
Regulation of potassium (K) handling in the renal collecting duct

Wen-Hui Wang and
Department of Pharmacology, BSB 537, New York Medical College, 15 Dana Road, Valhalla, NY
10595, USA, e-mail: wenhui_wang@nymc.edu

Gerhard Giebisch
Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven,
CT 06511, USA

Abstract
This review provides an overview of the molecular mechanisms of K transport in the mammalian
connecting tubule (CNT) and cortical collecting duct (CCD), both nephron segments responsible for
the regulation of renal K secretion. Aldosterone and dietary K intake are two of the most important
factors regulating K secretion in the CNT and CCD. Recently, angiotensin II (AngII) has also been
shown to play a role in the regulation of K secretion. In addition, genetic and molecular biological
approaches have further identified new mechanisms by which aldosterone and dietary K intake
regulate K transport. Thus, the interaction between serum-glucocorticoid-induced kinase 1 (SGK1)
and with-no-lysine kinase 4 (WNK4) plays a significant role in mediating the effect of aldosterone
on ROMK (Kir1.1), an important apical K channel modulating K secretion. Recent evidence suggests
that WNK1, mitogen-activated protein kinases such as P38, ERK, and Src family protein tyrosine
kinase are involved in mediating the effect of low K intake on apical K secretory channels.
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Overview of K transport mechanism in CNT and CCD
Maintaining plasma K within a narrow physiological range is essential for the function of
neurons, cardiac myocytes, and skeletal muscles. The kidney plays a key role in regulating K
excretion by completely filtering K in the glomerulus, reabsorbing K extensively along the
proximal tubule and thick ascending limb, secreting K in the connecting tubule (CNT) and
cortical collecting duct (CCD), and reabsorbing K in outer medullary collecting duct (OMCD).
Two morphological distinct cells, principal cell (PC) and intercalated cell (IC), are present in
the CNT and CCD [29,75], and it is generally accepted that PC and IC are responsible for K
secretion and for K absorption, respectively [27,30]. Figure 1 is a cell model illustrating the K
transport mechanism under control conditions (normal K intake) in both PC and IC in the CCD
[29,74,75]. K secretion takes place by a two-step process: K enters the cell via the basolateral
Na,K-ATPase and is secreted into the lumen through apical K channels along a favorable
electrochemical gradient [76,101]. K absorption is achieved by K entering the cell across the
apical membrane through a luminal H,K-ATPase and leaving the cell across the basolateral
membrane along a favorable K electrochemical gradient [19,21,33]. Although H,K-ATPase is
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mainly expressed in IC in collecting duct, colonic H,K-ATPase has been shown to be expressed
in PC of connecting tubule and the CCD [115].

Luminal Na transport provides normally an important driving force for K secretion [97], but
recent evidence has shown that K secretion may continue when luminal Na transport is
compromised. As demonstrated in microperfused rabbit CCD, K secretion may continue, albeit
at a reduced rate, in the absence of luminal Na [69]. Since inhibition of basolateral Na/H
exchanger significantly decreases such K secretion in the absence of luminal Na, it is most
likely that Na recycling across the basolateral membrane through Na/H exchange supplies
enough Na to sustain the activity of Na,K-ATPase which is essential for K secretion.

In addition to entering PC by Na,K-ATPase, K can also gain cell access across the basolateral
membrane via K channels in the CCD provided the basolateral membrane hyperpolarizes to
exceed the K equilibrium potential. This may occur as consequence of mineralocorticoid-
induced stimulation of Na,K-ATPase [92]. Three types of K channels have been identified in
the basolateral membrane of the CCD and shown to be activated by cGMP-dependent pathways
[32,37,120,123]. The regulation of Na,K-ATPase in the CCD has been covered in two review
articles [24,116] and will not be further discussed in the present review. Thus, this review paper
is focused largely on the apical K transport mechanisms, especially apical K channels, in the
CNT and CCD.

