
Advances in Understanding Visual Cortex Plasticity

Portia A. McCoy,
Department of Cell and Molecular Physiology, Neuroscience Center, Curriculum in Neurobiology,
and Neurodevelopmental Disorders Research Center, University of North Carolina, Campus Box
7545, 115 Mason Farm Rd, Chapel Hill, NC 27599-7545 e-mail: portia@med.unc.edu

Hsien-Sung Huang, and
Department of Cell and Molecular Physiology, Neuroscience Center, Curriculum in Neurobiology,
and Neurodevelopmental Disorders Research Center, University of North Carolina, Campus Box
7545, 115 Mason Farm Rd, Chapel Hill, NC 27599-7545, e-mail: huang.hsiensung@gmail.com

Benjamin D. Philpot
Department of Cell and Molecular Physiology, Neuroscience Center, Curriculum in Neurobiology,
and Neurodevelopmental Disorders Research Center, University of North Carolina, Campus Box
7545, 115 Mason Farm Rd, Chapel Hill, NC 27599-7545, e-mail: bphilpot@med.unc.edu

Summary of recent advances
Visual cortical plasticity can be either rapid, occurring in response to abrupt changes in neural
activity, or slow, occurring over days as a homeostatic process for adapting neuronal responsiveness.
Recent advances have shown that the magnitude and polarity of rapid synaptic modifications are
regulated by neuromodulators, while homeostatic modifications can occur through regulation of
cytokine actions or NMDA receptor subunit composition. Synaptic and homeostatic plasticity
together produce the normal physiological response to monocular impairments. In vivo studies have
now overturned the dogma that robust plasticity is limited to an early critical period. Indeed, rapid
physiological plasticity in the adult can be enabled by prior, experience-driven anatomical
rearrangements or through pharmacological manipulations of the epigenome.

Introduction
Coordinated, experience-driven changes in synaptic efficacy are required for the proper
development of brain networks. This plasticity has been well-studied in the visual cortex, as a
brief period of monocular deprivation produces amblyopia (loss of vision) as a consequence
of reduced synaptic inputs to the cortex. The weakening of the deprived-eye response is often
followed by a delayed enhancement of the open-eye response [1]. These modifications occur
through input-specific strengthening and weakening of synapses, which have been studied in
the forms of long-term depression (LTD) and long-term potentiation (LTP). Importantly, the
molecular and physiological signatures of in vitro plasticity mirror those that occur naturally
[2]. LTD and LTP can be rapidly induced by varying the stimulation frequency of presynaptic
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inputs (frequency-dependent plasticity) or the relative timing between the presynaptic and
postsynaptic firing of action potentials (spike timing-dependent plasticity; STDP).

LTD- and LTP- like processes may not be sufficient to fully describe naturally occurring
plasticity observed in vivo. Homeostatic changes in synaptic efficacy may also be required to
fully account for the development of synapses and their modification by experience. In this
paradigm, prolonged changes in neural activity produce a cell-wide compensation, either by
globally altering synaptic strength [3••] or shifting the threshold for the subsequent induction
of LTD/LTP [4].

Researchers have passionately sought the mechanisms underlying frequency-dependent, spike
timing-dependent, and homeostatic forms of plasticity. Insights into these mechanisms are
expected to guide clinical therapies to prevent or reverse visual derangements such as
amblyopia, or may be more generalized to treating disorders of the synapse. In this review we
highlight recent advances in our understanding of the signaling mechanisms implicated in
visual cortical plasticity. We will briefly discuss (i) the importance of neuromodulation, (ii)
the homeostatic contributions to experience-dependent modeling of cortical microcircuits, (iii)
plasticity in the mature visual cortex, and (iv) the emerging appreciation of epigenetic
influences.

