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Abstract
We propose a novel ℓ1ℓ2-norm inverse solver for estimating the sources of EEG/MEG signals.
Developed based on the standard ℓ1-norm inverse solvers, this sparse distributed inverse solver
integrates the ℓ1-norm spatial model with a temporal model of the source signals in order to avoid
unstable activation patterns and “spiky” reconstructed signals often produced by the currently used
sparse solvers. The joint spatio-temporal model leads to a cost function with an ℓ1ℓ2-norm regularizer
whose minimization can be reduced to a convex second-order cone programming (SOCP) problem
and efficiently solved using the interior-point method. The efficient computation of the SOCP
problem allows us to implement permutation tests for estimating statistical significance of the inverse
solution. Validation with simulated and real MEG data shows that the proposed solver yields source
time course estimates qualitatively similar to those obtained through dipole fitting, but without the
need to specify the number of dipole sources in advance. Furthermore, the ℓ1ℓ2-norm solver achieves
fewer false positives and a better representation of the source locations than the conventional ℓ2
minimum-norm estimates.
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1 Introduction
Electroencephalography (EEG) and magnetoencephalography (MEG) are widely used for
functional brain mapping. With appropriate source estimation algorithms one can locate the
activated regions, as well as estimate their dynamics. The non-invasive nature of EEG and
MEG makes these methods particularly suitable for neuroscience research and clinical practice,
such as surgical planning for epilepsy patients (Knake et al., 2006).

Localizing activated regions from EEG/MEG data involves solving an electromagnetic inverse
problem. Unfortunately, even with perfect knowledge of the electric and magnetic fields
outside of the source region, this problem does not have a unique solution because there are
currents which are either electrically or magnetically silent, or both. Moreover, solutions might
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not depend continuously on the data without regularization, which means small errors in
measurements might cause errors of arbitrary size in the estimated sources. These two
characteristics make the inverse problem ill-posed in the sense of Hadamard (Hadamard,
1902). This paper introduces an integrated spatio-temporal regularizer to overcome the
instabilities of standard sparse inverse solvers.

There are two main types of inverse solvers for EEG/MEG source estimation: discrete
parametric solvers, also known as dipole fitting, and distributed inverse solvers. The standard
dipole fitting algorithms estimate the location, orientation, and amplitudes of a fixed number
of current dipoles (Wood, 1982; Scherg & Von Cramon, 1985; Mosher et al., 1992; Uutela et
al., 1998). In contrast, distributed solvers discretize the source space into locations on the
cortical surface or in the brain volume without explicitly controlling the number of current
dipoles. The desired solution is computed by minimizing a cost function that depends on all
sources in the source space, such as an overall minimum power or minimum current
(Hämäläinen & Ilmoniemi,1984; Dale & Sereno, 1993; Wang et al., 1993; Uutela et al.,
1999).

Dipole fitting usually provides robust estimates for activation signals, but localization is
challenging when several sources are active because the associated cost function depends non-
linearly on the dipole locations. Additionally, the quality of the results degrades when the
assumed number of dipoles differs from the true number (see, e.g. (Wood, 1982; Hari & Forss,
1999)). Although it is possible to obtain an initial guess for the number of dipoles through
singular-value decomposition (SVD) of the recordings (Huang et al., 1998), this method is
sensitive to the user-defined thresholds and is problematic in the presence of correlated source
signals. Furthermore, it has been argued that a set of current dipoles may not be a good model
for activations with relatively large spatial extents (Jerbi et al., 2004).

Not restricted to a fixed number of dipoles, the distributed solvers estimate the amplitude of
all possible source locations. The widely used minimum norm estimate (MNE) (Hämäläinen
& Ilmoniemi,1984; Dale & Sereno, 1993; Wang et al., 1993) recovers a source distribution
with minimum overall energy (or minimum ℓ2-norm) that produces data consistent with the
measurements. Although the ℓ2-norm method leads to an efficient linear inverse operator, the
MNE solutions are often too diffuse. In particular, MNE is not appropriate for localization of
early sensory activations and focal epilepsy, which have been shown to be focal in intracranial
experiments (Barth et al., 1982; Allison et al., 1989). To overcome this property, the FOcal
Underdetermined System Solver (FOCUSS) (Gorodnitsky & Rao, 1997) augments the MNE
solver with a recursive weighting scheme. FOCUSS has been shown to be equivalent to a p-
norm solver where p ≤ 1 (Rao & Kreutz-Delgado, 1999). Other regularizers based on a norm
penalty can provide bias towards sparsity. Among them, the minimum current estimate (MCE)
(minimum ℓ1-norm) is the most popular (Uutela et al., 1999).

One of the drawbacks of the conventional ℓ1-norm inverse solvers, as well as other focal solvers
such as FOCUSS, is their sensitivity to noise. Similar to other distributed solvers, the
conventional ℓ1-norm solvers are typically applied to each time sample in the data separately.
The solvers’ sensitivity to noise causes the estimated activations to “jump” among neighboring
spatial locations from one time instant to another. Equivalently, the time course at a particular
location can show substantially “spiky” discontinuities when viewed over time. To avoid this
problem one commonly averages the time courses across adjacent sites, at the expense of spatial
resolution.

Two alternative approaches utilize temporal constraints to improve reconstruction accuracy: a
direct application of the temporal constraint as a regularizer in the cost function and a use of
temporal basis functions. In (Baillet & Sereno, 1997; Brooks et al., 1999; Schmitt et al.,
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2001; Galka et al., 2004; Zhang et al., 2005; Lamus et al., 2007), a regularizer is explicitly
incorporated in the cost function to model the smoothness of the current source distributions
between consecutive time instants. For example, (Baillet & Sereno, 1997) encourages small
residuals in the least-squares estimates of the current sources between the current time point
and the previous one. The studies of (Galka et al., 2004; Zhang et al., 2005; Lamus et al.,
2007) propose a state-space model with smooth state transitions, i.e., the current source
distributions between consecutive time instants. The temporal regularization terms in (Brooks
et al., 1999; Schmitt et al., 2001) are expressed as the ℓ2-norm of the output of the current
sources passed through a pre-designed low-pass filter in the time domain. While conceptually,
these methods address the problem of sensitivity to noise, their implementation requires
substantial amount of computation, except for a limited number of low-pass filters. The work
of (Zhang et al., 2005) provides a comprehensive comparison among the above regularization
methods. Taking a significantly different approach to reducing the sensitivity to noise, the
vector-based spatio-temporal minimum ℓ1-norm solver (VESTAL) projects the sample-wise
ℓ1-norm estimates onto a set of temporal basis functions (Huang et al., 2006). Models based
on temporal basis functions have also been proposed for other types of inverse solvers. For
instance, Geva (Geva, 1998) constructed a basis set using wavelets and computed inverse
solutions for each basis function separately using dipole fitting. Trujillo-Barreto et al. (Trujillo-
Barreto et al., 2007) explored the use of wavelets as a temporal model in the context of
distributed solutions.

Similar to MCE and VESTAL, we employ the ℓ1-norm regularizer to encourage spatial
sparsity. We reduce MCE’s sensitivity to noise by incorporating our knowledge of the temporal
characteristics of the source signals. Specifically, we assume that the source signals are linear
combinations of multiple temporal basis functions, and apply the distributed inverse solver to
the coefficients of all basis functions simultaneously. We utilize the conventional definition of
amplitude, the ℓ2-norm, to summarize the activation strength at each location. Since the ℓ2-
norm does not encourage sparsity, many coefficients for an active location are usually non-
zero in the inverse solution.

