Hindawi Publishing Corporation

Journal of Biomedicine and Biotechnology
Volume 2009, Article ID 932961, 7 pages
doi:10.1155/2009/932961

Research Article

Immunohistochemical Localisation of PDE5 in Rat Lung during
Pre- and Postnatal Development

Angela Scipioni,! Mauro Giorgi,? Valeria Nuccetelli,” and Stefania Stefanini!

I Department of Cellular and Developmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
2 Department of Basic and Applied Biology, University of L'Aquila, Via Vetoio 10, 67010 L’Aquila, Italy

Correspondence should be addressed to Mauro Giorgi, mauro.giorgi@univaq.it
Received 31 March 2009; Accepted 18 June 2009
Recommended by Richard Tucker

In mammalian lung, at the transition to extrauterine life, NO/cGMP signal transduction system is known to play crucial roles in
the regulation of vascular resistance and is supposed to act in angiogenesis. PDES, which is the most abundant cGMP metabolizing
enzyme within the lung, is highly expressed in the perinatal period, but its localisation in the different pulmonary cells is still poorly
known. In our research, PDE5 immunohistochemical distribution was investigated in foetal and neonatal rat lung. The highest
expression of PDE5 was found in cells randomly located in the stroma; in newborns, in particular, many cells in the intersaccular
walls were heavily labelled, while much lower staining levels were shown by smooth myocytes belonging to vessels and airways.
On the basis of their immunoreactivity for a-SM actin and/or desmin, most of the heavily PDE5-positive cells were identified as
interstitial myofibroblasts and transitional pericytes, while only a few were interpreted as interstitial lipofibroblasts.

Copyright © 2009 Angela Scipioni et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
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1. Introduction

In mammals, pulmonary vascular resistance is known to be
modulated by ¢cGMP, which induces relaxation of vascular
smooth muscle through the activation of cGMP-dependent
protein kinases. In smooth muscle cells, cGMP is synthesised
by nitric oxide- and natriuretic peptide-activated guanylate
cyclases, while its degradation occurs through phospho-
diesterases. Among the eleven phosphodiesterase families
recognised in mammalian tissues [1], cGMP-binding cGMP-
specific phosphodiesterase (PDE5) shows particularly strong
enzymatic activities in highly vascularized organs, such as the
lungs and the spleen [2—4]. Moreover, its mRNA and protein
were specifically detected in vascular smooth muscle cells; so
that the enzyme is supposed to play a key role in inducing
vessel relaxation.

In adult rat lungs, PDES5 is highly concentrated in smooth
muscle cells in the medial layer of pulmonary arteries and
veins [5] and its expression increases in hypoxia-induced
pulmonary hypertension [6]. Moreover, in rodents as well
as in humans, PDE5 specific inhibitors such as zaprinast
and sildenafil markedly attenuate hypertension itself [5, 7];

consequently these substances, together with other agents
that modulate intracellular cGMP, are considered as promis-
ing, safe, and easy-to-administer therapies for pulmonary
hypertension [8].

During the perinatal reorganization of the pulmonary
vascular bed, when both constitutive endothelial nitric oxide
synthase and soluble guanylate cyclase are highly expressed
[9, 10], alterations in PDE5 activity, protein, and mRNA
were described both in ovine and in rodent lungs [11, 12].
Moreover, increases of soluble guanylate cyclase and PDE5
were found in lambs with pulmonary hypertension [13] and
zaprinast and sildenafil were effective in lowering pulmonary
vascular resistance of normal and hypertensive ovine foetuses
[14-16]. In hyperoxia-exposed rat pups, sildenafil, besides
alleviating pulmonary hypertension, interestingly, increased
pulmonary capillary density and preserved alveolar growth;
preservation of endothelial network during hyperoxia was
also found in vitro [17]. It was therefore suggested that
the beneficial effects on vascular and alveolar growth might
occur through promotion of lung angiogenesis.

