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Abstract
Cancer cells have diverse biological capabilities that are conferred by numerous genetic aberrations
and epigenetic modifications. Today’s powerful technologies are enabling these changes to the
genome to be catalogued in detail. Tomorrow is likely to bring a complete atlas of the reversible and
irreversible alterations that occur in individual cancers. The challenge now is to work out which
molecular abnormalities contribute to cancer and which are simply ‘noise’ at the genomic and
epigenomic levels. Distinguishing between these will aid in understanding how the aberrations in a
cancer cell collaborate to drive pathophysiology. Past successes in converting information from
genomic discoveries into clinical tools provide valuable lessons to guide the translation of emerging
insights from the genome into clinical end points that can affect the practice of cancer medicine.

A human ‘cancer genome’, or oncogenome, harbours numerous alterations at the level of the
chromosomes, the chromatin (the fibres that constitute the chromosomes) and the nucleotides.
These alterations include irreversible aberrations in the DNA sequence or structure and in the
number of particular sequences, genes or chromosomes (that is, the copy number of the DNA).
They also include potentially reversible changes, known as epigenetic modifications to the
DNA and/or to the histone proteins, which are closely associated with the DNA in chromatin
(Fig. 1). These reversible and irreversible changes can affect hundreds to thousands of genes
and/or regulatory transcripts. Collectively, they result in the activation or inhibition of various
biological events, thereby causing aspects of cancer pathophysiology, including angiogenesis,
immune evasion, metastasis, and altered cell growth, death and metabolism1.

Mining the cancer genome and epigenome for aberrations that control these processes has
become a major activity in cancer research, because it is widely understood that these
aberrations provide clues to the mechanisms of disease pathogenesis. These studies can inform
efforts to identify molecular events that can be targeted for therapy and to discover molecular
biomarkers (biological indicators) that aid in early detection, diagnosis, prognosis (that is,
prediction of clinical outcome) and the prediction of responses to therapies. Recognizing this,
many national and international efforts, including The Cancer Genome Atlas pilot project by
the US National Cancer Institute and the National Human Genome Research Institute2, have
been initiated to accelerate the compilation of an atlas of alterations.

In recent years, cancer genomics — defined here as the study of the ensemble of DNA-
associated abnormalities that allow and accompany cancer development — has exploded as a
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field, with studies facilitated by genome-wide, high-resolution, high-throughput platforms
(Box 1). These technologies now yield informative, but dauntingly complex, multidimensional
genomic data sets that describe in detail the myriad changes that occur within individual
tumours and how these changes differ between individual tumours. Together with assays to
detect these aberrations that are now used to stratify patients for treatment (discussed later),
these data sets are now transforming the practice of cancer medicine, as is shown by the success
of therapies that target distinct molecular events resulting from genomic aberrations. For
example, patients with mutations in the gene encoding the epidermal growth-factor receptor
(EGFR) can be treated with gefitinib or erlotinib3-5; those with the BCR-ABL translocation,
with imatinib mesylate6; and those with amplification (that is, increased copy number) of the
oncogene ERBB2 (also known as HER2 or NEU), with trastuzumab or lapatinib7. In parallel,
assays for mutations in germline DNA can identify individuals who are at high risk of
developing cancer. For example, mutations in TP53 (which encodes the tumour-suppressor
protein p53) are associated with Li-Fraumeni syndrome8; mutations in BRCA1 or BRCA2
indicate an increased risk of breast and ovarian cancer9-11; mutations in genes whose products
are involved in DNA-mismatch repair (such as MLH1, MSH2 or MSH6) are associated with
hereditary non-polyposis colorectal cancer12; and mutations in CDKN2A (which encodes a
tumour-suppressor protein known as INK4A (or p16), which is involved in regulating the cell
cycle) indicate an increased risk of familial atypical multiple mole melanoma-pancreatic
cancer13.

These examples have demonstrated the promise of cancer genomics, stimulated rapid advances
in genomic technologies and computational science, and galvanized an entire generation of
multidisciplinary scientists to identify the next set of key therapeutic targets and disease
biomarkers for cancer. Although there has been tremendous success in the rapid accumulation
of genomic data, most of these enormous data sets have not yet been translated into meaningful
clinical end points. In the past, the translation of each genomic aberration into improved
management of patients has taken at least a decade and sometimes billions of dollars. Given
this situation, it is important to understand the barriers that prevent more rapid and less costly
conversion of genomic information into useful diagnostic tests and effective therapeutic agents.
Is statistical significance in the absence of mechanistic insight sufficient to harness the full
potential of these complex genomic data sets in a cost-efficient and effective way? Or is some
degree of understanding of the molecular biological function required for efficient translation?
The BCR-ABL, ERBB2 and EGFR examples seem to support the view that coupling insights
into the genome with pathobiological findings holds the greatest promise for making an impact
in the clinic. In this article, we review lessons from past genomic discoveries that have been
translated successfully into the clinic and describe strategies (including integrative analyses
and model systems) that have been useful for the identification of genetic elements of interest
(GEOIs). We conclude with a discussion of the challenges that are faced and potential ways
to move forwards in this field.