This integrated spatio-temporal regularizer is at the core of our ℓ1ℓ2-norm inverse solver. The
ℓ1ℓ2-norm regularizer was suggested in farfield narrowband sensor array applications
(Malioutov et al., 2005) to model the diffuse temporal structure of the source signals. Although
we focus on the EEG/MEG application, the proposed framework is also applicable to computed
tomography reconstruction, with modifications to the spatial model so as to encourage piece-
wise constant solutions (i.e., ℓ1-norm on spatial derivatives).

To summarize, the proposed solver imposes ℓ1-norm regularization in space and ℓ2-norm
regularization in the temporal domain. The resulting inverse problem can be formulated as a
second-order cone programming (SOCP) problem and solved efficiently using the interior-
point method (Alizadeh & Goldfarb, 2001). In contrast to VESTAL, which uses the spatial and
the temporal models separately in a two-step estimation procedure, our solver unifies the two
models into a single regularizer in order to avoid error propagation from the first estimation
step to the second one. Experimental comparisons in Section 4.1 reveal that the joint spatio-
temporal model implicitly increases the signal-to-noise ratio (SNR) and achieves a more
accurate reconstruction.

There are various ways to obtain the temporal basis functions to represent the source signals,
including Fourier and wavelet decompositions. However, a compact representation of the
signals, i.e., a small number of basis functions, can significantly reduce computation
requirements. In this work, we generate the basis set through the singular-value decomposition
of the sensor data, which often closely reflect the temporal structure of the source signals. We
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examine the effects of the basis selection on the resulting reconstruction by varying the
singular-value cutoff and the noise amplitude in simulation experiments.

Existing ℓ1-norm related solvers also lack a consensus in handling the free-orientation source
reconstruction. In the conventional MCE (Uutela et al., 1999) and its cortically-constrained
variant (Lin et al., 2006), the orientations of the sources are determined prior to invoking the
ℓ1-norm minimizer. Uutela et al. estimated the orientations from an initial MNE solution, while
Lin et al. utilized both the MNE solution and anatomical information. The method proposed
in (Matsuura & Okabe, 1999) alternates between computing the inverse solution and estimating
the source orientation, but it suffers from convergence issues and requires intensive
computations. VESTAL (Huang et al., 2006) applies the ℓ1-norm to each source component
via a bias-reduction scheme in the free-orientation case. Since the ℓ2-norm is invariant with
respect to rotations of the local coordinate system at each source, it is straightforward to extend
our method to include free orientations, as we demonstrate in this paper.

We also construct a permutation test for the ℓ1ℓ2-norm inverse solution. Here, we follow the
framework proposed in (Pantazis et al., 2005) for constructing the null hypothesis distribution.
In their work, permutations can be applied either before or after the reconstruction due to
linearity of the MNE inverse operator. In contrast, permutations must be performed prior to
the ℓ1ℓ2-norm inverse operation. Although a large number of samples is required to yield an
accurate estimate of the null distribution, we can still apply the permutation testing since the
interior-point method for SOCP is quite efficient.

The remainder of this paper is organized as follows. Section 2 describes the ℓ1ℓ2-norm inverse
solver. Section 3 briefly addresses implementation issues. Section 4 presents experimental
results using simulated and real MEG data, followed by a discussion and conclusions.

2 Methods
In this section, we first provide background and define our notation, and then we describe our
spatio-temporal model in Section 2.2. In Section 2.3, we formulate the ℓ1ℓ2-norm inverse solver
as an SOCP problem for a fixed-orientation source model. Section 2.4 explains the temporal
basis construction scheme employed by the current solver. Section 2.5 extends the solver to
free-orientation cases. At the end of this section, we present a permutation test for assessing
the significance of the resulting inverse solutions.

2.1 Background and Notation
Under the quasi-static approximation of Maxwell’s equations, the observed EEG/MEG signals
y(t) at time t are linear functions of the current sources s(t):

(1)

where A is the N × M lead-field matrix. e(t) ~ N (0, Σ) is the measurement noise; the noise
covariance Σ can be estimated from pre-stimulus data. s(t), N × 1, and y(t), M × 1, are vectors
in the source space and the signal space, respectively. The number of sources N (~ 103 – 104)
is much larger than the number of measurements M (~ 102), leading to an infinite number of
solutions satisfying Eq. (1) even for e(t) = 0. Without loss of generality, we apply spatial
whitening based on the estimated noise covariance Σ to both the data and the lead-field matrix,
leading to e(t) ~ N (0, I) in the derivations.
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2.2 Spatio-Temporal Model
The quasi-static assumption allows us to conduct inverse estimation for each time instant
independently. However, this often results in highly variable source time courses. The large
variability is particularly prominent in the focal solvers, such as the MCE, due to their non-
linear nature. To mitigate this problem, we utilize the knowledge of the temporal properties of
the source signals to further constrain the solution. To this end, we express the data model in
Eq. (1) for all time instants as:

(2)

where Y = [y(1), y(2), … ,y(T)] is an M ×T matrix that contains EEG/MEG measurements for
all T temporal samples, and S is an N × T matrix that represents the source signals. Here, we
assume that noise E is independent in time, i.e., E[ETE] = I. Time-dependent noise models as
those suggested in (Huizenga et al., 2002; Bijma et al., 2005) can be incorporated into the
estimation procedure as well; this is a topic of future work.

The underlying sources of EEG/MEG measurements, closely related to the postsynaptic
potentials (Hämäläinen et al., 1993), are relatively smooth with occasional deflections. For
example, a typical response from the contralateral primary somatosensory area has relatively
strong deflections immediately after the stimulus (20-40 msec) followed by a smoother time
course (Weerd & Kap, 1981). Hence, the activation signals are neither sparse nor diffuse in
time. Direct temporal regularization using the ℓ1-norm or the ℓ2-norm is therefore not
appropriate. To model the time-varying frequency content of the signals, we assume that the
source signals are linear combinations of multiple orthonormal temporal basis functions, V =
[v1, v2, … ,vK ], that collectively capture the temporal properties of the source signals. vk, T ×
1, denotes the kth basis function. In Section 2.4, we will discuss how to obtain the basis
appropriate for the reconstruction. We assume that the basis functions are orthonormal; if they
are not, minor modifications of the remaining derivations are needed, as we addressed in
Section 5.

Projecting both the sensor recordings and the source signals onto the basis functions, the new
variables Ỹ = YV and S ̃ = SV are the corresponding projection coefficients. Ỹ and S ̃ are of
size M × K and N × K, respectively. The (n, k) element of S ̃, s̃nk, indicates the kth coefficient
for the source signal at location n. We can rewrite the original data model in Eq. (2) in the
transformed domain:

(3)

where Ẽ = EV. We use ẽk to denote the kth column of Ẽ. The temporal independence assumption
on E and orthonormality of V imply that ẽk and ẽk′ are independent for k ≠ k′ and that ẽk ~ N
(0; I). Eq. (3) is still under-determined, containing MK equations with NK variables.