Apical K transport in the CNT and collecting duct
K channels

Several types of K channels including ROMK (Kir1.1), a Ca2+-activated big-conductance K
channel (BK) and double-pore K channel, KCNK1, are expressed in the apical membrane of
the CNT and CCD [25–27,38,78,79,95]. It is now well established that ROMK and BK
channels are responsible for K secretion. In contrast, further experiments will be necessary to
define the role of the two-pore K channels in K transport in the CNT or CCD. ROMK channels
have similar biophysical properties and regulatory mechanism as that of the native small-
conductance K (SK) channels identified in the mouse and rat CCD [35]. Thus, we terminate
the SK as a ROMK-like SK channels in the present review. Since ROMK-like SK channels
have a high open probability and are abundantly expressed in the apical membrane of the CNT
and CCD under control conditions, ROMK channels are thought to play a major role for K
secretion under normal dietary K intake [26,31,56,93,95,100,119]. However, when the tubule
flow rate is high or dietary K intake increases [9,94,136], both BK channels and ROMK-like
SK are involved in mediating K secretion.

ROMK
The ROMK channel [36] is a member of inwardly rectifying K (KIR) channels [72] that are
functionally characterized by high K selectivity and either weak or strong inward rectification.
The information about ROMK structure is largely obtained from the X-ray crystallographic
structure of a K channel from Streptomyces lividans [20], demonstrating that each contains
two membrane spanning segments and cytoplasmic N and C termini with high homology to
the pore-forming H5 segment of voltage-gated K channels. Moreover, Minor et al. [66]
employed a yeast genetic screening technique to analyze the packing structure of the M1 and
M2 domains. They suggest that M2 segments line the pore and are surrounded by M1 segments
which also participate in subunit–subunit interactions in the tetrameric channel complex.

ROMK channels are pH-sensitive, and a decrease in cell pH from 7.4 to 7.0 completely inhibits
channel activity (which is defined by NPo, a product of channel number and open probability)
[14,85,119]. Structure and function analysis have demonstrated that interaction between lysine
residue 80 and alanine residue 177 on M2 domain is essential for the pH sensitivity of ROMK
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[85]. The native ROMK-like SK channel is sensitive to ATP [119], but ATP sensitivity is
absent in ROMK channels expressed in oocytes. Several studies have demonstrated that
ROMK channels may interact with CFTR or sulfonylurea receptor type 2B (SUR2B) and that
such interaction is required for the ATP sensitivity [18,59,63]. ROMK channels have three
putative PKA phosphorylation sites, and stimulation of PKA-induced phosphorylation
increases ROMK channel activity [1,64,138]. This is achieved by either enhancing the insertion
of ROMK channels into plasma membrane [73,141] or by augmenting the effect of PIP2 [57]
which has been shown to activate ROMK channels [40,58]. Serum-glucocorticoid-induced
kinase 1 (SGK1) also stimulates ROMK channel activity [143] by increasing the
phosphorylation of a serine residue of the N terminus of ROMK (Ser 44 for ROMK1), a putative
PKA phosphorylation site [140]. Thus, SGK1 stimulates the surface expression of ROMK1
channels through facilitating the export from endoplasmic reticulum. Recently, it has been
suggested that SGK1 stimulates ROMK channels by phosphorylation of WNK4 [88]. The
effect of PKC on ROMK channel is complex because PKC has both stimulatory and inhibitory
effects [53,144]. PKC-induced phosphorylation of ROMK channels is required for export of
ROMK1 channels to the cell membrane [53]. However, stimulation of PKC inhibits ROMK
channels by decreasing the sensitivity of ROMK channels to PIP2 [144]. ROMK1 channels
are also a substrate for Src family protein tyrosine kinase (PTK) which increases the
endocytosis of ROMK1 channels in the CCD by stimulation of tyrosine phosphorylation [54,
67].