Neuromodulation of synaptic plasticity
The neuromodulators acetylcholine (ACh) and norepinephrine (NE) enhance visual cortex
plasticity observed in vivo following monocular deprivation [5,6]. Several in vitro studies have
shown that ACh and NE can cause the induction or enhancement of synaptic plasticity.
However, the results of these studies have often appeared contradictory. Such discrepancies
have likely arisen because multiple receptor subtypes and their signaling cascades can be
engaged by these neuromodulators. Recent studies have taken advantage of more selective
pharmacologic and genetic manipulations to address this issue. These studies demonstrate that
either muscarinic ACh or α1-adrenergic receptors coupled to phospholipase C signaling
pathways induce or enhance LTD ([7–10••]; but see [11]). In contrast, activation of muscarinic
ACh or β-adrenergic receptors coupled to adenylyl cyclase can enhance or induce LTP [9,
12]. Thus, the same neuromodulator can both strengthen and weaken synaptic connections,
and the valence of the plasticity is dictated by the precise receptor subtype and signaling
pathway enlisted (Figure 1).

The ability of neuromodulators to alter the valence of synaptic plasticity is particularly salient
in STDP. Two critical components for determining the magnitude and direction of changes in
synaptic strength are the relative timing (within ∼50 ms window) and the temporal order of
the pre- and post-synaptic action potentials. However, information encoded by the temporal
order of action potential firing is dependent upon which signaling pathways are activated.
Kirkwood and colleagues [10••] elegantly showed that neuromodulators can dictate the
outcome of STDP through the signaling pathways they engage. When adenylyl cyclase
signaling pathways are stimulated through β-adrenergic receptors, LTP is induced regardless
of the temporal order in which the presynaptic and postsynaptic action potentials occurred. In
contrast, activation of phospholipase C through M1 muscarinic ACh or α1-adrenergic receptors
causes the induction of LTD and prevents the induction of LTP across timing intervals. Thus,
to enable the temporal relevance of spike timing to induce both LTD and LTP, both
phospholipase C and adenylyl cyclase neuromodulatory pathways are necessary. The unique
downstream targets of these pathways are currently unknown, although some evidence
suggests that the pathways differentially phosphorylate glutamate receptor subunits and
thereby alter their function [10••]. These data indicate that, equally important to the exact timing
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of presynaptic and postsynaptic events, interactions amongst neuromodulatory inputs are
necessary to produce the full range of timing-dependent plasticities.

These studies show a clear importance of neuromodulators, and their different signaling
pathways, to the induction of synaptic plasticity. Future studies may be able to take advantage
of neuromodulatory systems when attempting to reinstate plasticity that is diminished through
age or disease. In support of this idea, a classic study has demonstrated that infusions of NE
into the adult cortex can restore ocular dominance plasticity [6].

Homeostatic synaptic plasticity
The development and modification of neuronal properties in visual cortex cannot be described
by a model that simply employs the rapid, activity-dependent induction of LTD and LTP. For
example, it is difficult to account for the delayed increase in the open-eye response following
monocular deprivation with a strict LTD/LTP model, as this increase occurs days after the
more immediate loss of responsiveness to the deprived eye [1]. This delayed response to
monocular deprivation is thought to be necessary for maintaining neuronal responsiveness
within an optimal range. Such plasticity can be explained by two proposed homeostatic
mechanisms: synaptic scaling and a sliding threshold of synaptic plasticity (a form of
metaplasticity). In synaptic scaling, a decrease (or increase) in neuronal firing is compensated
for by a global scaling up (or down) of excitatory synaptic strength [3••]. In metaplasticity,
diminished neuronal activity produces a global reduction in the threshold for synaptic
potentiation, making it more likely that synapses will be potentiated, while heightened neuronal
activity raises this threshold [13].

There is now clear evidence that synaptic scaling can occur both in vitro and in vivo. In vitro,
reductions in neuronal firing by tetrodotoxin (TTX) treatment produce a robust and reliable
scaling up of synaptic strengths [3••]. In vivo, monocular deprivation by intraocular injection
of TTX or binocular deprivation with dark-rearing can produce synaptic scaling in layer 4 and
layers 2/3 [14,15]. An exciting observation is that there is a clear developmental shift in the
expression of synaptic scaling. Synaptic scaling of excitatory synapses is first observed in layer
4 and then in layers 2/3. Unlike layer 4, synaptic scaling appears to be maintained throughout
life in layers 2/3 [15], mirroring the maintenance of LTD/LTP in these superficial layers [16].
Interestingly, the qualities of synaptic scaling shift with age so that multiplicative scaling is no
longer observed in more mature animals [15].