To compute inverse solutions for all K basis functions simultaneously, we extend the existing

regularizers to use the signal magnitude in the subspace spanned by V, , as an
indicator of the activation status for location n. In other words, we apply ℓ2-norm regularization
to the K coefficients for each source location. Because we choose to work with orthonormal
basis functions, the ℓ2-norm of the reconstructed source signal in the temporal domain is equal
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to the ℓ2-norm in the transformed domain. However, we find it more intuitive to present the
model in the transformed domain.

In addition, we assume that the sources exhibit a spatially sparse pattern. This assumption
represents the relatively compact source regions typically activated in the sensory areas. To
obtain a focal inverse solution, we should ideally employ the ℓ0-norm as the spatial regularizer.
However, the ℓ0-norm regularization leads to an NP-hard optimization problem. In practice,
under some regularity conditions (Donoho & Elad, 2003), the ℓ1-norm regularizer leads to
solutions identical to those produced by the ℓ0-norm regularizer. Even when the solution
obtained through the ℓ1-norm regularization is different from the one produced by the ℓ0-norm
regularization, it is still more sparse than that obtained with the ℓ2-norm regularizer.

With the ℓ1-norm regularizer in the spatial domain and the ℓ2-norm regularizer in the temporal
domain, we incorporate the integrated spatio-temporal ℓ1ℓ2-norm regularizer

(4)

into the estimation problem:

(5)

(6)

where s̃k and ỹk are the kth column vectors in S ̃ and Ỹ. ∥ · ∥F and ∥ · ∥ℓ2 (i.e., )
denote the Frobenius norm of a matrix and the standard ℓ2-norm of a vector, respectively. λ
controls the regularization strength. We will discuss how to select this parameter in Section
4.1.4. After we obtain the optimal coefficients S ̃*, the reconstructed source signals are linear
combinations of the temporal basis functions:

(7)

In this paper, we formulate the inverse problem as a regularized optimization. It also has an
equivalent Bayesian interpretation. The first term in Eq.(5) can be considered as the negative
log likelihood under white Gaussian noise. The second term corresponds to the negative log
prior of the source signals, which in our case is Laplacian in space and Gaussian in time.

2.3 From the ℓ1ℓ2-Norm Regularizer to Second-Order Cone Programming (SOCP)
We cannot directly apply gradient based methods to the optimization problem specified by Eq.
(6) since the ℓ1ℓ2-norm penalty term is not differentiable at zero. However, Eq. (6) can be
reduced to the SOCP problem by converting the original unconstrained optimization problem
to a constrained one:
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(8)

(9)

(10)

(11)

(12)

New variables, q, z, , and , are introduced in the conversion procedure. wk is an
upper bound on the discrepancy between the measurements and the signals predicted by the
estimated sources in the projection onto vk. q is an upper bound on all wk’s. rn is an upper
bound on the activation strength for location n. z is an upper bound on the ℓ1-norm of the
activation strength of all N locations. At the minimum, the inequality constraints in Eq. (9)-
(12) are satisfied with equality; otherwise, the objective function can be further reduced.

Mathematically, a second-order cone of dimension D is defined as

(13)

where x0 and x̄ denote the first element and the remaining elements of x, respectively. We can
see that Eq. (11) matches with the second-order cone definition. As shown in (Alizadeh &
Goldfarb, 2001), a wide range of constrained formulations, including the quadratic constraint
in Eq. (9), can be reduced to the canonical form of a second-order cone. For completeness, we
provide the corresponding derivations in Appendix A.

An SOCP problem can be expressed in the canonical form that contains a linear objective
function and the feasible set specified as an intersection of an affine linear manifold and the
Cartesian product of second-order cones. Since the second-order cone defines a convex set,
the feasible set of SOCP is convex. Therefore, SOCP is a convex optimization problem and
its local minimum is the global minimum. In fact, for one-dimensional and two-dimensional
cones, the second-order cone constraint in Eq. (13) can be reduced to linear constraints. As a
result, the corresponding SOCP problem is reduced to a linear programming problem. It is also
straightforward to show that the quadratically constrained quadratic programs are a subset of
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the SOCP problems. Furthermore, the SOCP problem is a special case of a semi-definite
program. Therefore, SOCP can be solved efficiently using the primal-dual interior-point
method (Alizadeh & Goldfarb, 2001), where Newton’s method is employed to reduce the
duality gap. Appendix B reviews the primal-dual interior-point method in application to SOCP.

2.4 Temporal Basis Selection
The formulation of our inverse solver is independent of the selected basis V, but a compact
representation of the signals can significantly reduce computation. We estimate the basis using
the singular-value decomposition (SVD) of the measurements, which is often able to compactly
capture the time-varying frequency content and significant differences in source signals from
different regions. Another advantage of using data-adaptive temporal basis functions is that it
avoids the difficulty of setting a set of basis functions to accommodate highly variable source
signals due to different experimental tasks and subject-to-subject variations. Since according
to Eq. (2) the sensor signals are linear combinations of the source signals, the temporal pattern
of the source signals is present in the sensor signals as well. In fact, the standard dipole fitting
procedure (Mosher et al., 1992) also performs fitting of the K largest SVD components of the
measurements that “adequately” describe the data.

The singular-value decomposition of data Y is expressed as

(14)

each column in UY = [u1, u2, … , uM ] denotes the electromagnetic field pattern; each column
in VY = [v1, v2, … , vM ] denotes the temporal pattern. ΛY is a diagonal matrix of the singular
values in a descending order. We assume more temporal samples than EEG/MEG sensors,
which is usually true in practice due to fast sampling rates.

As mentioned before, we further assume that activation signals only lie in the subspace spanned
by V = [v1, v2, … , vK ], but not in the subspace spanned by V┴ = [vK+1, vK+2, … , vM].
Performing reconstruction in the signal subspace helps to stabilize the reconstructed source
signals since they are constructed as linear combinations of relatively smooth temporal basis
functions. In our experiments, the number of basis functions K is fixed in each reconstruction.
We examine the performance of the proposed solver with varying K in Section 4.1.3 and discuss
alternative approaches to basis function selection in Section 5.

2.5 ℓ1ℓ2-norm Reconstruction for the Free-Orientation Source Model
The free-orientation source model has been used both with volumetric source spaces covering
the entire brain and with source locations restricted to the cortex only (Dale & Sereno, 1993)
(Pascual-Marqui et al., 1994). The results of the direct application of the ℓ1-norm regularizer
to the three dipole moment coordinates depend on the parametrization of the local coordinates.

To extend our solver to free-orientation sources, we model the current dipole moment
magnitude as the ℓ2-norm of the current dipole moments along the three coordinates. This
model agrees with the conventional definition of magnitude. The resulting inverse problem is
independent of the local coordinate system since the ℓ2-norm is invariant to rotations of
orthogonal coordinates. In other words, our method models the spatially sparse activation
pattern, but does not enforce sparsity on individual components of the dipole moments. This
idea is analogous to the sensor array application (Malioutov et al., 2005) where signals are
complex numbers; it was also independently developed and thoroughly evaluated by Ding and
He for EEG source localization (Ding & He, 2007).
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Extending our formulation in Eq. (4), s̃nk is replaced by a three-dimensional vector, denoting
the current dipole moments in the three coordinates s̃xnk, s̃ynk, and s̃znk. The optimization
problem in Eq. (8)-(12) remains the same except that Eq. (11) is replaced by a constraint on
the three coordinates:

(15)

In the original problem, each cone specified in Eq. (11) lies in a K + 1-dimension subspace; in
the free-orientation case, the corresponding cone is extended to a 3K + 1-dimension subspace.
Since the feasible region is an intersection of hyper-cones and hyper-planes, the new
formulation is still consistent with the SOCP structure.

