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Abstract
A fMRI connectivity analysis approach combining both principal component analysis (PCA) and
Granger causality method (GCM) is proposed to study directional influence between functional brain
regions. Both simulated data and human fMRI data obtained during behavioral tasks were used to
validate this method. If PCA is first used to reduce number of fMRI time series, then more energy
and information features in the signal can be preserved than using averaged values from brain regions
of interest. Subsequently, GCM can be applied to principal components extracted in order to further
investigate effective connectivity. The simulation demonstrated that by using GCM with PCA,
between-region causalities were better represented than using GCM with average values.
Furthermore, after localizing an emotion task-induced activation in the anterior cingulate cortex,
inferior frontal sulcus and amygdala, the directional influences among these brain regions were
resolved using our new approach. These results indicate that using PCA may improve upon
application of existing GCMs in study of human brain effective connectivity.
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1. Introduction
A neural system is composed of complex networks with a large amount of correlated variables.
In the past decade, fMRI using the blood oxygen level dependent (BOLD) effect has been
successful in identifying functional brain circuits underlying neural computations (Varela et
al., 2001). Nowadays, most interest in system neuroscience has switched from mapping sites
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of activation towards identifying the interconnectivity that weave them together into dynamic
systems (Goebel et al., 2003; Lee et al., 2003). Impressive methodological progress has been
made since the first description of the BOLD effect (Ogawa et al., 1990) and functional
integration (Friston et al., 2002) has been proposed to investigate changes in the correlation
between brain areas under different task conditions. Recently, a Granger causality mapping
(GCM) method based on vector autoregressive (VAR) modeling of fMRI time series (Goebel
et al., 2003; Roebroeck et al., 2005; Sato et al., 2006; Londei et al., 2007) was proposed to
examine effective connectivity over the human brain. This is an apparent methodological
advance in functional connectivity research using data driven approaches. Identifying causal
relationships among simultaneously acquired signals has been a challenge in computational
modeling of temporal processes and has a wide variety of applications such as time series
analysis in economics (Granger et al., 1969) and in dynamic EEG analysis (Kaminski et al.,
2001; Hesse et al., 2003; Brovelli et al., 2004).

However, in previous fMRI studies using Granger causality method (GCM), the analyses were
always based on values in a single voxel or average values from regions of interest (ROIs)
(Goebel et al., 2003). However, this averaging approach may lose part of information in the
time series. For multivariate time series data, there is often the need to examine causal
relationships involving blocks of time series. In fMRI analyses, a ROI may be treated as a
source from which a group of time series can be extracted, and principal component analysis
(PCA) may be employed to identify clustering within this vector of time series and more
efficiently extract the signal energy and information features (Jolliffe et al., 1986; Polat et al.,
2007). PCA is a multivariate analytical technique which can be applied to measurements that
are continuous or binary. In the current study, PCA is employed to reduce the dimensionality
of BOLD signal data in certain ROIs by combining correlated features into a set of new
orthogonal variables called principal components (PCs), and the complete set of signals can
then be represented as a vector of time series with a few PCs. Furthermore, the more efficient
representation of signals generated by PCA is, the more information on causal relationship can
be obtained in GCM analyses so as to identify a brain network and its connectivity with
directional influence.

In this article, we introduced PCA and Granger causality theories and the results based on
simulated data were also presented to illustrate the advantage of the proposed method. For an
immediate application of our new approach, human data from a fMRI study of emotional tasks
were analyzed to clarify the directional relationship among the brain regions activated during
the tasks.