Lessons from the past
There are several pioneering examples of genomic aberrations being discovered in cancer cells
and the findings being successfully translated into therapeutic agents and tests for cancer risk,
prognosis or response to therapy, with considerable effects on the practice of cancer medicine.
Although many of these successes predated the current genome-wide, high-throughput
technologies — indeed, some resulted from decades of painstaking work — they nevertheless
presage the translation of information from the cancer genome into clinical tools. These
translational efforts can be considered in terms of the type of genomic aberration studied —
translocations, gene amplification, mutations and germline susceptibility — and the examples
described in this section might help to guide and accelerate translation of the genomic
aberrations now being discovered.
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Translocations
The first genomic aberration found to be associated consistently with a human malignancy
(that is, recurrent) was the Philadelphia chromosome, discovered by Peter Nowell and David
Hungerford in 1960 (discussed in ref. 14). In the ensuing decades, cytogenetic and molecular
studies showed this to be a translocation between chromosomes 9 and 22, resulting in a fusion
product, BCR-ABL. As a result of this fusion, the activity of the non-receptor tyrosine kinase
ABL is dysregulated in patients with chronic myeloid leukaemia or with some forms of acute
lymphoblastic leukaemia. More than 30 years after the discovery of the Philadelphia
chromosome, a small-molecule inhibitor of ABL, imatinib mesylate, was developed as an
effective therapeutic agent against the effects of the BCR-ABL translocation in patients with
chronic myeloid leukaemia6. However, despite marked initial responses, this targeted therapy
does not lead to a lasting cure, because resistant cancer cells emerge15. Genomic analyses of
the resistant cells showed that point mutations were acquired (and sometimes amplified) that
abrogated the inhibitory effects of the drug. This result guided the development of new small-
molecule inhibitors to counter this resistance mechanism, culminating in the recent approval
of nilotinib and dasatinib by the US Food and Drug Administration (FDA)16. These findings
suggest that the development of anticancer drugs will occur by an iterative process in which
genomic analyses are first used to guide the development of targeted therapies and associated
predictive biomarkers, and then genomic studies of resistant cancer cells aid in the development
of second-generation and third-generation inhibitors to counter the mechanisms of resistance
that have arisen against the first-generation inhibitors. Banking tumour tissues from patients
who are sensitive or resistant to drugs will be essential to support these studies. In many cases,
this will require biopsy of metastatic lesions, a process that is not regularly carried out in clinical
trials. Another lesson from the imatinib mesylate story is that genomic analyses can guide the
use of small-molecule inhibitors that are effective against several targets. Imatinib mesylate,
for example, also inhibits the receptor tyrosine kinase c-KIT. Following genomic analyses of
gastrointestinal stromal tumours (GIST sarcomas)17 and mucosal melanomas18, which showed
that both cancers harbour c-KIT mutations, imatinib mesylate has been used successfully to
treat patients with GIST sarcomas or mucosal melanomas17-19.

Box 1|Techniques for analysing the cancer genome

Comprehensive analyses of the genome of various types of cancer cell — in terms of DNA
copy number, DNA sequence, DNA organization, gene expression and epigenomic
modification — are underway worldwide. A rapidly evolving suite of technological
solutions is allowing cancer genomes to be characterized with remarkable resolution and
accuracy. Several of the techniques used to analyse the various aberrations and
modifications are summarized here.

Copy-number aberrations

Changes in the copy number of genetic regions or chromosomes across the entire genome
of a cancer cell can be mapped onto a representation of the normal genome by using
comparative genomic hybridization. This technique readily allows the genes involved in
copy-number aberrations to be identified31. Modern analysis platforms for comparative
genomic hybridization map copy-number changes onto DNA sequences arranged in
microarrays77 and allow these changes to be assessed quantitatively (including for
individual alleles in some platforms) with sub-gene resolution. Even at this resolution,
aberrations can be missed, especially when using platforms that are gene-oriented.
Emerging next-generation technologies that efficiently sequence small genome fragments
that have been collected randomly from tumour-cell genomes will complement such DNA-
microarray-based strategies for analysing copy number. These work by sequencing tens of
millions of short DNA fragments and then summing the number of fragments in equal-sized
bins distributed along the genome. The relative number of DNA fragments in each bin is
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an estimate of the relative copy number at that genomic location. The resolution of this
approach can be made arbitrarily high by sequencing to an increasing depth.