2.6 Statistical Significance Test
The non-linear nature of the ℓ1-norm related inverse operators, including the ℓ1ℓ2-norm inverse
solver, presents a challenge in obtaining a sufficient statistic for hypothesis testing. Since there
is no closed-form solution for the ℓ1ℓ2-norm solver, we employ a permutation test. We construct
the null distribution by permuting equal-length pre-stimulus and post-stimulus single-trial
recordings. Under the null hypothesis defined as the absence of activation, the pre-stimulus
and the post-stimulus recordings are equivalent. As described in (Pantazis et al., 2005), in each
permutation, we randomly select trials; for each selected trial, we swap its pre-stimulus and
post-stimulus recordings. Then we apply the inverse solver to the average data. This procedure
preserves the noise covariance structure.

All the results presented in this paper are based on 5000 permutations. In this work, we control
the false discovery rate (FDR) (Genovese et al., 2002; Efron & Tibshirani, 2002), over an
amplitude-normalized source space. We first convert the source estimates into p-values, the
ratio of permutations whose corresponding amplitude exceeds the original estimate, for each
vertex and for each time instant separately. We then compute the FDR threshold (Genovese
et al., 2002). We choose to use the p-values instead of the estimated amplitudes since source
strength varies among activation regions and varies over time. For instance, the contralateral
primary somatosensory (cSI) response is usually substantially larger than that in the ipsolateral
secondary somatosensory (iSII) region. In addition, the N20 deflection is often weaker than
the later deflections from the cSI area.

We cannot directly compare the activation maps created based on the permutation method with
the corresponding statistics for MNE, the dynamic statistical parametric map (dSPM) (Dale &
Sereno, 1993), because dSPM typically exhibits higher statistical power due to the quite
restrictive Gaussian distribution assumption. On the other hand, the permutation method can
capture activations for which the Gaussian assumption is not valid. Since dSPM is one of the
most popular estimates in the EEG/MEG inverse community, we visually compare our results
with dSPM side-by-side in the experimental section.

3 Implementation
3.1 Source Space and Lead-Field Matrix

For the computation of the lead-field matrix, we need a specification of the conductivity
structure of the head, i.e., the forward model and the source space. In the forward computations
for MEG, we employ the single-compartment boundary-element model (Hämäläinen & Sarvas,
1989) (Oostendorp & Van Oosterom, 1989). For the source space, we restrict the locations of
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the sources to the cortical surface, which, in this work, is extracted using Freesurfer (Dale et
al., 1999; Fischl et al., 1999). Due to the organization of the cortex, we can further constrain
the source orientation to be perpendicular to the cortical surface. Independent of the choice of
source space resolution, the orientation at each vertex is computed from the original
triangulation of the cortical surface with a 0.65-mm grid spacing. Similar to other inverse
solvers with orientation constraint, the sparse spacing of the source space may result in
localization errors (Lin et al., 2006) which could be avoided by denser sampling. Moreover, it
is straightforward to allivate this effect in our method by applying the free-orientation model
presented in Section 2.5.

In practise, the lead-field matrix A is often ill-conditioned. That means some of its M singular
values are close to zero. It is common to improve the conditional number of A by employing
the truncated SVD regularization. We use A(m), a rank-m approximation of A (Kaipio &
Somersalo, 2004). In our experience, the inverse solutions obtained using A and A(m) are almost
identical, which reflects the robustness of our solver. Working with A(m) further reduces the
number of variables in the optimization problem by reducing M to m and significantly
accelerates computations. Therefore, all the results reported in this article are based on A(m)

with m = 100. On the other hand, to obtain realistic simulated data, the forward calculations
of the simulated signals are based on the full matrix A.

3.2 Pre-processing for Temporal Basis Function Construction
Due to different types of sensors, gradiometers and magnetometers in MEG and electrodes in
EEG, the measurements have different units and different ranges of recordings. To construct
a set of temporal basis functions, we must first whiten the measurements in the sensor space
according to the estimated noise covariance matrix. Without this whitening procedure, some
subsets of the sensor recordings, such as the magnetometers, would have been ignored in the
construction of basis functions. In addition, we need to exclude eventual stimulus artifacts
when computing the SVD of Y; otherwise, most of the basis functions in VY would mainly
explain the artifacts. For example, in our analysis of median-nerve experiments, measurements
from the first 5 msec after the stimulus onset are excluded in the basis function construction.

3.3 Multi-Resolution Approach
In this work, the estimates of the source locations are confined to a mesh. In order to reduce
computational complexity, we employ a multi-resolution scheme. We first perform source
estimation on a coarse mesh, then we adaptively refine the mesh around the activation regions.
In other words, the forward model at a high resolution level includes all the vertices at one
level below and the newly introduced vertices around the detected regions.

The ℓ1-norm regularization often produces focal estimates, which is more appropriate to model
activations in the sensory regions. However, for a spatially extended source, the corresponding
source estimates may appear as several activated vertices in the extended patch if the estimation
is conducted on a much finer mesh (Uutela et al., 1999). In most of our experiments, we used
a double resolution scheme, 20- and 10-mm spacing between vertices. Our reconstruction
results for the median-nerve experiments show that the activations in the primary sensory
cortex can be accurately represented using this multi-resolution scheme. For auditory
experiments, where the sources are slightly more diffuse, our solver detects several adjacent
vertices in the auditory areas.

3.4 Computation Requirements
Compared with the MCE, which solves T linear programming problems with N variables each,
our solver performs a single SOCP optimization over NK variables. As described in Eq. (8)
and Appendix A, we increase the number of variables to approximately (N + M)K in order to
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convert the ℓ1ℓ2-norm solver into the SOCP formulation. In this work, we use the Self-Dual-
Minimization software package (SeDuMi) (Sturm et al., 2001) that implements the primal-
dual interior-point method with logarithm barrier functions, to solve for the SOCP problem.
The primal-dual interior-point method, employed in SeDuMi, has run time Θ(((N + M)K)3)
per iteration. It converges within thirty iterations in most of our experiments. For M = 100
(with the truncated SVD-regularized lead-field matrix), K = 3, and N ≈ 500, our current
implementation takes about 10 seconds with a standard PC (2.8 GHz CPU and 8 GB RAM) to
compute the inverse solution. When N ≈ 2000, it takes about 100 seconds. Combining with a
two-level multi-resolution scheme, with N ≈ 500 for the first level and N ≈ 700 for the second
level, it takes 25 seconds. When K increases to 6, the multi-resolution scheme takes about 100
seconds.

4 Results
Due to a lack of ground truth in real EEG/MEG experiments, we first study the behavior of the
method and its sensitivity to parameter settings and to noise using simulated data. We then
compare the method to standard inverse solvers using real MEG data from somatosensory and
auditory studies.

4.1 Simulation Studies
To simulate MEG measurements, we created active vertices A, B, and C (Fig. 1, top) on the
cortical sheet at source spacing of 20 mm, with current source orientation along the normal to
the cortical surface. In all experiments in this paper, we scaled the reconstructed surfaces to
105-mm2 surface area per hemisphere. Vertex A is located in the lateral frontal region, Vertex
B is located at the pre-central gyrus, and Vertex C is located at the Sylvian fissure. The time
courses of these three vertices are shown in Fig. 2a-c (black solid curves). We chose the signals
to have similar temporal characteristics to those of the auditory evoked responses, but with
temporal translation and scaling. The source signals of vertices B and C show activation during
overlapping time intervals, which makes the inverse problem difficult.