Ca2+-activated BK
The BK channel is composed of a pore-forming α subunit (Slo 1) with six transmembrane
segments and an accessory β subunit [60,91]. BK channel activity has been detected at the
apical membrane of both PC and IC of the CCD [25,42]. Real-time polymerase chain reaction
performed in the isolated single CCD has demonstrated that BK channel α, β2, and β4 subunits,
but not β1, are expressed in rabbits fed a high K diet. Moreover, high K intake stimulates the
transcription of BK channel β2 and 4 subunits [70]. In contrast, low Na intake, which increases
aldosterone level, does not affect the messenger RNA level of BK α, β2, and β4 subunits in
rabbit CCD, suggesting that aldosterone does not contribute to the regulation of BK channel
expression [23]. BK channels are sensitive to cell pH and ATP at physiological Ca2+ levels
[98,99]. Their contribution to K secretion was initially deemed uncertain in light of their very
low open probability in CCDs. Because such patch-clamp experiments were performed in split-
open tubules with no fluid flow [25,51], it is possible that in vivo BK channel activity may be
higher. This possibility is suggested by two recent studies highlighting the role of BK channels
in flow-stimulated K secretion in both the CNT [112] and the CCD [136]. The role of BK
channel in flow-stimulated K secretion is also supported by the observation that an increase in
flow failed to stimulate K secretion in the distal nephron in BK-α subunit knockout mice
[87]. It is of interest that patch-clamp experiments have demonstrated high BK channel activity
in IC [84]. Because IC has a low Na,K-ATPase activity, it is difficult to explain their possible
contribution to significant rates of K secretion [10]. However, two lines of evidence suggest
that BK channels in PC are involved in mediating renal K secretion: (1) BK channel activity
in PC is increased in the CCD from rats on a high K diet and (2) BK channel activity is
significantly augmented by inhibition of P38 and ERK, both of which are suppressed by HK
intake [51]. Although BK channels play a role in flow-induced stimulation of K secretion,
deletion of the BK channel α subunit does not affect the net K excretion in mice fed with high
K. This suggests that HK-induced stimulation of ROMK channel expression and high plasma
aldosterone level can compensate for deleting BK channels on K secretion [87].

KCl co-transport
The KCl co-transporter (KCC), most likely KCC1, has been shown to be expressed in the apical
membrane of the distal nephron including CCD [52]. Several studies suggest a role for apical
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KCC in renal K secretion. A reduction in luminal Cl markedly increases K secretion in perfused
rat distal tubules, a mixture of distal convoluted tubule, CNT, and initial CCD [22,114]. This
component of K secretion is not influenced by luminal Ba2+ or amiloride [22] and can be
blocked by luminal inhibitors of KCl co-transporters [2]. These findings have been extended
to the rabbit CCD where a decrease in luminal Cl from 112 to 5 mM increases K secretion by
48% [134]. A reduction in basolateral Cl also decreases K secretion without an effect on
transepithelial voltage or Na transport. The direction of K flux can be reversed by a lumen-to-
bath Cl gradient, resulting in K absorption. In perfused CCDs from rats treated with
mineralocorticoid, vasopressin increases K secretion [96]. Since this increase in K secretion is
resistant to luminal Ba2+, vasopressin may stimulate apical KCC in the distal tubule [2].