2. Results
Significant differences in modeled signal activations are summarized in Table 1. Emotion
specific activations found using the conjunction of the contrast [emotion vs. identity] and
[emotion vs. control] occurred at the left inferior frontal sulcus. The pregenual cingulate BOLD
response showed a greater decrease from baseline during emotion matching than the identity
matching. The BOLD response at the subgenual cingulate gyrus and amygdala was not specific
to either the emotion or identity conditions and appeared when contrasting either face matching
condition against the control. The activation was more statistically significant at the right
amygdala (peak t(11) = 7.25 for emotion). The main four activated brain ROIs were displayed
in Fig. 1. Directional causality in emotion related brain pathways was investigated by looking
for changes over time in BOLD responses in Fig. 2. Note that the ACC response increased over
time and was reported associated with the amygdala. We further investigated the interactions
among the pACC, sACC, inferior frontal sulcus and right amygdala using Granger causality
analysis. Both subgenual and pregenual cingulate gyrus send projections to the amygdala
(Mayberg et al., 2003;Vogt, 2005), and DTI fiber tracking was recently used to show
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connections between the sACC and amygdale (Johansen-Berg et al., 2006). Inferior frontal
sulcus could be considered as part of the dorsolateral prefrontal cortex, which is associated
with working memory and executive functions. Ochsner et al. (Ochsner et al., 2005) have
described this region of the prefrontal cortex as involvement in indirect emotional regulation
since there is no strong anatomic connection between this region and amygdala. We
investigated the local brain network based on the conclusions described above and used the
pairwise vector Granger causality analysis on the PCs vectors to clarify the relationship among
these mentioned regions.

The selected four activated brain ROIs include sACC, pACC, right amygdala and inferior
frontal sulcus. The pregenual cingulate gyrus BOLD response is negative with a significantly
greater decrease in the emotion condition compared to the other conditions. The subgenual
cingulate gyrus BOLD response remained at baseline during the emotion and identity
conditions and decreased during the control condition. The right amygdalar BOLD response
increased during the emotion and identity conditions and the inferior frontal sulcus BOLD
response was seen only during the emotion condition. The Granger causality analysis indicates
that both the sACC and pACC have a strong directional influence upon the right amygdala
during the emotion task (Fig. 3). The inferior frontal sulcus has an indirect influence upon the
right amygdala via the sACC, and the right amygdala receives a direct drive from the inferior
frontal sulcus, which may be caused by the indirect influence for the limitation of pairwise
Granger causality method. Coupling Granger causality for directional intrinsic connectivity
was shown in the temporal domain in Table 2. The only significant instantaneous interactions
were among a triangular network consisting of the amygdala, sACC, and pACC. The
instantaneous influence between the pACC and sACC is 0.283 with a threshold value of 0.135,
the instantaneous influence between pACC and amygdala is 0.326 with the threshold value
0.113 and the one between the sACC and amygdala is 0.227 with the threshold value 0.130 (p
< 0.05). Low sample resolution makes it hard to clarify directional causality, but these regions
may have such a relationship in such a brain network. Fig. 3 shows only the significant
interactions within the four-node brain network (p < 0.05). In previous studies, Etkin et al.
(Etkin et al., 2006) concluded that emotional conflict is resolved through top-down inhibition
of amygdalar activity by the rostral cingulate cortex (rACC) and Johanssen-Berg et al.
(Johansen-Berg et al., 2006) used DTI fiber tracking to show connections between the sACC
and amygdala, and between the pACC and medial prefrontal cortex. Our results are almost
consistent with previous human brain studies (Mayberg et al., 2003;Johansen-Berg et al.,
2006;Etkin et al., 2006) and animal studies of medial prefrontal-amygdalar interactions (Quirk
et al., 2003;Delgado et al., 2006). No significant causality was found when Granger causality
method was applied to the average values of activated clusters in our study.

Finally, in order to verify the Granger causality results of the emotion task study, the ROIs of
pACC, sACC, inferior frontal sulcus and right amygdala were presented by 3, 2, 4, and 10
cubic voxel time series values at the original scanned resolution, respectively. Subsequently,
each region’s BOLD data were transformed into a vector consisting of original vectors and
123 functional volumes with no information loss, for subsequent Granger causality analysis
comparison. Coupling Granger causality for directional intrinsic connectivity based on
different strategies was shown in the temporal domain in Table 3.