For the forward calculations, we employed the sensor configuration of the 306-channel
Neuromag VectorView MEG system (204 gradiometers and 102 magnetometers) used in our
experimental studies. The location of the array with respect to the head and the noise covariance
matrix were obtained from real MEG experiments. A single-compartment homogeneous
forward model was employed. With Gaussian noise added, the resulting signals have an SNR

= 3 dB, where the SNR is defined as , where σ2 is the noise variance. The
resolution of the source space is relatively coarse; nevertheless, this example serves as a good
illustration for the method.

In the inverse estimation, we fixed the orientation of the estimated currents to be perpendicular
to the cortical mesh. Fig. 1b depicts the inverse solutions at three time frames obtained from
the ℓ1ℓ2-norm solver using three basis functions and λ = 109. The parameter values were
selected based on our validation experiments presented in Section 4.1.3 and 4.1.4. Curves
marked with ‘o’ in Fig. 2a-c correspond to the source signals estimated by the method. The
resulting spatial maps and source time courses match well with the ground truth.

4.1.1 ℓ1ℓ2-norm vs. ℓ1-per-coefficient—To further explore the behavior of the ℓ1ℓ2-norm
regularizer, we compared its reconstructions with those obtained by applying the ℓ1-norm
regularizer to the coefficients of each basis function separately. We will refer to this solver as
ℓ1-per-coefficient. This comparison reveals the effect of the ℓ2-norm regularization for all
coefficients. For each basis function, ℓ1-per-coefficient computes the least ℓ1-norm solution
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for the coefficients independent of other basis functions. It also achieves stable reconstruction
due to the use of temporal basis functions. We applied ℓ1-per-coefficient, also employing the
interior-point method implemented in (Sturm et al., 2001), to the data described above. Fig.
1c depicts the reconstruction results, and the corresponding time courses of the three active
vertices are presented in Fig. 2a-c (marked with ‘+’). Both ℓ1ℓ2-norm and ℓ1-per-coefficient
detect activations in the three vertices (Fig. 1), but the ℓ1ℓ2-norm solution contains fewer false
positive activations than that obtained through the ℓ1-per-coefficient method. Moreover, the
reconstructed time courses of the ℓ1ℓ2-norm solution match the ground truth time courses
slightly better than those of the ℓ1-per-coefficient solution.

The three selected basis functions are illustrated in Fig. 2d, and the reconstructed coefficients
from these two algorithms are shown in Fig. 3. The projection coefficients of the simulated
signals are also presented for comparison purpose (Fig. 3a). Although the spatial pattern of the
projection coefficients are similar for the two methods, the spatial pattern for all three
coefficients is more sparse in the ℓ1ℓ2-norm solution (Fig. 3b) than in the ℓ1-per-coefficient
solution (Fig. 3c). Since ℓ1-per-coefficient models the coefficients of each basis function
separately, vertex with large coefficient for one basis function may have zero coefficient for
another basis function. On the other hand, ℓ1ℓ2-norm considers all coefficients jointly in
sparsity determination. This method is particularly helpful for basis functions which have a
smaller SNR, such as v2 and v3. That is illustrated by a more sparse distribution of the
coefficients in Fig. 3b than that in Fig. 3c, a missing v2 component for Vertex A (Fig. 3c), and
a false detection for a vertex close to Vertex B (Fig. 3c). The ℓ2-norm regularizer essentially
helps bundle basis functions v2 and v3 with those that are aligned well with the signal subspace,
such as v1, to jointly determine an activation map. Therefore, we can see that sparsity defined
by all coefficients is more suitable for the current basis construction method in conjunction
with complex neural signals.

Fig. 2e presents the projection coefficients of the simulated source signals onto the temporal
basis functions. The coefficients that correspond to basis functions {vk : k ≥ 4} are close to
zero. We only displayed the coefficients corresponding to the first ten basis functions. For this
simple example, Fig. 2e verifies that the selected basis well approximates the signal subspace
of the simulated signals.

4.1.2 Comparison with MNE, MCE, and VESTAL—We also compared the proposed
method with the standard MNE, MCE, and VESTAL (Fig. 4). The estimates from the standard
MNE are smaller than the simulated signals, and it is caused by the diffuse property of the ℓ2-
norm regularization. The estimated time courses from MCE exhibit substantially “spiky”
discontinuities due to the solver’s sensitivity to noise. Projecting MCE results to a set of basis
functions, VESTAL removes the discontinuities; however, the amplitude of the estimated time
courses is smaller than the true activation signals since the two-step procedure cannot fully
compensate for the errors in the original MCE solutions. Therefore, in the rest of the stimulated
experiments, we focus on the performance of ℓ1ℓ2-norm and ℓ1-per-coefficient.

4.1.3 Sensitivity to Noise and Basis Selection—To examine the sensitivity of the
methods to noise and basis selection, we computed inverse solutions for 100 independently
generated data sets for each noise setting (varying from SNR 1 dB to 8 dB) and basis selection
cutoff (K varying from 1 to 6). The relative mean-square error (MSE) 1 for the three active
vertices and for all vertices of the ℓ1-per-coefficient and the ℓ1ℓ2-norm inverse solutions are
shown in Fig. 5.

1We define the relative MSE as .
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The ℓ1ℓ2-norm outperforms ℓ1-per-coefficient under all SNR settings and basis selection
cutoffs we examined. The improvement of the relative MSE varies from 4% to 10%, with larger
improvement for noisier data. The large improvement in the low SNR cases again demonstrates
the importance of the ℓ2-norm regularization on the coefficients of the representation. The
standard deviation of the reconstructions estimated over the 100 simulated data sets is similar
for the two solvers. It varies between 0.3% and 2.5% for K ≥ 2 and all three selected SNR
settings. For K = 1, the standard deviation is between 5% and 10% due to more variability in
representing the signals using a single temporal basis function.

In general, both solvers achieve the best performance for K = 3 basis functions. If the chosen
number of basis functions is too high, some basis functions represent noise, resulting in slight
degradation of the result quality as reflected by the gentle slope on the logarithmic scale. On
the other hand, the ℓ1-per-coefficient’s performance is not affected by including too many basis
functions, because its estimated sources from the noisy basis functions are usually small.
Including too few basis functions leads to a significant loss of signals; both solvers fail to
recover the missing signals.

4.1.4 Sensitivity to Regularization Strength—We also investigated the methods’
sensitivity to the value of the regularization parameter λ. Large λ corresponds to a high penalty
on the strength of the current sources, in terms of the ℓ1ℓ2-norm; small λ emphasizes the data
fidelity term. Due to whitening, the first term in Eq. (5) is on the order of MK, where M is on
the order of 102. For an activated vertex in our experiments, s̃nk is on the order of 10−8 Hence,

 is approximately 10−7 K. Therefore, λ = 109 roughly balances between the data fidelity
and the regularization terms in Eq. (5). In the experiments using real MEG data, we set λ =
109. Since the values in the data fidelity and regularization terms are both linearly proportional
to K, the regularization strength should be independent of the number of basis functions
participating in the inverse calculation. That means the sensitivity of ℓ1-per-coefficient and
ℓ1ℓ2-norm to λ should be the same. Hence, we only present the relative MSE obtained using
ℓ1ℓ2-norm for all vertices and for the three active vertices for various values of λ (Fig. 6). As
we can see, λ around 109 provides accurate reconstruction results. The regularization shows
no effect for λ < 103; when λ > 1010, the data fidelity term is effectively ignored in the
optimization process. For λ = 109, the standard deviation of the MSE estimated from the 100
data sets is less than 1%.