Structural aberrations

Structural changes can involve segmental deletions or insertions, and translocations or more
complex rearrangements (for example, those occurring during gene amplification or copy-
number change). These changes can be uncovered by using cytogenetic techniques such as
banding analysis or fluorescence in situ hybridization or by using DNA-sequence-based
strategies such as end-sequence profiling. End-sequence profiling is an adaptation of whole-
genome shotgun sequencing that allows structural aberrations to be detected23. DNA from
a tumour is cloned into a large-insert vector, and the ends of the resultant clones are
sequenced and then mapped onto the normal human DNA sequence. Paired ends that map
farther apart than the maximum size tolerated by the cloning vector indicate the presence
of a structural aberration. This approach has the advantage that clones containing aberrant
DNA from gene fusions can be sequenced to identify the exact DNA sequence at the
breakpoint. But it has the disadvantage that millions of tumour DNA clones must be
maintained. Alternatively, cloning strategies known as paired-end sequencing, which retain
only the ends of the cloned DNA fragment, can be used78. These paired ends are then
sequenced to identify structural aberrations (as described above). This strategy is efficient
but does not yield the DNA sequence across the breakpoints.

DNA-sequence abnormalities

Recent efforts in large-scale DNA-sequence analysis have identified several hundred
candidate genes that might have functional roles in various human cancers40,41. Some occur
at a relatively high frequency, but most are present in only a few per cent of tumours. Results
from the extensive sequencing and mutation-validation efforts that are now underway will
be necessary to establish the prevalence of, and clinicopathological associations for, these
genetic elements of interest (GEOIs). Both established and next-generation sequencing
technologies will be brought to bear on this issue. There are several current techniques for
DNA sequencing, including sequencing by hybridization, dideoxy sequencing and cyclic
array sequencing. Sequencing by hybridization79 is a DNA-array-based strategy in which
mutations are detected based on the intensity of hybridization of sample DNA to microarrays
comprising short oligonucleotide probes that are designed to be perfectly complementary
to the reference sequence plus oligonucleotide probes that differ by one base at each
‘substitution position’ in the genome to be tested. This approach is well suited to
resequencing. Dideoxy sequencing80 is the current standard method for detecting mutations.
It is typically applied to PCR products that result from the amplification of sample DNA
by using primers that flank regions of interest, and it generates collections of DNA
fragments in which each fragment terminates with a base-specific fluorescent label. The
fragments are then separated according to size by using capillary electrophoresis, and the
terminating base is identified by fluorescence emission analysis. Sequence ‘reads’ are
generally about 750 bases. In most cases, dideoxy sequencing will not detect mutations that
are present in less than about 20% of the cells represented in the PCR-amplified population.
Mutations that have been discovered so far are summarized in the Catalogue of Somatic
Mutations In Cancer (http://www.sanger.ac.uk/genetics/CGP/cosmic). The efficiency of
sequencing can be increased by using matrix-assisted laser desorption/ionization-time-of-
flight mass spectrometry to measure the masses of DNA fragments generated by primer
extension with dideoxy termination. However, sequence reads are typically less than 100
bases with this read-out method. Cyclic array sequencing allows millions to billions of DNA
fragments to be sequenced in parallel by arranging these fragments on a sequencing
substrate and using a cyclic enzymatic process to interrogate the sequence of all fragments
in parallel81,82. Current read lengths range from about 30 bases to 300 bases, and the number
of reads per analysis ranges from 0.3 million to 30 million. Cyclic array sequencing
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techniques facilitate the detection of rare mutations. Recent affinity-enrichment techniques
allow subsets of the genome to be enriched before sequencing (for example, all known
exons), thereby decreasing the cost of targeted sequencing83.

Epigenomic analysis

It is clear that epigenomic modifications are major contributors to the formation and
progression of tumours, especially during the early stages of tumour development. Several
techniques for the genome-wide assessment of DNA methylation and chromatin structure
have now been established, and others are emerging; these techniques help to elucidate the
role of epigenomic modifications in the cancer genome. The five established techniques are
restriction-landmark genomic scanning, microarray-based epigenomic analysis, reduced
representation bisulphate sequencing, methylation-specific digital karyotyping, and
chromatin immunoprecipitation plus microarray analysis. First, restriction-landmark
genomic scanning84 using methylation-sensitive enzymes was the first method developed
as a genome-wide screen for methylation of CpG islands. This technique, which involves
two restriction digests followed by electrophoretic separation, allows methylation to be
analysed in up to 4,000 loci85,86. Second, microarray-based epigenomic analysis
methods87 involve hybridization of tumour and reference DNA samples to DNA
microarrays. These microarrays comprise oligonucleotides derived from CpG-island
sequences (which are generated by digestion of CpG islands with methylation-sensitive
restriction enzymes that cleave preferentially within the islands). Comparing the signal
intensities from the tumour and reference samples provides a profile of sequences that are
methylated in the tumour but not in the references (or vice versa). Third, reduced
representation bisulphate sequencing88 is a genome-wide shotgun sequencing approach in
which the tumour and reference DNA samples are treated with sodium bisulphate to convert
cytosine to uracil while leaving 5-methylcytosine unconverted, then digested with a
methylation-specific enzyme and sequenced. Comparison of CpG sequences in the tumour
and reference genomes then reveals bisulphate-induced changes. This method is well suited
to next-generation single-molecule sequencing strategies. Fourth, methylation-specific
digital karyotyping89 is a modified technique for DNA copy-number profiling90.
Sequencing is carried out to accurately count tags to compare CpG sequences in tumour
and reference samples, thereby allowing quantitative measurement of methylation events.
Fifth, chromatin immunoprecipitation plus microarray analysis (ChIP on chip)91 involves
an initial immunoprecipitation step, thereby enriching DNA sequences associated with
histone modifications (for example, methylation or acetylation of histone H3) for which
specific antibodies are available. Immunoprecipitated DNA sequences are then analysed by
using DNA-microarray-based methods or single-molecule DNA-sequencing strategies.