Does synaptic scaling contribute to the observed physiological response to monocular
deprivation? The recent finding that the cytokine TNFα is required for synaptic scaling has
now allowed this question to be addressed [17•]. The genetic or molecular knockdown of
TNFα, and hence synaptic scaling, did not prevent the loss of the deprived eye response in the
visual cortex following monocular deprivation [17•]. However, the delayed increase in the
open eye response was prevented, suggesting a critical role for synaptic scaling. These data
indicate that both rapid Hebbian plasticity and slower homeostatic processes combine to
produce the full physiological response to changes in sensory experience.

Metaplasticity, another prominent model of homeostatic plasticity, incorporates an experience-
dependent sliding threshold for LTD/LTP induction. Together with LTD and LTP, the sliding
threshold for synaptic modifications was integrated into a theoretical model that could account
for the experimentally observed consequences of sensory deprivation [4]. Unlike the synaptic
scaling model, a sliding plasticity threshold has the additional advantage of being able to
account for the acquisition of stimulus-selective properties (e.g. orientation selectivity).
Evidence for a sliding threshold comes from the observation that dark-rearing lowers the LTP
induction threshold recorded ex vivo, while visual experience increases this threshold [18]. The
lowering of the LTP threshold is paralleled by a reduction in the ratio of NMDA receptors
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containing the NR2A subunit compared to the NR2B subunit [19]. Consistent with the idea
that the NR2A/NR2B ratio adjusts the threshold for synaptic modifications, experience-
dependent metaplasticity is absent in mice that lack NR2A [20].

Two lines of evidence suggest that metaplasticity can account for the acquisition of stimulus-
selective neuronal properties and experience-dependent modifications. First, as predicted from
theoretical models, mice lacking metaplasticity due to the genetic deletion of NR2A exhibit
broad orientation selectivity [21]. This suggests that homeostatic adjustment of the plasticity
threshold facilitates the acquisition of stimulus selectivity in neurons. Second, genetic deletion
of NR2A impairs the biphasic response to monocular deprivation. While wildtype mice exhibit
a rapid depression of the deprived eye response and a delayed (∼5 days) potentiation of the
open eye response after monocular deprivation, NR2A knockout mice instead exhibit only a
rapid (∼1 day) open eye potentiation [22]. Coupled to the observation that a reduction in NR2A/
NR2B normally precedes the delayed potentiation of the open eye response in wildtype mice,
these data indicate that a change in NMDA receptor subunit composition is a naturally
occurring event for reducing the threshold for synaptic potentiation.

Whether synaptic scaling or a sliding threshold of plasticity is physiologically employed has
been a contentious issue, but the distinction between the two may be an artifact of the
complexity and heterogeneity of the neocortex. By analogy, the mechanisms of cortical LTD
and LTP were originally thought to be homologous to those occurring in the CA1 region of
the hippocampus, however recent studies have revealed the incredible diversity of plasticity
mechanisms across development and the various cortical microcircuits [14,16,23,24].
Homeostatic mechanisms may exhibit a similar heterogeneity. In support of this idea, the
homeostatic response to monocular deprivation can vary tremendously with the manner of
deprivation [25]. Specifically, monocular TTX treatment leads to a scaling up of excitatory
connections and a scaling down of inhibitory connections onto layer 2/3 neurons. In contrast,
monocular lid suture fails to induce the predicted synaptic scaling, but instead maintains
responsiveness of layer 2/3 neurons by changing their intrinsic membrane properties.

We propose that synaptic scaling and metaplasticity are non-mutually exclusive homeostatic
mechanisms that are both required for the full repertoire of physiological modifications by
sensory experience. Future studies using mutant mice that lack synaptic scaling or
metaplasticity may be used to parse the relative contributions of each process, and to test the
possibility that these processes may even engage overlapping mechanisms.

Adult plasticity
The classic work of Hubel and Wiesel instilled the idea that visual cortex plasticity was limited
to a critical period of early life [26]. However, elegant work in mice has revealed a remarkable
capacity for the adult visual cortex to reorganize following monocular deprivation [27,28••].
Although the net effect of monocular deprivation in juveniles and adults is to reduce the
response of the deprived eye relative to the open eye, the adult plasticity is qualitatively unique.
Specifically, adult mice fail to undergo the rapid reduction in the deprived eye response that
is observed in juvenile mice, but instead only exhibit the delayed potentiation of the open eye
response [1,28••].