4.1.5 Different Spatial Resolutions—To further examine the ℓ1ℓ2-norm inverse solutions
at different spatial resolutions, we extended the simulated sources at vertices A, B, and C,
described in Section 4.1.1, to three patches at 0.65 mm tessellation resolution. The patches
have spatial extent of approximately 15-mm in diameter (200 to 500 vertices at a 0.65 mm
resolution), indicated by the colored patches in the first row of Fig. 7. The ground truth source
signals are identical to those employed in Section 4.1.1, shown as solid curves in Fig. 7a. To
generate the sensor signals, we added Gaussian noise with covariance matrix estimated from
the pre-stimulus recordings of a real MEG data set, with a resulting SNR = 3 dB. To avoid an
“inverse crime,” the inverse solutions were calculated at the resolution lower than the resolution
used in the simulations, including a single-level mesh at 20 mm, a two-level multi-resolution
scheme at 20 and 10 mm, and a three-level multi-resolution scheme at 20, 10, and 5 mm. We
set λ = 109 and K = 3 in this experiment.

Fig. 7 shows the inverse solution from each of the three multi-resolution schemes at 30, 65,
and 72 msec, corresponding to the peaks of the three simulated source signals. The detected
areas are either in bluecyan or red-yellow corresponding to current flowing inward or outward
with respect to the cortex. Each reconstruction was thresholded such that all three areas were
detected at their peak times. Good performance is indicated by fewer false positives. A smaller
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amplitude in the dipole fitted time course for patch C (Fig. 7a row one) indicates that some of
the vertices in this patch have current orientations silent with respect to the MEG sensors.
Smaller amplitudes in the reconstructed time courses from our solver are expected due to the
magnetically silent sources, as well as the distributed nature of the model where some nearby
vertices are detected despite the regularization promoting spatial sparsity. We scaled all the
reconstructed time courses by a factor of four for illustration purposes.

We observe that 20 mm resolution is too coarse for reconstruction, as reflected by more
ambiguity in the source locations. The reconstruction results at the 5 mm resolution are too
focal. At this reconstruction resolution, the vertices in a simulated patch are close, and some
of them have similar orientation. Mathematically speaking, the signal distribution
corresponding to those vertices, indicated by the column vectors in the lead-field matrix, are
almost linearly dependent. The ℓ1-norm encourages spatial sparsity, and it usually allocates all
source current to one of those vertices. Reconstruction at the 10 mm resolution achieves the
most accurate results: fewer false positives and a better representation of the spatial extent of
the simulated patches. Therefore, we employed the two-level multi-resolution scheme in the
experiments using real MEG data.

4.2 Real MEG Experiments
Experiments with synthetic data reveal the potential of the ℓ1ℓ2-norm solver to provide accurate
and stable solutions when handling focal and correlated sources, even in a noisy environment.
Next, we compare the performance of the solver to the MNE and dipole fitting using two real
MEG data sets from median-nerve and auditory experiments. Both experiments were acquired
using a 306-channel Neuromag VectorView system. The anatomical images were collected
with a Siemens Avanto 1.5 T scanner with a T1-weighted sagittal MPRAGE protocol, which
were employed for cortical surface reconstruction (Dale et al., 1999; Fischl et al., 1999). A
multi-echo 3D Flash acquisition was performed to extract the inner skull surface for the
boundary-element model (Hämäläinen & Sarvas, 1989; Oostendorp & Van Oosterom, 1989;
Hämäläinen, 2005). Informed consent in accordance with the Massachusetts General Hospital
ethical committee was obtained from subjects prior to participation.

4.2.1 Median-Nerve Experiments—We present results for one subject, a 40-years old
male, in the study. The median nerve was stimulated at the left wrist according to an event-
related protocol, with a random inter-stimulus-interval ranging from 1.5 to 2 seconds. Data
were acquired at sampling rate of 2 KHz; a 200-msec baseline before the stimulus was used to
estimate the noise covariance matrix. Approximately 300 trials remained after rejecting trials
with eye-movements and other artifacts 2, from which we computed the average signal used
as the input to the inverse solvers. We first applied baseline correction and whitened the data
spatially based on the pre-stimulus measurements. For the ℓ1ℓ2-norm solver, we used six basis
functions shown in Fig. 8. SVD was performed on signals between 6 msec and 200 msec after
stimulus onset to avoid post-stimulus artifacts.

It has been shown that the median nerve stimulus activates a complex cortical network (Hari
& Forss 1999), The first activation of the contralateral primary somatosensory cortex (cSI)
peaks around 20 msec and continues over 100 msec; then the secondary somatosensory cortex
(SII) activates bilaterally around 70 msec and lasts up to 200 msec. Whether SI and SII form
a sequential or parallel architecture is still a topic of active debate (Kass et al., 1979; Rowe et
al., 1996). The posterior parietal cortex (PPC), located on the wall of the post-central sulcus,
medial and posterior to the SI cortex hand area, activates around 70-110 ms. This area, also

2Trials with peak-to-peak amplitude of the EOG signals exceeding 150 μV, gradiometer signals exceeding 3000 fT/cm, or magnetometer
signals exceeding 3.5 pT were rejected. These rejection criteria are the same for the auditory experiment.
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known as the parietal association area, most probably functions as an integrator between
sensory and motor processing. Although the SI-SII network exhibits robust activation, there
is significant variation from subject to subject especially in the time courses of SII activations.

In this experiment, we controlled FDR at 0.05, computed from 5000 permutations as described
in Section 2.6. We also compared our results with the MNE computed using a standard software
package (Hämäläinen, 2005). In practice, experts often interpret MNE through its statistics,
dSPM, with manually adjusted thresholds. For the purpose of the comparison, we selected the
threshold for dSPM so that all four regions of interest, cSI, cSII, iSII, and PPC, were included.

Fig. 9 presents the activation maps obtained using ℓ1ℓ2-norm and MNE. At 20 msec, ℓ1ℓ2-norm
pinpoints cSI on the postal wall of the central sulcus. MNE produces a more diffuse solution
leading to false positives in the post-central sulcus. The ℓ1ℓ2-norm clearly demonstrates change
of polarity in cSI, reflected by the change of current direction between 20 and 35 msec. The
polarities estimated using the ℓ1ℓ2-norm solver agree with the literature (Wikström et al.,
1996): outwards intra-cellular current at 20 msec associated with N20 and inwards intra-
cellular current at 35 msec associated with P35. At 75 msec, both MNE and ℓ1ℓ2-norm capture
signals from cSII. ℓ1ℓ2-norm successfully localizes PPC at the post-central sulcus, but the
location of PPC is ambiguous in the MNE results. According to the findings reported in (Forss
et al., 1994;Hari & Forss, 1999), the signals from iSII is weaker than those from cSII. By
controlling FDR at 0.05, the ℓ1ℓ2-norm solver detects iSII activation at 85 msec, but places it
at the superior temporal lobe instead of the inferior parietal lobe. As shown in the volumetric
display (Fig. 11), these two regions are very close, making the inverse problem challenging.
MNE also presents weak iSII signals; the location is ambiguously spread between the iSII
region and the superior temporal lobe.