Since the pioneering discovery of the Philadelphia chromosome, numerous recurrent
translocations that cause cancer have been discovered in human leukaemias and lymphomas
by using molecular cytogenetic analyses20. However, finding causal translocations in solid
tumours has been difficult, possibly reflecting the complex genomic profiles and heterogeneous
nature of these malignancies. With the current ability to analyse the genome, together with the
sophisticated analytical approaches available and the ever increasing amounts of genomic
information, recurrent structural aberrations are now being discovered in solid tumours and
might be more prevalent than previously thought. A notable discovery is the high frequency
of translocations between TMPRSS2 (which is upregulated in response to androgenic
hormones) and the ETS-family genes ERG, ETV1 and ETV4 (which encode transcription
factors) in human prostate cancer. Using a new integrative analytical methodology called
cancer outlier profile analysis, which identifies associations between genomic and
transcriptional abnormalities, Arul Chinnaiyan and colleagues21 identified a family of common
translocations that brings ETS-family genes under the control of TMPRSS2, in effect placing
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the expression of these genes under androgen-mediated regulation. Molecular assays for fusion
events are now being developed and evaluated for use as early detection markers for prostate
cancers22. It is hoped that applying similar computational approaches to emerging
multidimensional data sets will allow the detection of other causal structural aberrations in
solid tumours. And this is only the beginning. Next-generation sequencing technologies that
allow the entire genomes of tumour cells to be sequenced will be particularly valuable for
discovering fusion genes and other structural rearrange ments. The promise of this approach
is illustrated by the remarkable structural complexity found in cancer genomes by using end-
sequence profiling23, genomic-region sequencing24 or genome-wide parallel paired-end
sequencing25 (Box 1).

Gene amplification
Another prominent success story involves the now well-established ERBB2 oncogene.
ERBB2, which is homologous to mouse Erbb and the gene encoding tumour antigen p185, was
initially identified as a transforming oncogene in NIH/3T3 cells26 and was also found to be
amplified in human breast-cancer cell lines27-29. Shortly after these findings, ERBB2
amplification was found in ∼30% of primary breast-cancer tumours, and this amplification was
associated with a short survival time and short time to relapse30. On the basis of these
observations, trastuzumab (a monoclonal antibody specific for the extracellular domain of
ERBB2) was developed to treat breast tumours that had ERBB2 amplification7. Clinical
introduction of trastuzumab was guided by molecular assays for ERBB2 amplification31 or
overexpression. More recently, molecular diagnostic assays that assess ERBB2 amplification
or overexpression have guided clinical use of the small molecule lapatinib, which targets
ERBB2 and EGFR32.

Mutations
Since the completion of the Human Genome Project, several important discoveries in genomics
have come from the systematic resequencing of genes, gene families or genes in pathways that
are relevant to cancer. One of the first, and perhaps most celebrated, successes from such large-
scale resequencing projects was the discovery that BRAF, which encodes a serine/threonine
kinase, frequently contains activating somatic mutations: in 60% of malignant melanomas, in
10% of colorectal cancers and in a smaller percentage of other cancers33. This discovery has
driven many programmes aimed at developing BRAF inhibitors, and several drugs are now in
clinical trials. Other notable discoveries from large-scale resequencing efforts include frequent
mutations in PIK3CA34 (which encodes the catalytic subunit of phosphatidylinositol-3-OH
kinase) and AKT1 (ref. 35) (which encodes a serine/threonine kinase) in many cancer types, as
well as in ERBB2 and EGFR in non-small-cell lung cancer36,37. In addition to gender, ethnicity,
smoking history and the histopathological subtype of the cancer, it was found that the mutation
status of EGFR predicts responses to treatment with the EGFR inhibitors gefitinib or erlotinib
in patients with advanced non-small-cell lung cancer3-5. Testing for mutations in EGFR before
decisions are made about treatment with EGFR inhibitors is becoming routine37. The ability
to determine EGFR genotype retrospectively by using banked tumour tissues with matched
germline DNA from the ongoing clinical trials was crucial for allowing the stratification of
responders and for showing efficacy38. These studies highlight the importance of uniformly
collecting pretreatment and post-treatment tumour specimens with matched normal controls
from clinical trials.