H,K-ATPase/K-ATPase
Two types of H,K-ATPase are expressed in the kidney: colonic H,K-ATPase, which is sensitive
to both ouabain and Sch28080, and gastric H,K-ATPase, which is inhibited by Sch-28080 [6,
15,21,47,103,132]. Molecular cloning has revealed that colonic and gastric H,K-ATPase share
60–70% sequence homology and that gastric H,K-ATPase and colonic H,K-ATPase contain
HKα1 (type I K-ATPase) and HKα2 (type III K-ATPase), respectively [39]. Several early
studies have suggested that gastric H,K-ATPase was involved in renal K absorption from K-
depleted animals [12,28,142]. It had been reported that Rb influx, an index of K transport,
increased in the OMCD from rabbits on a K-deficient diet and that this effect was abolished
by inhibition of gastric H,K-ATPase [147]. However, the late investigations have shown that
colonic H,K-ATPase, rather than gastric H,K-ATPase, is mainly responsible for renal K
reabsorption and that gastric H,K-ATPase is involved in mediating K-dependent proton
secretion in collecting duct [39]. First, application of ouabain inhibited Sch-28080-sensitive
Rb2+ absorption in OMCD [146]. Second, K restriction significantly increases the expression
of type III K-ATPase [103]. Third, K-ATPase activity determined by ATP hydrolysis rate in
the CCD and OMCD is not affected in HKα1 (−/−) mice on K-deficient diet, while no K-
ATPase activity was detected in HKα2(−/−) mice on K-deficient diet [17]. However, deletion
of colonic H,K-ATPase does not display the renal phenotype even in mice fed on K-deficient
diet [65], suggesting kidney has an alternative mechanism to reabsorb K in HKα2(−/−) mice.
Moreover, immunostaining has shown that colonic H,K-ATPase is also detected in the apical
membrane of PC of the CCD during K restriction, suggesting that PC is also involved in K
reabsorption [33].

Regulation of K excretion by K diet
K transport in the CNT and CCD is regulated by hormones such as aldosterone and dietary K
intake. Dietary K intake plays a key role in the regulation of renal K secretion: High K intake
stimulates, whereas low K intake decreases renal K secretion [79,83,121]. Recently, several
new mechanisms by which K intake regulates apical secretory K channels in the CCD have
been reported. They include WNK, SGK1, and CYP-epoxygenase-dependent metabolites of
arachidonic acid.

Effect of high dietary K intake
High K-intake-induced stimulation of renal K secretion is mediated by both aldosterone-
dependent and an aldosterone-independent mechanism. Figure 2 is a cell model illustrating the
current understanding of the effects of high K intake on K transport in PC and IC. HK intake
stimulates aldosterone secretion which augments activity of both Na,K-ATPase and ENaC
[24,80,89,109,116,131]. Increased ENaC activity augments the driving force for K exit across
the apical membrane of the CNT and CCD, whereas high Na,K-ATPase activity stimulates K
secretion by increasing K uptake across the basolateral membrane. Mineralocorticoid receptor
(MR) knockout mice have severe hyperkalemia and hyponatremia, underscoring the
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importance of aldosterone in the regulation of renal K secretion [11]. Moreover, high K intake
significantly increases the activity of ROMK-like SK and BK channels, at least in part, by
stimulating the expression of BK channel α subunit in the CCD [51,70,121]. However, the high
K-intake-induced stimulation of ROMK-like SK channel activity may also require the
involvement of factors other than aldosterone because infusion of aldosterone or application
of low Na diet, a maneuver which increases circulated aldosterone level, fails to mimic the
effect of high K intake [81,82]. The notion that high K intake increases K secretion by an
aldosterone-independent mechanism is also suggested by the observation that high K intake
continues, albeit at a reduced rate, to stimulate K secretion in the isolated perfusion CCD from
adrenalectomized rabbit [68]. HK intake inhibits K reabsorption not only by decreasing colonic
H,K-ATPase expression [39] but also through enhancing apical K channel activity in IC [51].
This may indirectly affect the activity of H,K-ATPase by enhancing K recycling across the
apical membrane, thereby diminishing net K reabsorption. This review is supported by the
observation that inhibition of apical K channels in IC suppresses the H,K-ATPase activity
(measured by proton extrusion) in K-repleted animals but has no effect in the K-restricted
animals [145]. Although apical K channels in the IC play a role in the regulation of H, K-
ATPase activity, their regulation mechanism has not yet been extensively explored. In contrast,
advance in molecular biology has identified new signaling pathway regulating the apical K
channels in PC. Figure 3 is a scheme illustrating the current understanding about mechanisms
by which high K intake regulates apical K channels in the CCD through aldosterone-dependent
and -independent signaling pathways. First, high K intake is expected to abolish the inhibitory
effect of WNK4 on ROMK channels through aldosterone and SGK1 pathway. Second, high
K intake suppresses renin-AngII signaling pathway which could decrease both ROMK and BK
channel activity by a mitogen-activated protein kinases (MAPK)-dependent mechanism [7,
51]. Third, high K intake stimulates CYP epoxygenase activity and increases 11,12-EET
production which stimulates BK channel activity [111]. However, the first possibility that
aldosterone may stimulate ROMK channel by SGK1-dependent mechanism is only a
speculation and needs to be examined in the future study.