We estimated the current source dipoles and their corresponding time courses through the
standard dipole fitting procedure (Nelder & Mead, 1965; xfit software). Dipole fitting was
performed using the corresponding channels at 20-38 msec, 75 msec, and 85 msec after the
stimulus onset. The source estimates are summarized in one map as illustrated in Fig. 10, and
the corresponding time courses are presented in Fig. 12(b). Dipole fitting did not correctly
localize PPC from these data because PPC is very close to cSI. The locations for cSI and cSII
identified by our solver (Fig. 9) match with the dipole fitting results. The correct localization
of iSII using dipole fitting required manual intervention in selecting appropriate channels in
contrast to the automatic ℓ1ℓ2-norm solver. The highly folded cortical pattern along the Sylvian
fissure presents a significant challenge for most inverse solvers, including both distributed and
discrete parametrization approaches. One way to resolve this problem is to utilize
measurements from other modalities, such as fMRI, to further constrain the solution (Liu et
al., 1998). We defer such extensions to a future study.

Fig. 12 shows the time courses of the activated regions detected by our solver. The general
shape of these time courses agrees with the neuroscience literature (Forss et al., 1994;Hari &
Forss, 1999). Our method yields stable time courses that capture the main deflections precisely.
The first deflection in cSI occurs at 20 msec. cSI soon changes its polarity and reaches its
maximum at 35 msec. Although cSII has stronger signal than iSII, they have similar temporal
signature: onset at 60 msec and peak at 82-85 msec. The time courses are quite similar to those
estimated through dipole fitting (Fig. 12(b)), except for the cSI activation between 70 and 150
msec. This is most likely because the PPC activation was missed by the dipole fitting and its
time course incorporated into the estimate of cSI. Even though the magnitude of the time
courses obtained from the two solvers are not directly comparable, this comparison
demonstrates the ability of the ℓ1ℓ2-norm regularization to achieve high-quality reconstructions
of source signals. Furthermore, ℓ1ℓ2-norm does not restrict itself to a fixed number of dipole
sources.
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4.2.2 Auditory Experiments—In the auditory experiments, 500 Hz tone bursts were
presented to either the right ear or the left ear of the subject according to an event-related
paradigm, with a random inter-stimulus-interval between 1.2 and 1.5 seconds. Temporal
sampling rate of these MEG data was 1.25 KHz. As before, a 200 msec baseline period was
used for noise estimation.

After standard pre-processing, described in the last section, we applied ℓ1ℓ2-norm, MNE, and
dipole fitting to the average data. Fig. 13 illustrates one frame of the reconstructed signals, at
110 msec after the stimulus onset. The statistics and the thresholds for ℓ1ℓ2-norm were
computed using the same permutation method as before. Both the ℓ1ℓ2-norm and the dSPM
detected auditory activations in both hemispheres. Due to close distance between the inferior
parietal and the superior temporal regions, all three solvers have false positives in the parietal
lobe. The false positives are weaker in the ℓ1ℓ2-norm solutions than in the MNE solutions.
Given the MNE results, it is more ambiguous whether the sources originate from the auditory
region or from the SII region. We also examined the polarities of the estimated sources (results
not shown), and they all agree with the findings reported in the literature (Tuomisto et al.,
1983).

The corresponding estimated source signals from the ℓ1ℓ2-norm solver and dipole fitting are
depicted in Fig. 14. Both methods detected that the early auditory response occurs around 60
msec and that the contralateral auditory region activates slightly stronger than the ipsolateral
region. Compared with the ℓ1ℓ2-norm solution, the dipole fitting solution captures the temporal
details slightly more accurately, as reflected by the 6-8 msec difference between the
contralateral and the ipsolateral activations. Nevertheless, the ℓ1ℓ2-norm solver is more flexible
than dipole fitting in capturing the spatial extent of the activation regions.

5 Discussion
The proposed inverse solver utilizes ℓ1-norm regularization to capture spatial sparsity of the
activations and ℓ2-norm regularization on the projection coefficients in the signal subspace to
model the time-varying frequency content in the activation signals. While considering all
vertices in the brain as candidate activation sources, our solver can still obtain focal activation
maps and capture activation signals with precise deflection signatures. The ℓ1ℓ2-norm inverse
solutions share some similar characteristics with dipole fitting results; however, the number of
dipole sources is not required to be known a priori for ℓ1ℓ2-norm. As demonstrated in the
simulations, the performance of the ℓ1ℓ2-norm solver is robust to the chosen number of basis
functions. This feature makes the method particularly suitable for neuroscience applications
where the number of dipole sources is usually unknown.

We model the activation signals as linear combinations of multiple temporal basis functions.
There are various approaches to obtain the basis functions such as the Fourier and wavelet
decompositions. If the Fourier decomposition is employed, the selected basis functions must
capture the frequency components of the neural signals. If wavelets are used, we need to choose
a wavelet family appropriately. If the temporal structure of the source signals at a particular
region were known, we would incorporate it as one of the temporal basis functions. In this
case, the assumption of the linear combinations of multiple basis functions would need to be
modified. Furthermore, we chose to work with orthonormal basis functions. If the basis
functions are not orthonormal, the general idea of this paper is still valid, but the ℓ2-norm would
have to be replaced with the Mahalanobis distance.

Obtaining a compact representation of the signals can significantly reduce the computational
requirements. Because of the time-varying frequency content and substantial variability in the
signals across activation regions, subjects, and tasks, data-independent basis sets such as
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Fourier and wavelets may not be the best choice to compactly represent the signals. In this
work, we constructed the temporal basis functions through the SVD decomposition of the data.
We chose a set of basis functions that correspond to the largest singular values. The cutoff was
determined by our knowledge of the source signals and the temporal structure of the singular
vectors. Fixing the cutoff may lead to a loss of signals that lie in the orthogonal subspace
spanned by V┴. A possible improvement is to alternate between modifying the basis functions
and performing reconstruction.

Accurate estimation of the spatial extent of the sources is one of the main challenges for any
source modeling approach. Compared with dipole fitting, the ℓ1ℓ2-norm solver demonstrated
a better ability to capture the auditory activations as shown in Section 4.2.2. To further improve
the ℓ1ℓ2-norm solver performance for extended sources, we can apply the ℓ1-norm regularizer
to model the difference among neighboring vertices, rather than the vertices directly. Thus, the
new model would favor a piece-wise constant activation pattern. This idea combined with an
MNE estimator is at the core of the LORETA reconstruction method (Pascual-Marqui et al.,
1994). The work of (Auranen et al., 2007) proposed a Bayesian approach in which the
measurements and the hyper-prior determine the spatial extent of the activations through
estimating the joint posterior distribution of the inverse solution and the exponent in the
regularizer. Alternatively, the activation pattern could be expressed using a set of spatial basis
functions (Limpiti et al., 2006) or the current multipolar expansions (Cottereau et al., 2007).