From the results shown in Table 3, we can find that the proposal method results are consistent
with the full blockwise GCM, and both methods have better results than the Granger causality
analysis based on the average values or only first component (cover about 65% energy) of PCs.
Specialty, the PCA+GCM method could take fewer computation time cost than using the
original ROI vectors when the ROIs contain lots of voxels, mapping the entire brain or analysis
based on conditional Granger causality (Zhou et al., 2009). More energy (over 85%) needs to
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be covered when choosing the number of PCs, the Granger causality analysis based on only
one component is not enough for the brain connectivity study.

3. Discussion
It has been widely recognized that clarifying neural connectivity is essential for understanding
of brain function. Recently, effective connectivity between brain regions has been extracted
from fMRI data based on the indirect BOLD signals instead of neural activity signals (Goebel
et al., 2003; Roebroeck et al., 2005; Valdés-Sosa et al., 2005). The classical pairwise Granger
causality method is a data driven approach mostly based on single voxel values or an average
value of ROIs time series (Goebel et al., 2003; Roebroeck et al., 2005). This approach may
lose parts of useful information for the Granger causality analysis. The Granger causality
analysis is performed on the time series vectors in selected ROIs. The original vectors are
decomposed into several PCs, which cover most of the energy with less information loss. This
method appears valid and it can be used to the numeric simulation and the fMRI dataset.
Although these are preliminary observations, it is evident that the modified procedure may
provide more accurate information in the brain network for Granger causality analysis relative
to the classic methods. The studies are aimed at combining two widely used techniques and
they confirm greater accuracy using the modified methodology than using traditional Granger
causality mapping (Goebel et al., 2003). Due to the limited temporal resolution and the method
itself (Geweke, 1984), our expected direct influence is always hard to be distinguished from
instantaneous causality and indirect causality. In the simulation, we interpret such kinds of
direct influence as the theoretical values. But as for the fMRI data analysis, the directional
Granger causality might be hard differentiated from the instantaneous causality for we only
performed the influence analysis on the neural correlates of emotional conflict with 123
functional volumes scanned using a normal TR value for each subject.

Our results indicate that the direct influence from ACC to right amygdala and the indirect
influence from inferior frontal sulcus to right amygdala via sACC. These influences have been
found in agreement with the results from previous studies (Mayberg, 2003; Johansen-Berg et
al., 2006; Etkin et al., 2006). The most important contribution of this paper is that the integration
of PCA and Granger causality method is proposed as a powerful tool for identifying large scale
functional connectivity patterns from a relatively short time series of functional neuroimaging
data. The technique of brain connectivity analysis based on PCA and Granger causality is a
potentially valuable tool to be used in the investigation of causality relations in brain
connectivity studies. It would be useful in measuring brain effective connectivity and finding
a correlation between such measurements and behavioral or physiological parameters of
research populations.

4. Experimental Procedure
4.1 Methods

Either PCA or GCM alone has been successfully used in fMRI studies. But GCM has never
been applied to the PCs of vector time series except for averaged ROI time series. Furthermore,
most previous studies using the GCM tested only one or two human subjects with a large
number of functional scan volumes. Here, we employed PCA and Granger causality for
analyzing data from multiple simulations as well fMRI data from 12 subjects with fewer scan
volumes.