Germline susceptibility
In addition to its impact on somatic genetics studies, genomics is revolutionizing the search
for germline genes that confer susceptibility to cancer and for polymorphisms that are
responsible for inherited predisposition to disease, including cancers. One of the early
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successes in this area was the discovery that inactivating mutations in BRCA1 are associated
with familial breast cancer9,10. Genetic screening for germline mutations in BRCA1 — and
now in a second cancer-susceptibility gene, BRCA2 (ref. 11) — is being rolled out worldwide
to identify patients who are at a high risk of developing early-onset breast and ovarian cancer.
Moreover, the knowledge that BRCA1 is required for error-free repair of DNA double-strand
breaks led to the development of inhibitors of poly(ADP-ribose) polymerase 1 (PARP1, an
enzyme involved in the recognition of DNA single-strand breaks)39. These and subsequent
studies showed that discovery of inactivating germline mutations associated with increased
susceptibility to cancer can be guided by analyses of loss of heterozygosity or reduction in
DNA copy number and/or DNA methylation in the tumours that eventually develop. Applying
current (and future) genomic technologies in coordinated germline and tumour studies should
considerably accelerate the discovery of susceptibility genes of this class, thereby increasing
our ability to identify high-risk individuals who can then be managed using aggressive
surveillance and prevention strategies. Identifying susceptibility genes by this method will
require the coordinated collection of tumour specimens, together with germline DNA, in large-
cohort genetic susceptibility studies.

Making sense of the cancer genome
Empowered by the improved ability to survey the cancer genome with increasing accuracy and
resolution, numerous studies have been carried out or initiated with the hope of discovering
the next EGFR, ERBB2 or BRAF. Instead, these analyses are uncovering hundreds of recurrent
genomic or genetic alterations that affect thousands of GEOIs — including annotated genes,
non-coding microRNAs and other conserved elements — that might contribute to the
pathophysiology of human cancers. The nature and strength of each GEOI, the certainty of its
contribution to cancer, and therefore its translational importance, varies substantially. Some
GEOIs will be strong, causal ‘drivers’ of important cancer hallmarks1. Others will be weaker
but important ‘contributors’ to the development of cancer pathophysiology. And many will be
genomic ‘noise’ (or ‘passengers’): that is, elements that are biologically ‘neutral’ and have
been accumulated by chance during the cancer’s lifespan. Distinguishing the drivers and
contributors from the passengers is a central challenge in genomic research. This is made more
difficult by the diversity of GEOI function and the likelihood that GEOI function might depend
on the tumour type (or subtype), as well as on the tumour microenvironment.

The assignment of GEOIs as drivers is compelling in the case of high-frequency events: for
example, the amplification of regions that contain EGFR in glioblastomas (in 45% of tumours)
or ERBB2 in breast cancer (in 20% of tumours); deletions of regions that contain CDKN2A or
the tumour-suppressor gene PTEN (in many solid tumours); or mutations in TP53, RAS,
BRAF or PIK3CA in a wide range of solid tumours (see the Cancer Gene Census,
http://www.sanger.ac.uk/genetics/CGP/Census). Such assignments rest on the weight of
functional evidence built up over decades, a luxury not afforded for GEOIs that are being found
and will be found by using modern high-throughput genomic technologies. Furthermore, these
prominent ‘gene mountains’ seem to be few and far between relative to the numerous ‘hills
and valleys’ stretching broadly over large regions of the cancer genome40,41. Which of these
GEOIs are involved in the crucial paths to malignancy? And what are their relative
contributions? These are challenging questions without simple answers, but progress can be
made by integrating data from multiple systems and then searching for common patterns (Fig.
2): that is, searching for GEOIs that are recurrently dysregulated by multiple mechanisms in
several biological systems. In this section, we discuss several approaches that have been used
successfully to find drivers and contributors — the needles in the haystack of cancer genome
data — including integrative analyses of multidimensional data, interspecies comparative
genomics and analyses of human cancer cell-line systems.
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Integrative analyses of multidimensional data
The cancer genome can be dysregulated through multiple mechanisms. These include
modifications to the DNA and the histones, changes in the DNA structure and copy number,
and mutations in the coding and non-coding sequences. These changes can lead to alterations
in transcription, translation, post-translational modification and, ultimately, gene and protein
function. Technological advances that allow the cancer genome to be examined in multiple
‘omic’ dimensions are helping to focus the search for drivers and contributors, by uncovering
GEOIs that tend to be dysregulated by several mechanisms. A classic example is the tumour-
suppressor protein INK4A (encoded by CDKN2A), which can be inactivated in three ways:
through the homozygous deletion of 9p21 or the region of 9p21 that contains CDKN2A; through
the epigenetic silencing of gene expression (by promoter methylation); or through point
mutations that cripple the function of INK4A42. Similarly, the PIK3CA oncogene can be
activated through amplification and overexpression43 and/or through activating mutations34.
Such dysregulation through multiple mechanisms is clearly illustrated when examining well-
known oncogenes in a typical signalling pathway (Fig. 3). In other words, if a genetic element
is important, then the cancer will find a way to dysregulate it by any means possible. For this
reason, the targeted resequencing of genes located in regions of amplification has borne fruit,
such as identifying the c-KIT oncogene as a therapeutic target for mucosal and acral
melanomas18. Thus, data showing that a GEOI can be dysregulated in several complementary
ways in cancer, through the integ ration of more than one dimension of genomic information,
provide strong evidence that a GEOI is likely to be pathogenetic. The current large-scale cancer
genome projects that are carrying out genome-wide characterization in a coordinated and
comprehensive manner will be the most powerful at leveraging such multidimensional data
for integrative analyses. In addition, integration across tumour types can be highly informative,
because it is clear that the mechanisms of dysregulation of many oncogenes, including MYC,
EGFR, AKT1, RAS, TP53, PTEN and CDKN2A, vary according to tumour type. For example,
genes, such as MYC, that are activated by translocation in leukaemias can be activated by
amplification in solid tumours. The convergence of genomic data that implicate a particular
GEOI across tumour types can help to rapidly prioritize GEOIs that are likely to have broad
importance. As a by-product, it is probable that the power of genomic biomarkers to determine
prognosis or predict responses to therapies will increase substantially if assays are developed
to assess the cumulative effect of all mechanisms of dysregulation, including effects on protein
structure and abundance.