Although sildenafil appears as a promising agent for
the management of pulmonary hypertension [18], several
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issues need to be addressed before advocating the clinical
use of this and others PDES5 inhibitors. In order to evaluate
their side effects, the distribution of the enzyme in the
organs and in the different cell types inside the organs
must be extensively described. Indeed, in many organs,
PDE5 was found to be expressed by cell types different
from smooth muscle cells, for example, Purkinje cells
[19], platelets, epithelia of renal proximal tubules and
collecting ducts, as well as pancreatic duct cells [20, 21].
In adult rat lungs, the enzyme was immunolocalised in
the smooth muscle of vessels and airways, including the
alveolar ducts and openings of the alveoli; its expression
was found to accompany the distal muscularization of
pulmonary arterioles, pathognomonic of hypoxia-induced
pulmonary hypertension [5-22]. In newborn rat lungs,
PDE5 mRNA transcripts were detected in the vascular
smooth muscle and in the alveolar walls cells [12]. During
foetal lung development, while in vivo, both in normal and
hypertensive ovine foetuses the enzyme was only detected
in the vascular wall [14]; in vitro, on the other hand, a
hyperoxia-inducible expression of PDE5 mRNA and protein
was shown in foetal pulmonary artery smooth muscle cells
[23].

We decided to investigate the PDE5 expression in differ-
ent cell populations of the developing rat lung, utilising an
affinity purified polyclonal antibody, raised against the N-
terminal region of bovine PDES5 [21], revealed by either the
conventional or the amplified ABC immunohistochemical
procedure [24]. We examined paraffin sections of lung
parenchyma from animals at developmental stages com-
prised between the embryonic day 15.5th and the postnatal
day 14th. Moreover, in order to provide a detailed description
of the cell populations that specifically express PDES5 inside
the intersaccular walls in early postnatal development, we
studied possible colocalization of PDES5 with the cytoskeletal
markers a-smooth muscle actin (a-SMA) and/or desmin.

2. Material and Methods

2.1. Animals. Albino Wistar rats (Charles River, Italy) kept at
20-22°C, with a dark/light cycle of 12/12 hours. Females were
placed with males overnight and examined the following
morning for the presence of sperm in the vaginal smear; the
sperm observation day was considered as the embryonic day
0.5th (E0.5). Animals were housed and handled according to
the European Communities Council Directive of November
24th 1986 (86/609/EEC) and to the Italian Health Ministry
guidelines.

2.2. Fixation and Tissue Processing. Pregnant rats at gesta-
tional age E15.5 and E17.5 were i.p. injected with Farmotal
(Amersham Pharmacia Biotech Italia, Cologno Monzese,
Milan, Italy) 100 mg/kg b.w.; the uterus was quickly removed
and immersed in Ringer’s solution, individual embryos were
extracted from the decidua and fixed by immersion in
Bouin, for 4 hours at room temperature (RT). Foetal ages
were confirmed basing on weight and length. 10 minutes
after immersion in fixative, the embryos were cut along the
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sagittal plane. Rats aging 3, 7 and 14 days (at least four
animals for each developmental stage) were i.p. injected with
Farmotal 100 mg/kg b.w. and were endotracheally instilled
with 50-80 L of Bouin’s or Methacarn’s solutions. The
dose of fixative was chosen on the basis of preliminary
experiments. Trachea was then ligated; lungs were removed
and immersed in the same solutions. A few minutes later,
lungs were cut in fragments, which were further fixed for
2—4 hours. All specimens were dehydrated, embedded in
paraffin, and sectioned 7 ym thick; at least three embryos
for each gestational age and several randomly chosen
lung samples taken from 3, 7, and 14 day-old rats were
utilised for immunolocalisation of PDE5 and cytoskeletal
markers.

Concerning the immunolocalisation of cytoskeletal pro-
teins, since a stronger labelling was found after Methacarn
fixation with respect to Bouin, the identification of cells
coexpressing PDE5 and a-SMA or PDE5 and desmin was
carried out in serial sections obtained from Methacarn-fixed
lungs.