Principal component analysis (PCA)—PCA (Jolliffe et al., 1986) is a multivariable
statistical analysis technique for data compression and feature extraction. PCA seeks the linear
combinations of the original variables such that the derived variables capture maximal
variance. In detail, for a given n-dimensional matrix n×m, where n and m are the number of
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observations and the number of variables respectively, the p principal axes (p= n ) are
orthogonal axes onto which the retained variance is maximum in the projected space. Reducing
the dimensionality of the n-dimensional input space by projecting input data onto a reduced
number of p directions can facilitate subsequent Granger causality analysis based on vector
time series. The PCA describes the original data space in a base of eigenvectors. The
corresponding eigenvalues account for the energy of the process in the eigenvector directions.
An assumption is made for such feature extraction and dimensionality reduction by PCA that
has the most information of the observation vectors contained in the subspace spanned by the
first p PCs. Considering data projection restricted to the p eigenvectors with highest
eigenvalues, an effective reduction in dimensionality of the original data input space can be
achieved with minimum information loss (Soares-Filho et al., 2001). The details of calculations
used in PCA can be found in Song et al. (Song et al., 1997).

Granger causality—Granger causality analysis was performed on the block time series of
two brain regions activated following decomposition into PCs. As Geweke (Geweke, 1982)
has proposed, a measure of linear influence FX, Y between two time series of discrete zero-
mean stochastic processes xt = (x1t, ⋯ , xMt)T and yt = (y1t, ⋯ , yNt)T, define wt =(xt

T,
yt

T) T, where T stands for matrix transposition, and M, N are the number of PCs of xt, yt,
respectively. The influence measure FX, Y is the sum of three components: the linear influence
from x to y (FX → Y), linear influence from y to x (FY → X) and the instantaneous influence
FX.Y defined as below, where Σ1 = var(xt|Xt−1), Σ2 = var(xt|Xt−1,Yt−1), T1 = var(yt|Yt−1),
T2=var(yt|Xt−1,Yt−1) and ϒ = var(wt|Wt−1). The conditional variance is taken to be the variance
of the residual about the linear projection which accounts for the prediction.

It is important to note that these temporal measures can be decomposed into the frequency
domain under general conditions. The existence of these equalities gives credence and
convenience to studying Granger causality in both frequency and temporal domains. In the
simulation part of this paper, the frequency domain result of causality is also shown as an
obvious contrast.

There are two main obstacles and limitations to the application of GCM in fMRI studies.
Although indirect information on dynamic interactions and low temporal resolution of data
acquisition are potential problems, this analysis has been successfully applied in brain causal
connectivity studies using fMRI (Goebel et al., 2003; Valdés-Sosa et al., 2005; Londei et al.,
2007). With the assumptions of the finite order of AR-models and wide sense stationary wt,
PCA and Granger causality algorithm can be performed on the selected activated ROIs for the
relevant task to investigate the causal relationship between different human brain regions.

4.2 Simulation
Previous non-invasive fMRI studies have shown that statistical techniques based on VAR-
modeling and Granger causality are capable of detecting an effective connectivity map of the

Zhou et al. Page 5

Brain Res. Author manuscript; available in PMC 2010 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



human brain without considering any inclusion of exogenous variables or subjective
assumptions. We consider a simple five-node oscillatory network structurally connected with
different delays. The network involves four variables each representing an autoregressive
process:

where ε1, ε2, ε3, ε4, ε5 are independent Gaussian white noise processes with zero means and
variances of σ1

2, σ2
2, σ3

2, σ4
2, σ5

2 respectively. Define P(t) = (x2(t); x3(t); x4(t); x5(t)) and Q
(t) = (x1(t)), considering such a simple system consisting of two vector variables and using
Granger causality to investigate the influence between P(t) and Q(t). The configuration of the
system is illustrated that Q(t) drives P(t) after different time unit delays via x1(t).

The sample rate is set to 200 Hz and the network model was simulated with σ1
2= 1.0, σ2

2=
2.0, σ3

2= 0.8, σ4
2= 1.0, and σ5

2= 1.5 to generate a data set of 500 realizations each with 1000
time points. Assuming no knowledge of the model, a second order MVAR model (Ding et al.,
2000) based on Bayesian Information Criterion was fitted to the generated data set to perform
within each pair of interest Granger causality analysis in the frequency domain and temporal
domain, as shown in Fig. 4.

