Rv at high m.o.i of >25 protected 

the infected cells from apoptosis and induced necrosis 

whereas infection with low m.o.i, of <10 of the same strain 
induced TNF- -induced apoptosis [105].  

 Both virulent and avirulent M.tb strains induce apoptosis 

in monocytic cells when compared to uninfected controls. In 
general, the avirulent strains induce much higher levels of 

apoptosis than the virulent strains (90). However, analysis of 

microarray of apoptosis-related genes in monocytic cells 
infected with virulent and avirulent strains have revealed 

variable results. Some groups show upregulation of anti-

apoptotic genes whereas others demonstrate induction of 
pro-apoptotic genes. For example, apoptosis pathway(s) spe-

cific cDNA microarray analysis of U937 cells infected with 

virulent M.tb strain, H37Rv, revealed that anti-apoptotic 
genes, Bcl-2 and Rb (retinoblastoma 1), and caspase-1 were 

down regulated, whereas pro-apoptotic p53 oncogene, Bad 

and Bax genes were significantly upregulated by 48 hrs in 
infected cells as compared to the uninfected cells [96]. Spira 

et al. also conducted a gene microarray to profile apoptosis-

related genes induced in alveolar macrophages (AMs) in-
fected with avirulent H37Ra and virulent H37Rv strains. 

They reported that despite a unique genetic profile for each 

donor, certain discrete pro-apoptotic genes, Zk1, FIP3 and 
EF-1alpha, were significantly and consistently down regu-

lated in AMs infected with H37Rv as compared to the 

H37Ra-infected cells. Moreover, the anti apoptotic Bcl-w 
gene was found to be upregulated in H37Rv infected AMs as 

compared to the uninfected cells [106]. In contrast, another 

study showed upregulation of pro-apoptotic casp10 and 
rps19 genes, and anti-apoptotic Bcl2l1 gene in U937 cells 

infected with H37Rv strain [107]. Several members of the 

anti-apoptotic NF B gene family, NF B1, NF B2, I BA, 
REL, RELA, RELB were upregulated by virulent H37Rv 

strain in primary human monocytes [108]. Taken together, 

these reports suggest that even though virulent and avirulent 
M.tb strains induce both pro and anti-apoptotic genes in in-

fected macrophages, the virulent strains are able to inhibit or 

alter the apoptotic functions of induced pro-apoptotic genes.  

 NF B is a transcription factor that regulates several anti-
apoptotic genes including certain IAPs and members of Bcl2 
family [20]. NF B has been shown to translocate to the nu-
cleus following M.tb infection in macrophages [109]. THP1-
I B Mdn cells, the cells lacking NF B, infected with viru-
lent M.tb undergo down regulation of anti-apoptotic gene, 
A1 [110]. A1 is an NF B-dependant anti- apoptotic gene, 
belonging to the Bcl2 family of proteins, that was first char-
acterized in mice and its human homologue was identified in 
HUVEC cells by Karsan et al. [111]. The A1  isoform was 
found to mediate protection against nitrous oxide-induced 
apoptosis in BCG infected murine macrophages and in J774, 
a murine macrophage cell line. The upregulation of isoform 
A1a was shown to be independent of protein synthesis, p38 
MAP Kinase and PI3K signaling pathways. Moreover, 
macrophages from A1  knockout mice died from nitrous 
oxide-induced apoptosis [112]. These results were confirmed 
in human model system wherein H37Rv and H37Ra induced 
differential expression of A1 in THP-1 cells and in MDMs. 
Abrogation of A1 by siRNAs significantly reduced H37Rv-
induced protection which resulted in reduced bacterial viabil-
ity in THP1 cells [113]. Another member of the Bcl2 family, 
Bad, was shown to be involved in enhanced survival of hu-
man monocytic cells infected with M.tb. Bad needs to be 
dephosphorylated in order to become active following which 
it translocates to the mitochondria prior to inducing apopto-
sis [114]. Mycobacterial mannosylated Lam from virulent 
strains of M.tb was shown to phosphorylate Bad in a 
PI3K/Akt dependant manner in THP1 cells thereby avoiding 
yet another host apoptotic mechanism [115]. Similarly, 
NF B-regulated Myeloid cell factor-1 (Mcl-1), an anti apop-
totic member of the Bcl2 family of proteins has been re-
ported to promote monocytic cell survival against M.tb in-
fection [116]. Mcl1 serves to preserve integrity of mitochon-
drial membrane, prevent release of mitochondrial apoptotic 
factors and inhibit induction of effector caspases [2]. Mcl-1 
expression is up regulated in THP-1 cells and MDMs 
macrophages infected with live, virulent M.tb strain, H37Rv 
[116, 117]. Moreover blocking Mcl-1 expression using 
siRNA significantly increases apoptosis in H37Rv infected 
cells [116]. A study conducted on Korean males also pro-
poses a strong correlation between Mcl-1 polymorphism and 
disease susceptibility [117]. 