2.3. Anti-PDE5 Antibody Production and Purification. As
previously described in [21], a specific PDE5 antiserum
was produced in rabbits using as immunogen a fusion
protein containing glutathione S-transferase and a peptide
corresponding to the 68—-239 amino acid residues of the N-
terminal bovine lung PDES5 sequence. After purification by
affinity chromatography on a protein A column this antibody
was able to immunoprecipitate cGMP-PDE activity from
mouse tissues.

The activity recovered in the immunoprecipitate was
identified as PDES5 on the basis of its sensitivity to the spe-
cific inhibitors zaprinast (ICsp 0.6 uM) and sildenafil (ICsg
4nM). Moreover, western blotting of the immunoprecipitate
showed three specific immunoreactive bands (100, 93, and
86 kDa), corresponding to known PDES5 splice variants [25].

2.4. Western Blot Analysis. Lung samples from adult and
suckling rats were homogenized in 20 mM Tris-HCI buffer,
pH 7.2, containing 0.2 mM EGTA, 5 mM mercaptoethanol,
ImM PMSE 5mM MgCl,, and 2% (v/v) antiprotease
cocktail, using a glass homogenizer (15 strokes, 4°C).
Homogenates were centrifuged at 14 000 x g for 30 minutes
at 4°C, and pellets were resuspended in the homogenization
buffer and centrifuged at 14 000 x g for 30 minutes (4°C).
The first and second supernatants were then pooled and
denatured for an SDS-Page run. Protein determination
was performed using the procedure of Lowry [26]. SDS-
polyacrylamide gel electrophoresis was performed on 10%
slab gels according to Laemmli [27], and proteins were
then transferred to nitrocellulose membranes according to
Towbin et al. [28]. The blots were incubated for 3 hours
at RT with 1:1000 rabbit polyclonal anti-PDE5 and mouse
monoclonal antiactin antibodies (Sigma Chemical Co., St.
Louis, USA); actin band was used as reference protein in
densitometric evaluation. In competition experiments, the
incubation medium was supplemented with 10 ug/mL of
the PDE5-peptide antigen used to raise PDE5 antibody.
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Alkaline phosphatase-conjugated goat, antirabbit and anti-
mouse IgG were used to reveal immunocomplexes. The
bands were then stained with nitro-blue tetrazolium in
the presence of 5-bromo-4-chloro-3-indolyl-phosphate. A
crude extract of N18TG2 cells, which are known to highly
express PDE5 [21], was utilised as a positive control.
Densitometric analysis on scanned blots was performed
using the NIH Image] v1.29 program; the significance of
differences was evaluated by means of variance analysis
(ANOVA).

2.5. Immunohistochemistry. Freshly deparaffinized sections
were treated with 0.3% H,O; in methanol, for 30 minutes at
RT, to inactivate endogenous peroxidases; after rehydration
they were transferred to PBS containing 0.2% Triton X-100
and 5% nonfat dry milk, for 1 hour at RT, and then incubated
for 24 hours at 4°C, in the primary antibodies, diluted in PBS
containing 0.1% Triton X-100 and 2.5% nonfat dry milk.

Dilutions were: 1:200 rabbit polyclonal anti-PDES5;
1:300 mouse monoclonal antihuman muscle actin (Dako,
Carpinteria, CA, USA); 1:800 mouse monoclonal anti-a-
SMA (Sigma Chemical Co., St. Louis, USA); 1:100 mouse
monoclonal antidesmin (Sigma Chemical Co., St. Louis,
USA).

For the revelation of immunocomplexes through the
conventional ABC method, sections were sequentially incu-
bated in

(i) 1:200 biotinylated goat antirabbit or rabbit anti-
mouse IgG, for 1 hour at RT,

(i) avidin-biotin-horseradish peroxidase complex, for 1
hour at RT,

(iii) 0.05% 3,3’-diaminobenzidine (DAB) in PBS contain-
ing 0.01 H,O, for 2-5 minutes at RT, in the amplified
ABC procedure the step (ii) was followed by

(i) incubation in biotinylated tyramine, 1:100
diluted in PBS containing 0.01 H,O, for 10
minutes at RT,

(i) avidin-biotin-horseradish peroxidase complex,
for 30 minutes at RT.