The numeric simulation dataset is composed with 500 realizations each with 1000 time points,
there are totally 500,000 points in each time series. In the permutation test, these significance
thresholds were determined using a permutation procedure that involved creating 500
permutations of the numeric simulation dataset by random rearrangement of the realization
order independently for both vectors P and Q. The Granger causality spectrum was computed
for each permutation, and then the maximum causality value over the frequency range was
identified. Then we can calculate the Granger causality in time domain under general conditions
by integral. After 500 permutation steps, a distribution of Granger causality values in time
domain was created. Choosing a p-value at p = 0.002 for this distribution gave the threshold
of the results. The Granger causalities under the thresholds were not significant and the very
small causality can be further eliminated to zero if less than the threshold. In Fig. 4, little
influence was found from P(t) to Q(t) but strong influence from Q(t) to P(t) was detected using
both methods. Furthermore, the PCA + Granger causality analysis gave a stronger result than
standard Granger analysis using average values. Only frequency Granger causality results were
shown in Fig. 4. The temporal causality FQ→P calculated based on average values is 0.0193,
and the new temporal causality FQ→P calculated using the proposal method is 0.421, which is
displayed next to the theoretical value 0.529 calculated based on the original vectors (p<0.002).
The simulation result in Table 4 shows that the Granger causality analysis based on vectors
PCs instead of average value is much closer to the theoretical result value calculated based on
the original vectors. Activated clusters of real fMRI data always include large number of voxels.
It is hard to use vector Granger causality method directly, but the PCA + Granger causality
analysis can solve this problem. The between-region causalities can be better represented using
PCA + GCM than using GCM based on average values. This modified method is applied to
real fMRI data in next section.

4.3 Application to Human fMRI data
Cognitive task and Participants—Three conditions were used in our behavioral task,
namely face-matching task: (1) “Emotion”, in which participants were asked to match the faces
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by their expressed emotion (happiness, fear, or anger) from a target face to two probe faces
below; (2) “Identity”, in which participants were asked to match neutral faces by identity; (3)
“Control”, in which participants were asked to match pixilated patterns derived from neutral
face pictures. The task was ordered in blocks of six 3 s trials of the same condition, preceded
by a 3 s instruction screen. The block condition was varied in a fixed sequence that repeated
four times and was counterbalanced across participants. The entire run consisted of twelve 21
s tasks blocks interspersed with thirteen 9 s rest blocks and lasted 189s. During rest, a fixation
cross was displayed. A total of 48 grayscale face portraits were presented from the series
“Pictures of Facial Affect” (Ekman et al., 1976). Twelve control patterns were created by
shrinking, randomizing and enlarging neutral face pictures as previously described (Wright et
al., 2006). In the emotion condition, one actor was selected for the probe face and a second
actor for both of the target faces. The pictures subtended approximately 3.6° × 5.4° (target)
and 2.9° × 4.3° (probes) of the visual field. Subjects made a decision to select the left or right
target by pressing a button under their index or middle finger respectively. The subjects
practiced each condition inside the scanner before the experimental run.

Twelve right-handed volunteers (6 females, 18–53 years old) with normal or corrected to
normal vision, consisting of comparable ages (mean [S.D.]: 29.42±12.44) were recruited as
approved by the University of Florida’s Institutional Review Board. No participant reported
any neurological or psychiatric history or use of psychoactive medications for the previous 6
months.