A major goal in the field has been to reinstate juvenile-like plasticity in the adult visual cortex
using pharmacologic and genetic interventions, with the expectation that this will guide
therapies for amblyopia. Successful enhancement of adult plasticity has been achieved by
altering (i) the excitation to inhibition balance [29,30], (ii) extracellular matrices [31], (iii)
neuromodulation [6,30], (iv) inhibitory influences from myelin [32], and (v) growth factor
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functions [33]. In each case, the recovery of plasticity most likely requires complex changes
to the local cellular milieu.

Despite the discovery of multiple manipulations that can successfully enhance adult plasticity,
none of these have been translated into therapies for amblyopia. An exciting new development
is the possibility that behavioral manipulations can be used to enhance adult visual cortex
plasticity, as these non-invasive approaches may be more rapidly translated to clinical
therapies. Environmental enrichment has been used to facilitate the recovery from amblyopia
in adult rodents, through a reduction in GABA-mediated inhibition [34]. Late-onset visual
deprivation can also facilitate the recovery from amblyopia [35•], likely through reductions in
GABAergic inhibition and the NR2A/NR2B ratio [36]. Additionally, prior monocular
deprivation can enable a subsequent rapid ocular dominance shift in adults, akin to that
observed during the critical period [27]. Collectively these observations provide compelling
evidence that behavioral manipulations can powerfully alter the induction of plasticity in the
adult cortex.

Recent observations demonstrate that the re-expression of rapid experience-dependent
plasticity in the adult cortex is preceded by profound anatomical changes [37••]. An initial
monocular deprivation in the adult cortex, which produces an ocular dominance shift that
emerges slowly over ∼8 days, is accompanied by a dramatic and persistent increase in the
density of dendritic spines in layer 5 neurons in binocular cortex [37••]. A subsequent
monocular deprivation fails to further increase spine density, but now the ocular dominance
shift occurs much more rapidly (within ∼3 days), similar to that observed during the critical
period. This suggests that anatomical restructuring provides a substrate upon which subsequent
physiological modifications may rapidly occur.

While adult plasticity is clearly observed in rodents, several outstanding issues remain. First,
is adult visual cortex plasticity limited to rodents, or can robust plasticity be introduced in
higher primates, as suggested by a recent human study showing that amblyopic deficits can be
transiently ameliorated [38]? Second, does the reintroduction of adult plasticity occur through
common signaling mechanisms, or are there multiple pathways for achieving the same end
result? Third, is there a causal relationship between the anatomical changes observed in layer
5 and the recovery of rapid ocular dominance plasticity, and if so, do other cell types engage
this same mechanism?

Epigenetic mechanisms for visual cortical synaptic plasticity
During the critical period, even a relatively brief monocular deprivation can lead to a lasting
change in ocular dominance. The neural mechanisms for such enduring modifications are still
unclear, although the plasticity is undoubtedly activated and maintained through the differential
expression of so-called “plasticity genes” that have particularly salient expression during the
critical period [39,40]. It seems likely that experience-driven changes in transcription of these
plasticity genes act to gate visual cortex plasticity.

Gene transcription can be regulated through chromatin remodeling such as DNA methylation
and histone modifications. Chromatin structure likely serves as a platform for relaying and
integrating information from numerous experience-driven signaling pathways. In support of
this idea, chromatin remodeling complexes are thought to regulate synaptic strength and
memory storage via orchestrated alterations in DNA methylation and histone acetylation [41,
42].

Can changes in visual experience (e.g. light) modify the properties of synaptic plasticity by
triggering downstream changes to chromatin structure? The answer appears to be an emphatic
“yes.” For instance, light stimulates phosphorylation and acetylation of histone H3 in the

McCoy et al. Page 5

Curr Opin Neurobiol. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



suprachiasmatic nucleus [43,44]. In the visual cortex, light induces phosphorylation and
acetylation of histone H3 during the critical period [45•]. Such long-lasting epigenetic changes
could alter the activity-dependent strengthening or weakening of synapses, or even trigger
homeostatic plasticity, by regulating gene transcription.