Interspecies comparative cancer genomics
Another approach to uncovering drivers and contributors is to use evolutionary conservation
as a guide. This can be a powerful way to find oncogenes, because genes that are involved in
pathways that are dysregulated in cancers — such as receptor-tyrosine-kinase signalling, cell-
cycle regulation and apoptosis — are strongly conserved across species44,45. This comparative
approach was enormously helpful in refining the draft of the human genome sequence. With
respect to cancer, it has been established that oncogenes from one species can induce the
malignant transformation of cells from different species, despite poor sequence conservation
(for example, the Drosophila spp. homologue of MYC, diminutive, can transform rodent
cells46). Recent large-scale, cross-species comparisons have established that mouse and human
tumours sustain orthologous genomic events in diverse tumour types47-49. This finding
supports the view that genomic alterations conserved across species are more likely to represent
crucial events in tumorigenesis and that using evolutionary conservation as a filter can provide
a powerful solution to the central problem of noise in genomic data sets.

Early studies of cancer across species involved histopathological diagnoses, but such cross-
species comparisons now include genetic and genomic analyses to show, for example, that
genetically engineered mice can be used to model genetic aspects of human cancer. That mouse
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models are valid for studying human cancer is exemplified by cross-species conservation of
gene-expression patterns that result in activation of the gene encoding Ki-RAS in lung
cancers50, as well as conservation of somatic mutations in the gene encoding NOTCH1 in
mouse and human T-cell acute lymphoblastic leukaemia51. These findings were followed by
studies providing proof of the concept that comparing genomic profiles of mouse and human
tumours allows previously unidentified oncogenes to be uncovered47,48. In one of these studies,
by Minjung Kim et al.47, the ability to manipulate stages of mouse tumour development in
vivo — from regression to recurrence to escape — was used to force the selection of aberrations
conferring metastatic capability on tumours. Genome-wide copy-number profiles of these
‘escaper’ tumours revealed focal amplification in regions syntenic (that is, on a chromosomal
region of common evolutionary ancestry) to human 6p24-25, a region that sustains copy-
number gain in 36% of metastatic melanomas but not in primary melanomas52. Although 6p
gain is highly recurrent, indicative of potential pathogenetic and/or prognostic importance in
human tumours, the large region of amplification in human tumours makes the identification
of drivers and contributors difficult or even impossible. Given the focal nature of the event in
mice, cross-species comparison was able to narrow down the area of interest to an 850-kilobase
region encompassing only eight annotated genes, with NEDD9 (which encodes an adaptor
protein) as a putative driver. With that information as a guide, further functional and clinico-
pathological studies documented the metastasis-promoting activities of NEDD9 and uncovered
its molecular mechanism of action (interaction with focal adhesion kinase). Likewise, when
looking at recurrent copy-number aberrations in tumours with ERBB2 amplification,
comparisons between human breast tumours and a transgenic mouse model (in which an
oncogenic form of Erbb2 called NeuNT was expressed under the control of the endogenous
Erbb2 promoter) implicated the genes encoding GRB7 and 14-3-3-σ as contributors to the
ERBB2-mediated oncogenic process53.