WNKs and KS-WNK1—WNKs belong to a family of serine/threonine protein kinases. Four
mammalian WNKs have been identified [46], of which WNK1, 3, and 4 are expressed in the
CCD [45,46,50] and play an important role in the regulation of ROMK channels [16,44,48,
50,88,117]. Co-expression of WNK1, 3, and 4 inhibits the ROMK channel activity in Xenopus
oocytes, and the effect of WNKs on ROMK is mediated by stimulation of clathrin-dependent
endocytosis [44]. Recently, it has also been demonstrated that intersectin, a scaffold protein
containing two Eps15 homology domains and four or five tandem SH3 domains, is required
for the interaction between WNK4 and clathrin [34]. In addition, a kidney-specific splice form
of WNK1 (KS-WNK1), in which an alternative 5′ exon replaces the first four exons of WNK1,
is expressed in the CCD [77]. Unlike the long form of WNK1 which inhibits ROMK channels
[16], KS-WNK1 lacks kinase activity and does not block ROMK channels. Moreover, KS-
WNK1 can antagonize the inhibitory effect of WNK1 [48,117]. It has been reported that high
K intake increases the expression of KS-WNK1 and accordingly attenuates the inhibitory effect
of WNK1 on ROMK channels [48,117]. Thus, the alteration of the ratio between long and short
form of WNK1 may be an important mechanism by which high K intake stimulates ROMK
channel activity. Moreover, WNK1 has also been reported to stimulate SGK1 through PI3
kinase [137]. Because high K intake is expected to increase SGK1, which stimulates K secretion
[113], WNK1-mediated activation of SGK1 could also play a role in mediating the effect of
high K intake on K secretion.

Aldosterone and SGK—A large body of evidence suggests that SGK1 mediates, at least
in part, the effect of aldosterone on renal K secretion [41,88,113,116]. This notion is supported
by studies performed in SGK1 knockout mice demonstrating that the phenotype of SGK1
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deletion is similar to MR knockout mice and displays impaired renal K secretion in response
to high dietary K intake [41]. The mechanism by which SGK1 stimulates renal K secretion
includes enhancing the export of ROMK channels from the ER [140]. Recently, it has also
been shown that WNK4 is the substrate of SGK1 which phosphorylates serine residue 1169
of its C terminus. Moreover, such SGK1-induced phosphorylation of WNK4 abolishes its
inhibitory effect on ROMK channels in Xenopus oocytes [88]. However, the immunostaining
study performed in SGK1 knockout mice shows that apical staining of ROMK channels in the
CNT and CCD is normal or even intensified [41], suggesting that SGK1 is not essential for the
export of ROMK channels. Thus, the stimulatory effect of aldosterone and SGK1 on K
secretion may be mediated mainly by increasing Na transport. But it should be noted that in
chronic experiments, aldosterone or SGK1 may play a permissive role in mediating the effect
of high K intake on ROMK channels because high K intake failed to stimulate ROMK channels
in adrenalectomized rats [81].