Microwave treatment was carried out incubating freshly
rehydrated sections with citrate buffer pH 6 (10 minutes
at RT, 8 minutes in the microwave oven at 750 W, and 30
minutes at RT).

For negative control, the primary antibody was omitted
or substituted with preimmune serum. Moreover, some
sections were incubated with the anti-PDE5 antibody pread-
sorbed (overnight at 4°C) with 150 yug/mL of the PDE5-
peptide utilised as immunogen [21].

Unstained and haematoxylin counterstained sections
were examined in a Zeiss Axioskop2, equipped with a video
camera. Representative images were electronically captured;
contrast and brightness were adjusted via Adobe Photoshop
6.0.
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FiGure 1: PDES5 expression at different stages of rat lung develop-
ment. Upper panel: representative western blot analysis of adult
lung (ALu), 14 day-old lung (P14Lu), 3 day-old lung (P3Lu),
adult lung incubated in presence of PDE5-peptide (ALu+peptide).
N18 cell culture (N18) was utilised as standard of PDE5. Each
lane was loaded with 50 pg of protein. Lower panel: densitometric
quantification of immunoreactive PDE5 and actin bands. Data
are mean + SD of 3 different experiments. Differences were not
significant (ANOVA test).

3. Results

3.1. Western Blot Analysis. As shown in Figurel, both
lung preparations and neuroblastoma N18TG2 cell extract
showed the strong bands at 100 kDa, corresponding to the
PDES5 main splicing variant; the less intense bands, detected
at lower molecular masses (93 and 86 kDa), were identified
as corresponding to other known splice variants [25].
The absence of reactivity shown by the sample incubated
in peptide-supplemented medium confirmed the antibody
specificity. All these results are in agreement with previous
data obtained in experiments on mice [21]. Quantitative
examination, carried out using actin as reference protein, did
not reveal significant differences among the three lung sam-
ples taken at different developmental stages (Figure 1(b)).

3.2. PDE5 Immunohistochemistry. With all the techniques
employed (Bouin or Methacarn fixations, microwave treat-
ment against nonmicrowave treatment, standard or ampli-
fied ABC methods), at every stage we examined, PDE5
immunoreactivity was restricted to the cytoplasmic com-
partment of specific cell types. Sections incubated with
preimmune serum instead of the primary antibody, as well
as those incubated with the antibody pre-adsorbed with the
peptide utilised as an immunogen, were free of labelling.

In all the examined developmental stages, the epithelium
of the airways was unlabelled, while a mild staining was
found in the smooth muscle of specific parts of the
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FIGURE 2: Rat lung. Bouin fixation. PDE5 immunohistochemistry carried out via the amplified ABC method on microwave treated sections.
Haematoxylin counterstaining. (a) E15.5, (b) E17.5, (c) P3, (d) P7, (e) P14. s: saccule; a: alveolus; c: canalicular portion of the respiratory
space; TB terminal bronchiole; LB larger bronchiole. ((a), (b)) Bar 20 um; ((c), (d), (e)) Bar 50 um. ((a), (b)) positivity is restricted to the
cytoplasm of several cells, the majority of which are scattered in the stroma (arrowheads), while some are closely apposed to the respiratory
tubule (arrows). The tubular epithelium is unlabelled. ((c), (d), (e)) labelling is restricted to the distal parenchyma, including sacculi, alveoli,
and canalicular portions of respiratory spaces. The epithelium of terminal bronchioles is unstained.

respiratory tree (e.g., major airways in embryos, larger
bronchioles in suckling rats). Vascular myocytes were very
mildly labelled, and their staining intensity changed with
respect to the fixation and incubation conditions, reaching
total negativity in Methacarn-fixed specimens.