Although syntenic aberrations have been observed between mouse and human tumours, it is
important to note that the genomes of most mouse tumours accumulate far fewer aberrations
than do solid tumours in humans. For example, in oncogene-driven mouse models of cancer,
tumours often have few or no copy-number aberrations, and the infrequent (and typically
simple) copy-number aberrations that are present presumably occur only under strong selective
pressures. This simplicity facilitates the identification of drivers and contributors targeted by
such copy-number aberrations, as exemplified by the studies of Kim et al.47 (discussed earlier)
and Lars Zender et al.48. The disadvantage, however, is that this method does not lend itself
to widespread use of cross-species comparison.

On the basis of observations that DNA-breakage events induced by telomere dysfunction can
drive regional amplifications and deletions and that laboratory mice do not experience
telomere-based crisis, Ronald DePinho and colleagues knocked out the gene encoding the RNA
component of the telomerase holoenzyme from the mouse germ line in an effort to humanize
the mouse genome. The resultant telomerase-deficient mice experienced progressive
shortening of telomeres with each successive generation of mice, eventually leading to
telomerebased crisis54. Tumours from these animals indeed showed high levels of instability,
harbouring numerous non-reciprocal translocations and complex copy-number
aberrations55-57. A genome-wide comparison of such genome-unstable mouse tumours with
several human cancers of diverse origins showed non-random overlaps between the copy-
number aberrations. This finding proves that mouse and human tumours experience common
biological processes that are driven by orthologous genetic events49.

Attesting to the potential of such cross-species comparisons in oncogene discovery, the focused
resequencing of GEOIs within syntenic deletions uncovered a high frequency of mutations in
FBXW7 and PTEN in human T-cell acute lymphoblastic leukaemia49. Mutations in PTEN were
also shown to modify responses to NOTCH1 inhibitors in the clinic58. These studies support
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the idea that cross-species synteny is both a measure of validation, by virtue of evolutionary
conservation and use of different genetic mechanisms (that is, a GEOI can be dysregulated by
different mechanisms, such as mutation and copy number), and a guide for discriminating
drivers and contributors from passengers.

Another way in which mice are valuable for comparative genomic studies is in the identification
of susceptibility loci. Extending the concepts used to identify BRCA1, it might be expected
that mutations or polymorphisms that contribute to cancer susceptibility are subjected to
positive selection during the ‘evolution’ of the cancer genome. Thus, these mutations or
polymorphism might be found by allele-specific analysis of copy number and gene expression
in defined model systems. For example, using genomic strategies, Allan Balmain and
colleagues59,60 identified that polymorphic variants of AURKA (also known as STK15), which
encodes an aurora kinase, are associated with an increased risk of developing cancer at several
sites in humans. These studies began by analysing the position of quantitative trait loci that
control susceptibility to skintumour formation in mice from interspecific crosses (Mus
musculus × Mus spretus). One of these loci, Skts13, was orthologous to a region that is
frequently increased in copy number in human cancers of the breast, colon and ovary; this
region, 20q13, contains the gene encoding AURKA. Analyses of the expression of the mouse
orthologue of AURKA, Stk6, showed an allele-specific difference in the mouse interspecific
crosses, and copy-number analyses of two alleles AURKA 91A and AURKA 91T showed that
AURKA 91A is preferentially amplified in human colon tumours. A subsequent meta-analysis
of the association between the alleles AURKA 91T and AURKA 91A and the risk of developing
cancer of the colon, breast, prostate, skin, lung and oesophagus showed an increased risk in
both homozygotes and heterozygotes. These results confirmed that the AURKA 91A is a low-
penetrance cancer-susceptibility allele that increases the risk of developing many cancer types.
This integrative analysis of quantitative cancer traits in mice, allele-specific copy-number
change and expression, and susceptibility to cancer in large population-based studies serves as
a model for the definitive identification of the (probably large number of) low-penetrance,
high-prevalence polymorphisms that influence cancer risk.

Finally, model systems, including mouse models, are well suited to forward genetic screens,
in which researchers can ‘listen’ and let the cancer cells ‘tell’ which events are required or
preferred on the path towards full malignant transformation. For example, retroviral insertional
mutagenesis in mice has yielded recurrent and common insertion sites at loci containing genes
such as Ras, Myc, Notch1, Flt3, c-Kit and Tp53 (ref. 61), attesting to the power of this method
to identify oncogenes when the results are integrated with existing and emerging human cancer
genome data.