Role of AngII—Because high K intake suppresses the renin and AngII system [90,102], it
may play a role in modulating the effect of aldosterone or SGK1 on ROMK channels [46].
Figure 3 is a cell model illustrating the possible mechanism by which aldosterone-induced
stimulation of SGK1 activates ROMK channels when the AngII system is down-regulated by
high K intake. Thus, when AngII is suppressed, SGK1 stimulates the phosphorylation of
WNK4 and thereby abolishes the WNK4-mediated inhibition of ROMK channels. In contrast,
when the AngII signaling pathway is active under conditions of low Na intake, the stimulatory
effect of SGK1 on ROMK channel is compromised.

Figure 4 is a scheme illustrating the role of the interaction between AngII and aldosterone/
SGK1 in the regulating ROMK channels and K secretion during low Na intake. Unlike the
condition of high K intake which suppresses renin–AngII pathway, low Na intake stimulates
renin and AngII system. Because AngII has been shown to inhibit ROMK channels [130], the
stimulatory effect of SGK1 on ROMK channels may be suppressed. Alternatively, AngII
signaling pathway could directly modulate SGK1-WNK4 interaction and hence abolish the
stimulatory effect of SGK1 on ROMK channels. This model could explain that infusion of
aldosterone or low Na intake fails to stimulate ROMK channels and also that high K intake
alone is not able to stimulate ROMK channels in the absence of aldosterone [81]. But the role
of AngII in interacting with SGK1-WNK4 pathway is not explored and needs future
experiments to prove the hypothesis.

Cytochrome P450 (CYP) epoxygenase—CYP epoxygenases such as CYP2C23 or
CYP2J are expressed in the CNT and CCD [61,71,110]. Two lines of evidence suggest that
CYP epoxygenase plays an important role in mediating the effect of high K intake on K
secretion in the CCD [111]: (1) high K intake increased epoxyeicosatrienoic acid (EET) levels
in the CCD and (2) 11,12-EET stimulates BK channel activity in the CCD. The expression of
CYP2C23 is also increased in response to a high K diet [111]. The effect of high K on CYP2C23
is specific because high K intake does not increase CYP2J expression. The effect of high K
intake on CYP2C23 expression is not due to high aldosterone level because low Na intake has
been shown to decrease the expression of CYP2C23 [110]. Thus, CYP epoxygenase-dependent
metabolism of arachidonic acid stimulates BK channels in response to a high K diet by an
aldosterone-independent mechanism. This pathway may play a role in BK-dependent K
secretion in the CCD and possibly in the CNT (Fig. 3).

Effect of low dietary K intake
K restriction decreases renal K secretion by inhibiting both apical ROMK and BK channels in
PC [51,127] as well as by stimulating K absorption [133,135]. Figure 5 is a scheme of a cell
model illustrating the current understanding regarding the effect of low K intake on apical K
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channels, Na channels, H,K-ATPase, and basolateral K channels in the CCD. Low K intake
increases superoxide anion production which stimulates the expression of Src family PTK and
the phosphorylation of p38 and ERK MAPKs [8]. Single-channel analysis in the CCD of mice
and rats has demonstrated that the activity of both BK and ROMK-like SK decreases following
activation of PTK and MAPKs [124,129]. In addition, stimulation of ERK has been shown to
inhibit epithelial Na channels (ENaC) [106] and accordingly diminish the driving force for K
secretion. Moreover, K restriction stimulates K absorption [12,28,142] through enhancing
colonic H,K-ATPase transcription [62,103], and it is possible that PC may also be involved in
K reabsorption [32]. K-restriction-induced increase in K reabsorption may also be the result
of inhibiting apical K channels in IC [145,148] because blocking K channels in IC prevents K
recycling into the lumen and favors K absorption [145]. The molecular mechanism by which
low K intake inhibits apical K channels in PC has been extensively studied. Figure 6 is a scheme
illustrating the signaling pathway by which low K intake inhibits apical K channels in the CCD.