Both in pre- and in postnatal lungs, the heaviest PDE5-
positivity was shown in cells located in the pulmonary
stroma. In embryos, both at pseudoglandular (E15.5) and
at canalicular (E17.5) phases of lung development (Figures
2(a) and 2(b)), these strongly labelled cells were numerous
and randomly distributed, with only some closely adhering
to the epithelial wall.

In suckling rats (Figures 2(c), 2(d), and 2(e)), heavily
labelled stromal cells were especially abundant in the walls
of distal respiratory spaces (sacculi and alveoli depend-
ing on developmental stage); concerning larger airways, a
mild staining was present in the muscular layer of larger
bronchioles, while terminal bronchioles appeared unlabelled.
Neither number nor position of PDES5-expressing cells
remarkably changed among the examined developmental
stages.

3.3. Immunohistochemistry of Cytoskeletal Proteins. In all
the examined specimens, independently from the different
fixation and incubation conditions, at every examined stage
the immunoreactivity for total actin, a-SMA, and desmin
was restricted to the cytoplasmic compartment of specific cell
types; all control sections were free of labelling. Concerning
the strength of labelling, the best results were obtained with
Methacarn-fixed, nonmicrowave-treated specimens.
Throughout the examined postnatal development the
cytoskeletal markers were immunolocalised in muscle cells
belonging to bronchial, bronchiolar, and vessel walls as
well as in those underlying the epithelia in the canalicular
portions of the respiratory spaces; epithelia were always
unlabelled, while a specific labelling was additionally found
in the cytoplasmic compartment of many cells of the
intersaccular walls. All control sections were free of labelling.
Concerning the distribution of positivity in the intersac-
cular wall, at 3, 7, and 14 days of postnatal development: (i)
total actinexpressing cells were relatively few and randomly
distributed inside the interstitium; (ii) desmin-containing as
well as a-SMA-positive cells were sensibly more numerous;
moreover, they were preferentially found in close proximity
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FIGUrRe 3: Rat lungs. Postnatal day 3. Methacarn fixation.
Immunolocalisation of different markers, carried out in adjacent
sections. Standard ABC method. Haematoxylin counterstaining. s:
saccule; ¢: canalicular portion of respiratory space; v: vessel. Bar
20 ym. (a) a-SMA immunolocalisation. Besides what found in the
vascular wall, a strong labelling is found in the myocytes adhering
to the epithelium in the canalicular portions of respiratory spaces,
as well as in cells located in the intersaccular walls. (b) PDE5
immunolocalisation. The labelling is restricted to the cytoplasm of
several stromal cells, located in close proximity with the saccular
boundary. The myocytes of the small vessel and of respiratory
channels are unstained. (¢) desmin immunolocalisation. Both the
myocytes in the canalicular portions of respiratory spaces and those
belonging to the vessel wall are strongly labelled; moreover few
labelled cells are scattered in the intersaccular walls. Arrows indicate
some a-SMA- or desmin-containing PDE5-positive cells.

to the respiratory epithelium, especially on the tip of the
intersaccular septa, and around the venules at the junctions
of the three septa.

At all the examined stages, the number and distribution
of PDE5-expressing cells appeared substantially similar to
those of a-SMA-containing cells, while the correspondence
was weaker with desmin-containing elements. Finally, only
rare and randomly located stromal cells showed the contem-
porary presence of PDES5 and total actin. The developmental
stage of P3 was chosen as the most suitable for validating
these preliminary results, and serial sections taken from 3
day-old animals were therefore submitted the immunolo-
calisation of PDE5, a-SMA, and desmin. Figure 3 shows
a representative field, where several PDE5-expressing cells,

located in the saccular wall, are found to correspond to a-
SMA-containing elements, while a lower number is found
to express desmin; fewer cells appear to express all three
markers at the same time.