MR scanning and Data preprocessing—The experiment was performed on a Siemens
Allegra 3.0 Tesla MR scanner (Siemens, Munich, Germany) with a dome-shaped standard head
coil. Structural images were acquired using a T1 MPRAGE sequence in the sagittal plane at
1.0 mm3 resolution, TR = 1780 ms, TE = 4.38 ms, flip angle = 8°. Functional images acquired
T2* weighted echo planar imaging BOLD sequence in the axial orientation (parallel to the
AC–PC line), covering the whole brain with 36 slices, 3.8 mm thick with no gap using TR =
3000 ms, TE = 30 ms, flip angle = 90°, a 240 mm2 FOV and a 64×64 voxels matrix, giving
3.75 mm in-plane resolution. A total of 125 volumes were scanned during the matching task
experiment and the first two volumes were discarded before analysis to allow for T1
equilibration. Stimulus presentation, response registration, and synchronization to the scanner
acquisition were performed using the software program E-Prime (Psychology Software Tools,
Pittsburgh, PA). Responses were collected with a MRI-compatible button glove attached to
the participant’s right hand.

Imaging data were analyzed using Brain-Voyager QX (Brain Innovation, Maastricht, Holland).
The anatomic and functional images were coregistered and normalized to Talairach space for
each subject. Functional images underwent 3D motion correction, linear trend removal, and
slice timing correction. Spatial smoothing was applied using a Gaussian filter of 6.00 mm full-
width half maximum and no temporal smoothing was applied to the functional data. Regional
activations were estimated using a multiple subject general linear model (GLM). A reference
function was built for each condition by convolving the block presentation time series with an
estimated HRF (Boynton et al., 1996). Three predictor functions reflecting the main stimulation
in the task were least squares filtered. Statistical maps were created using random effects
analysis. Individual voxel time series were regressed onto the model combined with these
predictors, and clusters of voxels with significant differences between predictors were analyzed
with a statistical threshold of t(11)>4.0 (p<0.002) and a minimum cluster size of 50 mm3. The
two experimental conditions (Emotion and Identity) were contrasted with the control condition
in order to identify activation within specific brain regions, and we validated the GLM results
by drawing the average BOLD response to each condition for each cluster of significant voxels
(Wright et al., 2004). To investigate the brain network connectivity, the BOLD response to
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emotion condition was calculated separately for four repetitions and averaged across blocks
and subjects.

PCA and Granger causality method (GCM)—The PCA method is widely used to make
large measurement more effective in many fields. Here, PCA was used for dimensionality
reduction within the large number of voxels activated in each ROI by performing a covariance
analysis between factors and was based on the hypotheses that most of the information and
energy within the ROIs is included in a few PCs. The activated regions in brain imaging within
emotion task were represented by a vector consisting of hundreds of attributes. After selecting
the activated brain regions with Brain-Voyager QX, the ROI voxel time series were
decomposed into a simple vector time course by the PCA method. In our study, ROIs included
pregenual cingulate gyrus (pACC), subgenual cingulate gyrus (sACC), inferior frontal sulcus
and right amygdala, which were represented by 180, 120, 208, and 510 cubic voxel values,
respectively with 123 volumes (time points) for each subject. Subsequently, each region’s
BOLD data were transformed into a vector consisting of 5 PCs and 123 functional volumes
with minimum information loss (less than 5%), for subsequent Granger causality analysis.

The Granger causality approach allows the determination of the causal relations among these
activated brain regions with the GLM analysis. It extracts three parameters with a different
functional meaning, FX → Y, FY → X, and FX·Y, which stands for causality from region x to
region y, influence from region y to region x, and instantaneous influence between these two
regions. According to a previous study (Roebroeck et al., 2005), the low temporal resolution
of fMRI may not provide enough information for inferring directional causality, but most of
the causality effects still differentiate from the instantaneous ones. Despite this problem, the
method is also useful in Granger causality mapping and most brain connectivity studies. The
Granger causality method was applied to the complete run from the emotion experiment to
calculate values for the influence between the preselected activated brain regions using a first
order autoregressive model.