Consistent with the idea that epigenetic marks can influence synaptic plasticity,
pharmacologically enhancing histone acetylation with the histone deacetylase inhibitor
(HDACi) trichostatin restores juvenile-like ocular dominance plasticity in the adult visual
cortex [45•]. These findings demonstrate that epigenetic modifications are likely a naturally
occurring mechanism for gating critical period plasticity. While the recovery of adult cortical
plasticity using a broad spectrum HDACi is promising, such global manipulations are likely
to have unintended and undesirable side effects. It is clear, however, that the ability to
selectively manipulate epigenetic marks hold great promise for recovering adult plasticity.

Given the broad targeting of the HDACi used for recovering visual plasticity, it is difficult to
pinpoint which epigenetic events are critical and which genes are undergoing altered
transcription. However, there are some indications that epigenetic influences might alter the
transcription of genes signaled through an ERK/MSK/CREB signaling pathway (Figure 2).
Synaptic plasticity is associated with signaling pathways, including mitogen-activated protein
kinase (MAPK) cascades. The MAPK cascade activated by extracellular signal-regulated
kinase (ERK) and its downstream neural targets are necessary for experience-dependent
plasticity in the visual cortex (Figure 2) [46]. Visual stimulation during cortical maturation
induces site-specific phosphorylation of MSK and CREB [45•]. While visual stimulation
during the critical period can also induce posttranslational modifications in histones H3 and
H4 within the visual cortex, stimulation after the critical period fails to do so. However, the
observations that HDACi can restore plasticity in adult visual cortex indicate that some
epigenetic events are reversible and flexible even after the critical period.

Conclusions
Nearly a half century has elapsed since the original findings of a critical period for synaptic
plasticity in the visual cortex [26]. While our understanding of the mechanisms underlying
synaptic plasticity continues to grow at a staggering pace through elegant technological and
innovative advances [47–49], a cure for amblyopia has yet to be discovered. We suggest that
an increased understanding of the role of neuromodulators, homeostasis, and epigenetic
modifications offer particular promise for future attempts at curing amblyopia and other
cortically-based visual disorders. Moreover, we must appreciate the remarkable capacity for
plasticity that the adult visual cortex maintains, at least in some species, and unlock the
mechanisms underlying this competency. Given the fast pace of discovery within the field of
visual cortex plasticity, the next half century may well bring a cure for amblyopia and, perhaps,
other synaptopathies that can be modeled in the visual cortex [50].
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Figure 1. Neuromodulators direct the valence of synaptic plasticity through distinct signaling
pathways
mAChR or α1AR stimulation induces LTD through a PLC-dependant cascade, whereas
mAChR or βAR activation of AC induces LTP. Enhancement of NMDAR currents by
histamine augments LTP, possibly through increasing intracellular calcium levels. These
observations suggest that activation of specific signaling pathways through discrete
neuromodulator receptor subtypes dictates the direction of plasticity induced in visual cortex.
AC: Adenylyl cyclase; ACh: Acetylcholine; α1AR: alpha adrenergic receptor; βAR: beta
adrenergic receptor; LTD: Long-term depression; LTP: Long-term potentiation; mAChR:
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Muscarinic acetylcholine receptor; NMDAR: N-methyl d-aspartate receptor; PLC:
Phospholipase C.
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Figure 2. Epigenetic remodeling of chromatin can enable ocular dominance plasticity through an
ERK-mediated cascade
Visual experience (light) can activate ERK and its downstream neural targets, MSK and CREB.
CREB-mediated transcription is normally modest, due to a tight chromatin conformation. A
histone remodeling complex can open the chromatin conformation through phosphorylation
and acetylation of histone H3, thereby increasing the rate of CREB-mediated transcription of
plasticity genes. Activation of plasticity gene expression contributes to the ocular dominance
plasticity in the visual cortex. LGN: lateral geniculate nucleus; MAPK: mitogen-activated
protein kinase; ERK: extracellular signal-regulated kinase; MSK: mitogen-and stress-activated
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kinase; CREB: cAMP-response element binding protein; HRC: histone remodeling complex;
P: phospho group; Ac: acetyl group; H: histone octamer.
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