4. Discussion

PDE5-immunolocalization experiments revealed that in pre-
and postnatal rat lungs stromal cells located in the inter-
stitium between the respiratory units mainly expressed the
enzyme. More in particular, during pseudoglandular and
canalicular phases of prenatal lung development, PDE5-
expressing cells showed a preferential position close to
the tubular epithelium, while during the saccular phase
of postnatal lung development they were exclusively found
in the wall of distal respiratory spaces (canaliculi, sacculi,
alveoli).

Concerning lung airways and vessels in the respiratory
tree, PDE5 immunoreactivity was always absent in epithe-
lium and hardly detectable in muscle of larger bronchioles,
while vascular myocytes were very mildly labelled and their
staining intensity changed with respect to fixation and
incubation conditions.

Discrepancies between our results and those reported
by other authors who found stronger PDES5 expression
in vascular walls during perinatal development [11, 12]
might be due to differences in the experimental method (in
situ hybridization instead of immunohistochemistry) and
adopted species (sheep instead of rats).

The high level of PDE5 expression shown in suckling
rat lungs by nonvascular cells of distal parenchyma supports
the previously suggested idea [12] that in perinatal lung
the NO/cGMP signal transduction system might play key
roles not only in the regulation of vascular resistance but
more generally in tissue remodelling. In immature rodent
lungs the angiogenic factor VEGF is known to induce
endothelial proliferation and differentiation through binding
to Flk-1 [29], highly expressed by endothelial cells closely
apposed to the developing epithelium [30, 31]. According to
results obtained in other experimental models [32, 33], we
argue that in immature lungs, Flk-1-bound VEGF stimulates
endothelial nitric oxide synthase, with consequent nitric
oxide production. NO/cGMP system and cGMP modulation,
therefore, appear to be crucial steps in pulmonary angiogen-
esis.

Concerning the cell types that specifically express PDE5
in neonatal rat lungs, we found that many of them also
contain a-SMA, while some expressing desmin; on the
other hand only few cells express all the three markers at
the same time. According to recent literature [34], the a-
SMA+/desmin- cells mainly include interstitial myofibrob-
lasts, with a contribute of transitional pericytes bound to pre-
and postcapillary microvascular segments [35, 36], while
the a-SMA-/desmin+ cells are presumed to be interstitial
lipofibroblasts.

It is worth reminding that a-SMA-containing myofibrob-
lasts, which in adult lung are only detected during idio-
pathic or bleomycin-induced fibrosis [37, 38], in perinatal



development show increased a-SMA expression and collagen
synthesis, together with cytoskeletal reorganization, and are
presumed crucial for adaptation to extra uterine life [39].

On the basis of our data concerning PDE5 expression
in myofibroblasts and pericytes and in agreement with
results obtained in liver and kidney samples (in which the
nonselective phosphodiesterase inhibitors pentoxifylline and
3-isobutyl-1-methylxanthine were found to reduce both pro-
liferation rate and collagen secretion of a-SMA-expressing
myofibroblasts [40-42]), we argue that in neonatal mam-
malian lung the NO/cGMP signal transduction system,
besides being involved in vessel maturation, influences
homeostasis and fibrogenic activity of myofibroblasts.

Structural and functional modifications of myofibrob-
lasts and pericytes, which are both responsible for the
tensile fine tuning of capillaries and compliance of inter-
airspace walls [43, 44], might constitute the basis for
the alterations in extracellular matrix deposition, septal
elongation and alveolar maturation found, for example,
in hyperoxia-induced pulmonary perinatal hypertension.
Interestingly, in this experimental condition sildenafil was
found to increase lung capillary density and to preserve
alveolar growth [17]. In conclusion the possible effects of
PDES5 inhibitors on different pulmonary cell types should
be accurately investigated, in order to better utilise these
substances as therapeutic agents in neonatal chronic lung
diseases characterised by excess matrix deposition.

Abbreviations

PDE5: c¢GMP-binding cGMP-specific phosphodiesterase.
a-SMA: a-smooth muscle actin.
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