Hence, Granger causality between two regions was considered looking for one TR (Goebel et
al., 2003). Such sub-TR delayed influences can be captured by this level of directional Granger
causality (our TR is 3.0 s). Furthermore, to assign significance levels to the computed measures
a permutation procedure was applied (Nichols et al., 2002; Chen et al., 2006). These
significance thresholds were determined using a permutation procedure that involved creating
500 permutations of the fMRI data by random rearrangement of the subject order independently
for each ROI region (vector time series). The Granger causality spectrum was computed for
each permutation, and then the Granger causality in temporal domain was calculated by integral
for each permutation. The resulting significance level is the proportion of values in this
nulldistribution that are larger than the value computed for the original signal. After 500
permutation steps, a distribution of causality values in temporal domain was created. Choosing
a p-value for this distribution gave the thresholds of the fMRI results. Here, the causality results
were reported using a significance threshold of p < 0.05.
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Fig. 1.
“Glass brain” showing main clusters of activation with a threshold of t(11) > 4.0. Left inferior
prefrontal sulcus, right amygdala, and anterior cingulate cortex activations for the group
illustrated on this rendered 3D brain.
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Fig. 2.
Mean BOLD response. Error bars denote standard error of mean. Pregenual cingulate gyrus
BOLD response is negative for the condition with a significantly greater decrease; subgenual
cingulate gyrus and amygdala BOLD response remain at baseline during the emotional task;
inferior frontal sulcus BOLD response is always positive.
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Fig. 3.
Graphical description of human brain network across conditions. The lines in the Granger
causality graphs have arrowheads, indicating the direction of Granger causal influence. Lines
between region pairs not reaching significance in the Granger causality measures are not
shown. Ifs, inferior frontal sulcus; pACC, pregenual cingulate gyrus; sACC, subgenual
cingulate gyrus; rAmyg, right amygdale.
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Fig. 4.
Granger causality analysis of simulation. Causality between P(t) and Q(t) in frequency domain.
Dashdot line is based on average value; Dashed line is based on vector Granger causality
method; Solid line is based on PCA (over 95% energy) and vector Granger causality method.
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Table 2
Granger causality values

Granger causality

Brain regions Inferior frontal sulcus Right Amygdala Pregenual cingulate gyrus Subgenual cingulate gyrus

Inferior frontal sulcus - 0.260* 0.184 0.338*

Right Amygdala 0.210 - 0.180 0.126

Pregenual cingulate gyrus 0.230 0.360* - 0.216*

Subgenual cingulate gyrus 0.148 0.270* 0.218 -

Direction of influence is from the activated region at the left to the region at the top. Values are shown for temporal interactions determined to be significant
by the permutation procedure described in Method. -, the pairing of a region with itself, because the Granger causality is measured only between different
regions;

*
are shown the significant Granger causality between brain regions (p< 0.05).
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Table 3
Effective Granger causalities among ROIs using different strategies.

Causal\Method M1 M2 M3 M4

IFS → rAmyg 0.260 0.344 0.0173 0.0514

IFS → sACC 0.338 0.485 0.0198 0.0620

pACC → sACC 0.216 0.308 0.0160 0.0493

pACC → rAmyg 0.360 0.511 0.0206 0.0653

sACC → rAmyg 0.270 0.393 0.0184 0.0494

M1 is Granger causality analysis using PCA based on the data of highly interpolated resolution directly output from the Brain Voyager QX; M2 is the
strategy of vector GCM analysis based on the data of highly interpolated resolution directly output from Brain Voyager QX; M3 is based on the average
values and M4 only used the first component for the Granger causality analysis.
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Table 4
Granger causalities between P and Q based on different strategies.

Methods FQ→P FP→Q FP.Q

GCM+Avg 0.0193 0.0108 0.00177

GCM+Original 0.529* 0.00820 0.00302

GCM+PCA 0.421* 0.0120 0.0230

Values are shown for temporal interactions determined to be significant by the permutation procedure described in Method. FQ→P means the causality
from Q to P; FP→Q means the causality from P to Q; FP.Q means the instantaneous causality between P and Q.

*
are shown the significant Granger causality (p< 0.002).
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