6 Conclusions
The proposed inverse solver takes advantage of the relatively smooth nature of the underlying
EEG/MEG source signals through performing inverse operation for all temporal samples
simultaneously. To overcome the overly diffuse inverse solutions, the ℓ1ℓ2-norm captures
spatial sparsity through ℓ1-norm regularization. It also applies an ℓ2-norm regularizer to the
projection coefficients of the temporal basis functions spanning the signal subspace.
Performing reconstruction in the signal subspace while jointly considering the coefficients for
all selected basis functions leads to stable estimates with a smaller number of false positives
as confirmed by our experiments using simulated and real MEG data. The ℓ1ℓ2-norm solver is
formulated as an SOCP problem. Its fast optimization enables us to perform a statistical
significance test for the ℓ1ℓ2-norm inverse solutions via a permutation method. The ℓ1ℓ2-norm
can be straightforwardly applied with and without orientation constraints. Its flexible
formulation should also allow incorporation of fMRI information as a constraint.

Appendix

Appendix A
A quadratic inequality constraint can be revised into the canonical form of a second-order cone.
We start with the standard form of a quadratic inequality constraint:

(16)

With straightforward derivations including expanding the ℓ2-norm and completing squares, we
can show that Eq. (16) is equivalent to
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(17)

Eq. (16) also implies 1 + 2yTAs − yTy + w ≥ 0. Therefore, setting  and

, we arrive at the equivalent second-order cone constraint x0 ≥ ∥x̄∥ℓ2. As
we can see that the conversion introduces a set of new variables x, of size M + 2.

Appendix

Appendix B
Second-order cone programming (SOCP) problems are defined by: (1) a linear objective
function, (2) a feasible set that is an intersection of an affine linear manifold with the Cartesian
product of second-order cones. Since the linear objective function and the feasible set are
convex, SOCP problems can be solved by convex optimization techniques. The canonical
primal form of SOCP is as follows:

(18)

(19)

(20)

where Q = {x : x0 ≥ ∥x̄∥ℓ2}. Q is also referred to as the Lorentz cone; it is self-dual. The dual
cone QC is defined as

(21)

It is straightforward to prove that the self-dual property, Q = QC, using proof by contradiction.

Similar to linear programming, SOCP problems can be solved using the interior-point method
with the logarithmic barrier function for the constraints. Even though the primal or dual interior-
point methods developed for linear programming can be directly extended to SOCP, as
described in (Nesterov & Nemirovski, 1994), the primal-dual interior-point method is preferred
due to its numerical robustness.

The dual form of Eq. (18)-(20) is defined as follows:

(22)
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(23)

(24)

The general procedure of the primal-dual interior-point algorithm combines the primal and
dual feasibility and the complementarity conditions and yields

(25)

(26)

(27)

The above system of linear equations is almost identical to the corresponding one for linear
programming, except for the extra conic constraints in the primal and dual feasibility equations
in Eq. (25) and Eq. (26). In fact, one can combine the two conic constraints and the
complementary slackness condition in Eq. (27), and reduce them to a more suitable form (Eq.
(30)) for numerical solvers. The revised system of linear equations becomes

(28)

(29)

(30)

(31)

We refer readers to (Alizadeh & Goldfarb, 2001) for detailed derivations. The primal-dual
interior-point method solves this system of linear equations (Eq. (28)-(30)) using Newton’s
method. The optimization begins with a relaxed version of the complementary condition (Eq.
(30)), and slowly strengthens this condition as iterations proceed. Iterations stop once the
residual is less than a preselected threshold.
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Fig. 1.
Activation maps at different time frames. (a) Ground truth activation maps at peak response
time for three sources. (b) The spatial maps estimated using the ℓ1ℓ2-norm solver. (c) The
spatial maps estimated using the ℓ1-per-coefficient solver. The color codes in (a) do not indicate
current directions. Hot/cold colors in (c,d) correspond to outward/inward current flow. The
most active areas in the solutions are highlighted, and their estimated time courses are shown
in Fig. 2a-c.
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Fig. 2.
Reconstructed source signals and the three basis functions. The top row illustrates the simulated
(black solid curves) and the reconstructed source time courses (ℓ1ℓ2-norm marked as ‘o’ and
ℓ1-per-coefficient marked as ‘+’) for the three active vertices; the bottom row presents the
selected basis functions (d) and the projection coefficients of the simulated source time courses
onto the top ten basis functions (e).
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Fig. 3.
Reconstructed coefficients S ̃. (a) Projection coefficients of the simulated data onto the three
basis functions, corresponding to the top three singular components. (b) Reconstructed
coefficients from ℓ1ℓ2-norm. (c) Reconstructed coefficients from ℓ1-per-coefficient.
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Fig. 4.
Reconstructed source signals from MNE, MCE, and VESTAL. Each panel illustrates the
simulated (black solid curves) and the reconstructed source time courses: MNE (blue solid),
MCE (dashed), and VESTAL (marked as ‘Δ’).
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Fig. 5.
Relative MSE. This figure presents the percentage relative MSE of the reconstruction results
using the ℓ1ℓ2-norm (solid curves) and the ℓ1-per-coefficient (dashed curves) for all vertices
and the three active vertices under three different SNR settings. Note that the error bars close
to the bottom of the figures appear large due to the logarithmic scale.
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Fig. 6.
Relative MSE vs. regularization strength. This figure presents the relative MSE of the
reconstruction results from ℓ1ℓ2-norm for all vertices and for the three active vertices under
three SNR settings as the regularization strength, λ, varies between 102 and 1012. Note that the
error bars close to the bottom of the figures appear large due to the logarithmic scale. (c,d) are
the corresponding zoomed-in versions.
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Fig. 7.
Reconstructions obtained using the ℓ1ℓ2-norm solver with different multi-resolution schemes.
The top row presents the three simulated activation patches (color is used to label patches and
does not indicate current directions). The detected results (row two to four) are shown in hot
or cold colors corresponding to current flowing outward and inward, respectively. The time
courses of the highlighted areas are shown in column (a). Solid curves in (a) are the simulated
time courses. The dashed curves in row one are the dipole fitting results. The dashed curves in
row two to four are the reconstructed time courses from ℓ1ℓ2-norm, which are scaled by a factor
of four for illustration purposes.
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Fig. 8.
Six selected basis functions. The basis functions were obtained from SVD of the MEG
measurements between 6 msec and 200 msec after stimulus onset.
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Fig. 9.
Significance statistics of the ℓ1ℓ2-norm solver and MNE for the median-nerve experiment. Hot/
cold color corresponds to outward/inward current flow. The most active areas in the ℓ1ℓ2-norm
solutions are highlined, and their estimated time courses are shown in Fig. 12.
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Fig. 10.
Dipole fitting results with three sources.
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Fig. 11.
Coronal slices for the detected iSII activations from ℓ1ℓ2-norm and from dipole fitting.
Subfigures (c,d) are the corresponding zoomed-in versions.
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Fig. 12.
Reconstructed time courses obtained from the ℓ1ℓ2-norm solver and dipole fitting. The
corresponding activation maps are reported in Fig. 9 and Fig. 10.
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Fig. 13.
Significance statistics of the ℓ1ℓ2-norm solver and MNE, and dipole fitting at 110 msec after
right (top) and left (bottom) auditory stimulus onset. Hot/cold color corresponds to outward/
inward current flow. The most active areas are highlighted, and their estimated time courses
are shown in Fig. 14.
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Fig. 14.
Reconstructed time courses from ℓ1ℓ2-norm and dipole fitting.
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