ROLE OF TNF-  AND TOLL-LIKE RECEPTORS 

(TLRS) IN M.TB-INDUCED ANTI-APOPTOTIC 

GENES AND APOPTOSIS 

 The anti-apoptotic genes induced by virulent M.tb appear 
to reduce apoptosis by interfering with the TNF- -induced 
extrinsic apoptotic pathway. Neutralizing TNF-  in H37Ra-
infected cells converts their gene profile to that of H37Rv-
infected cells [95, 96, 105, 106]. Besides, virulent M.tb 
strains have been shown to induce shedding of soluble 
TNFR2, consequently inhibiting TNF- -induced apoptosis 
[95]. Virulent M.tb reduces expression of Fas on the cell 
surface of infected human macrophages presenting yet an-
other mechanism of evading host cell apoptosis by abolish-
ing Fas/FasL mediated apoptosis [103]. 
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 M.tb also exploits TLRs to induce anti-apoptotic genes 
that enhance cell survival and promote bacterial persistence 
[109]. Exploiting TLRs is not a mechanism unique to M.tb. 
As mentioned earlier, we have shown that TLR3, TLR4 and 
TLR9, when stimulated by their ligands PolyI:C, LPS and 
CpG DNA, respectively, protected monocytic cells from 
HIV-Vpr induced apoptosis by induction of NF B and anti-
apoptotic cIAP genes (unpublished data). Stimulation of 
TLR2, found in abundance at sites of M.tb infection, by 
components of M.tb cell wall, has been shown to protect 
human macrophages against apoptosis. THP1-derived 
macrophages when stimulated with 19kDa mycobacterial 
lipoprotein or mannosylated LAM were shown to induce 
resistance to apoptosis via activation of NF B and subse-
quent induction of anti apoptotic cFLIP which inhibits death 
receptor-mediated apoptosis [25, 109].  

ANTI-APOPTOTIC GENES AS POTENTIAL DRUG 

TARGETS 

 Understanding how anti-apoptotic proteins contribute to 
the enhanced survival of infected macrophages has a direct 
impact on therapeutic strategies. For example, IAP and Bcl2 
antagonists are currently being developed as cell death in-
ducing therapies in cancer cells, where expression of anti-
apoptotic proteins is a major mechanism of pathogenicity 
and chemotherapy resistance [118, 119]. Smac (second mi-
tochondria-derived activator of caspase), a IAP binding pro-
tein released from the mitochondria in response to apoptotic 
stimuli, promotes cell death by binding and inactivating 
IAPs [120]. Smac mimetics are chemical compounds that 
display the same activity in the absence of mitochondrial 
release of apoptotic factors [118], thereby releasing caspases 
from IAP blockage and causing apoptosis. Smac mimetics 
have the ability to promote ubiquitination and subsequent 
degradation of various IAPs [121], which also affects the 
signalling pathway of TNF- , because of IAPs association 
with the TNF receptor complex [122]. Recent evidence im-
plicates this pleiotropic cytokine as being responsible for the 
apoptotic effect of Smac mimetics, as only cell lines that 
secrete TNF-  are sensitive to their effect [121, 123]. TNF-  
can generate two different signals through distinctive recep-
tors: one that triggers apoptosis and another that inhibits 
apoptosis [124]. There is evidence to suggest that it promotes 
cell survival during HIV infection [69]. Therefore, it is rea-
sonable to hypothesize that HIV infected cells may be sensi-
tized to Smac mimetic apoptosis because they already se-
crete TNF- . Other apoptosis modulators of the Bcl2 family 
are Bcl2 inhibitors [125] and the recently discovered Bcl-xL 
inhibitors [126] that also prevent protein-protein interactions 
by binding to the surface pocket that is required for their 
anti-apoptotic function [125, 126], causing mitochondrial 
permeability and caspase activation in treated cells.  

 Both Smac mimetics [121, 123, 127-129] and Bcl-2 fam- 
ily inhibitors [130-132] are intensely studied as potential  
antineoplasic drugs, but the potential therapeutic benefits of  
these agents in the context of HIV or M.tb. infections are  
currently unknown; yet, preliminary evidence presented here  
indicates that upregulation of anti-apoptotic molecules  
documented in HIV and M. tb. infections may also sensitize  
infected cells to the respective antagonists, opening new pos- 
sibilities in terms of targeting persistently infected cells.  

Targeting macrophage reservoir during HIV infection may  
have therapeutic benefits on T cells as well, since infected  
macrophages have been shown to be responsible for by- 
stander effect apoptosis on neighbouring cells [74-76]. 

CONCLUSIONS 

 Modulation of the apoptotic pathway is a powerful 
mechanism for increased survival of monocytic cells, a cell 
type that is preferentially targeted during HIV and M. tb in-
fections. Even though the extent of its in vivo significance 
needs to be studied further, in vitro studies have shown that 
the enhanced resistance of macrophages against various 
apoptotic stimuli is a complex process that involves modula-
tion of anti-apoptotic genes. Even if the pattern of gene ex-
pression may vary with the experimental model, the chemi-
cal inducers employed for activation of monocytes or the 
nature of the apoptotic signal used to challenge differentiated 
macrophages, the overall tendency is for an increased ex-
pression of anti-apoptotic genes as a common mechanism of 
increased macrophage viability rather than the decreased 
expression of anti-apoptotic molecules. The genes most fre-
quently involved in macrophage resistance were Bcl2 and 
Bcl-xL of the Bcl2 family and XIAP of IAP family.  

 In addition to the increased resistance phenotype dis-
played by macrophages compared to monocytes, studies also 
suggests that HIV and M. tb further promote the survival of 
this cell type by interfering with the expression of anti-
apoptotic molecules. Preliminary data involve members of 
the Bcl2 family as being the main targets in HIV infection, 
while the data on IAPs involvement in still lacking. Depend-
ing upon m.o.i, strain and stage of host cell differentiation, 
M.tb induces several anti apoptotic genes, including cFLIP 
and several members of Bcl2 family, like Mcl-1 and A1. 
While enhanced expression of anti-apoptotic proteins may be 
deleterious for infected cells, they may also provide a target 
for apoptosis inducing agents, like Smac mimetics and Bcl2 
inhibitors that act specifically on these proteins. Although 
further studies are needed to evaluate their efficiency in in-
fections, these compounds constitute a novel direction of 
approaching persistently infected cells, a direction that de-
serves further consideration.  
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