Role of AngII—K restriction has been shown to stimulate renin and the AngII system [86,
90,102]. Moreover, micropuncture studies have revealed that luminal perfusion of AngII
inhibited K secretion in the distal nephron [118]. Patch-clamp experiments have further
demonstrated that AngII down-regulates ROMK channels in the CCD and that such inhibition
could be demonstrated only in the CCD from K-restricted rats [130]. Furthermore, the
suppression of ROMK channels by AngII was absent by blocking NADPH oxidase or
attenuated by inhibiting Src family PTK. This suggests that superoxide anions and PTK are
involved in mediating the effect of angiotensin II.

MAPK—Low K intake has also been shown to activate MAPK such as p38 and ERK [7]. This
effect is possibly mediated by superoxide anions because suppression of superoxide anions
production abolished the effect of low K intake on MAPK activity [7,8]. The inhibitory role
of p38 and ERK in the regulation of K secretion has been suggested by the observations that
blocking p38 and ERK increases the ROMK channel activity and BK channel activity in the
CCD [7,51]. Moreover, the effect of MAPK on ROMK channels is independent of Src family
PTK.

Src family PTK—Both ROMK and Src family PTK, c-Src, are expressed in the CCD [55].
ROMK channels are the substrate of Src family PTK, and it has been shown that tyrosine
residue 337 of ROMK1 is a phosphorylation site of PTK. The tyrosine phosphorylation of
ROMK is regulated by dietary K intake: A low K intake increases, whereas a high K intake
decreases the level of the tyrosine-phosphorylated ROMK. Moreover, the level of Src family
PTK such as c-Src and c-Yes increased in the renal cortex and outer medulla obtained from
rats on a K-deficient diet and significantly decreased by high K intake [126]. Thus, it is possible
that PTK is involved in mediating the inhibitory effect of low dietary K intake on the ROMK-
like SK channels.

The role of PTK in mediating the effect of low K intake on K secretion is further supported by
the finding that blocking PTK with herbimycin A significantly increased the activity of the
ROMK-like SK channels in CCDs from rats on a KD diet [126]. However, the inhibitory effect
of PTK on ROMK-like SK channels is not a direct consequence of the tyrosine phosphorylation
because addition of exogenous c-Src does not inhibit the channel activity in excised patches
[122]. Several lines of evidence indicate that stimulation of tyrosine phosphorylation of
ROMK1 facilitates internalization of ROMK-like SK channels. First, inhibition of protein
tyrosine phosphatase (PTP) decreases ROMK-like SK channel activity. This effect is absent
in the presence of sucrose-containing bath or in CCDs treated with concanavalin A, an agent
which inhibits endocytosis, [125], suggesting that inhibition of PTP increases the
internalization of ROMK-like SK channels. Second, inhibition of PTP significantly increases
tyrosine phosphorylation of ROMK1 and reduces the number of ROMK1 detected by confocal
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microscopic image and surface biotin labeling in HEK293 cells transfected with ROMK1 and
c-Src [107]. Third, inhibition of PTP has no effect on K channel activity in cells transfected
with the ROMK1 mutant, R1Y337A, indicating that phosphorylation of tyrosine residue 337
is essential for initiating the internalization of ROMK1 [107].

While stimulation of tyrosine phosphorylation enhances the internalization of ROMK1
channels, facilitating dephosphorylation has an opposite effect on ROMK1 channels. It has
been demonstrated that stimulating tyrosine dephosphorylation increases the surface density
of ROMK1 channels [67]. Moreover, the observation that inhibition of microtubule formation
or application of tetanus toxin abolished the effect of herbimycin A on the ROMK channels in
CCDs indicates that the effect of inhibiting PTK results from the stimulation of exocytosis
[108,128].

KS-WNK1 and WNK1—As discussed above, KS-WNK1 antagonizes effect on WNK1
which inhibits ROMK channels. K restriction has been reported to decrease the expression of
KS-WNK1 and increase long form WNK1. Consequently, the antagonizing effect of KS-
WNK1 on WNK1 is diminished, and WNK1-mediated inhibition of ROMK channels is
enhanced in the CCD from animals fed on a low K diet [48].

Regulation of K transport in the CCD by hormones other than aldosterone
and AngII
Vasopressin

Vasopressin plays an important role in stimulating renal K excretion during dehydration. A
decrease in extracellular volume is expected to increase the plasma level of vasopressin which
stimulates renal K excretion. The stimulatory effect of vasopressin on renal K excretion is
partially due to increasing apical ROMK channel activity in the CCD by activation of V2
receptor and cAMP-dependent pathway [13]. Moreover, it has been shown that vasopressin
increases K secretion in the distal tubule, including CNT and initial CCD, by stimulation of
V1 receptor [3]. It has been reported that luminal vasopressin stimulates K secretion in distal
tubule, and the effect of luminal vasopressin is abolished in the presence BK channel blocker,
iberiotoxin. Thus, it is possible that stimulation of luminal V1 receptor activates BK channels
by a Ca2+- and PKC-dependent mechanism [4].

PGE2
Cyclooxygenase (COX) 1 and 2 are expressed in the CCD [139]. We have previously
demonstrated that low K intake stimulates the COX2 expression and PGE2 production in the
rat kidney and that PGE2 inhibits ROMK channels by a PKC-MAPK-dependent pathway
[43], as shown in Fig. 6. Low K intake has been shown to stimulate renin production which
increases PGE2 production [86,90,102]. This mechanism may play a role in suppressing apical
K channels during K restriction.

Uroguanylin and guanylin—Guanylin and uroguanylin have been shown to cause both
hyperpolarization and depolarization of cultured CCD principal cells. The peptide-induced
hyperpolarization and depolarization are blocked by protein kinase G and phospholipase A2,
respectively [104,105]. Micropuncture study has demonstrated that urogunylin stimulates BK-
channel-dependent K secretion in rat distal nephron [5].

Prospect
Although our understanding regarding K transport in the CNT and CCD has been significantly
extended recently, an integrated mechanism by which hormone and dietary K intake regulates
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K transport is still not completely understood. In the future study, it would be important to
understand the connection and interaction among different kinases and pathways which
regulate K secretion in the CCD. In addition, another focus would be to identify new molecular
mechanisms and paradigm of renal K handling in the distal nephron. Recently, a study which
measure simultaneously changes in plasma K and urinary K excretion demonstrates that
increasing K loading with food intake in stomach stimulates renal K secretion even if plasma
K concentration remains unchanged by K loading [49]. However, if K loading is not companied
by stomach food feeding, raising plasma K concentration is observed before renal K secretion
increases. This suggests a possible K sensing mechanism or gut factor present in the gastric
tissue. Thus, it would be interesting to determine the nature of such a gut factor and the signaling
mechanism by the gut factor regulates K transport in the collecting duct.
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Fig. 1.
A model of principal cell (PC) and intercalated cell (IC) illustrates the K transport under control
conditions (normal K intake)
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Fig. 2.
A cell scheme illustrating the mechanism by which high K intake stimulates K secretion in the
CCD by an aldosterone-dependent and -independent mechanisms. Solid arrow and dotted
arrow indicate enhanced and diminished effect, respectively
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Fig. 3.
A scheme showing the role of different signaling pathways in mediating the effect of high K
intake on ROMK and BK channels in the CCD. The circle with x indicates the inhibition of a
particular signaling pathway
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Fig. 4.
A scheme showing the mechanism by which aldosterone and AngII regulate ROMK and BK
channels in the CCD during low Na intake. The circle with x indicates the inhibition of a
particular signaling pathway
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Fig. 5.
A cell scheme illustrating the mechanism by which low K intake inhibits K secretion in PC
and stimulates K absorption in IC of the CCD. Solid arrow and dotted arrow indicate the
enhanced and attenuated effect, respectively
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Fig. 6.
A scheme showing the role of different signaling pathways in mediating the effect of low K
intake on ROMK and BK channels in the CCD. The circle with x indicates the inhibition of a
particular signaling pathway
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