Cell-line model systems
Much of our understanding of tumour cell biology, including aspects of gene regulation and
signalling, has come from studies of tumour cells in culture. The roughly 50,000 publications
describing uses of the HeLa cell line and the 20,000 publications describing uses of the NIH/
3T3 cell line attest to this fact. That said, established tumour cell lines grown on plastic dishes,
in three-dimensional cultures or in immunocompromised mice cannot fully recapitulate all the
biological aspects of tumours that are growing in the complex human microenvironment. Nor
can any model fully represent the responses of the various human tumours to therapy — in part
because of differences in the biological environment and in part because the models do not
capture the range of biological, genomic and epigenomic diversity found in human tumours.
Therefore, it is expected that each model system has strengths and weaknesses. Mice are one
such system. As we have described, and as is discussed in greater detail elsewhere62, the value
of mouse models is unequivocal. As long as researchers are aware of the limitations of any one
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model, then the information that such a system offers can be used. Integrating data from several
models will help to build a true picture of cancer.

So, what can be learned about genomic aberrations by studying cell-line models? And why are
these models important? To put it simply, cell lines are essential for the functional and
biological validation of GEOIs (Box 2). Almost without exception, the functional validation
of a GEOI and establishment of its molecular basis of action begins with various cell-line model
systems, including established tumour cell lines (which are versatile and easy to manipulate).
These systems allow the possible roles of GEOIs in the pathophysiology of cancer to be tested.
For example, the driver or contributor role of a GEOI found in a region of recurrent
amplification might be studied by assessing the consequences of enforced expression of the
GEOI in cell lines in which it is expressed at a normal level. Likewise, the role of a GEOI in
a region of recurrent deletion might be assessed by decreasing its expression by using RNA
inter ference (RNAi)-mediated knockdown in a cell line in which it is expressed at a normal
level. Cell lines derived from tumours in which GEOIs are dysregulated by genomic or
epigenomic aberrations are valuable ‘experiments of nature’ that also provide information
about GEOI function, for example through assessing the biological consequences of restoring
dysregulated GEOI expression to levels that are closer to normal.

A major obstacle to the accurate interpretation of functional data derived from established
tumour cell lines is the lack of clarity about the complements of genetic alterations that these
cell lines carry. It has become clear that the genotype of the system — be it a cell line, a model
or even a patient — can dictate the behaviour of tumour cells and can alter their response to a
manipulation such as RNAi-mediated knockdown or pharmacological inhibition. As is the case
for the original tumours from which they were derived, no two tumour cell lines are alike.
Moreover, there is the legitimate concern that genomic aberrations will be gained or lost during
extended passages in culture. Therefore, it is important that cell-line models — whether grown
on plastic, in three-dimensional culture or in xenografts (that is, a grafted into a different
species) — are subjected to the same level of comprehensive genomic characterization as
human tumour specimens. In this way, the interpretation of functional studies can be guided
by the knowledge of the similarities and differences between the cell lines and tumours that
they are intended to model. It is also important that any cell-line system used for functional
studies of the cancer genome comprises multiple independent cell lines that are molecularly
diverse. If there is sufficient diversity, analyses of such cell-line collections minimize the risk
that the elucidated function of an aberration will be idiosyncratic to a particular cell line.

Box 2 | Validation of GEOIs

The points below outline the basic approach to validating GEOIs that have been identified
in the cancer genome. GEOIs need to be validated in terms of their biological activity and
their clinicopathological association, and each validation should be confirmed by using
several assays. It is important to note that it is the cumulative weight of evidence — as
assessed by several of the assays outlined below but not any single assay — that determines
whether a GEOI contributes to, or drives, cancer.

Biological validation

The types of assay for biological validation are listed.

Model systems for manipulation of GEOIs

• Established mouse or human tumour cell lines with detailed genomic
characterization

• Relatively naive, non-transformed primary cell cultures established from normal
tissues
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• Genetically engineered animal models for in vivo studies

Candidate GEOI manipulation

• Loss of function, by RNAi-mediated knockdown of the GEOI or by
pharmacological inhibition using available drugs

• Gain of function, by expression of cDNA containing the GEOI or by
pharmacological activation using available drugs

Functional assays for biological activity

• Cell proliferation and/or apoptosis, and migration and invasion in two-dimensional
or three-dimensional culture models

• Anchorage independence in vitro

• Migration, invasion and in vivo lung seeding through tail-vein injection

• Tumorigenicity of subcutaneous or orthotopic xenotransplants

GEOI-specific assays

• Biochemical or intracellular signalling activities

Clinicopathological validation

The properties of GEOIs that are likely to drive or contribute to cancer are listed, together
with ways to search for these properties.

Evidence of dysregulation at the DNA level through various mechanisms

• Search for mutations and copy-number changes (Box 1)

• Search for epigenetic modifications (Box 1)

Prevalence

• Assay genetic and/or epigenetic events in a large number of tumours across a broad
range of cancer types

Evidence of altered expression

• Measure level of expression

• Search for altered splicing variants

• Search for novel transcripts of translocated regions

• Assess changes in proteins

Correlation with clinical parameters

• Cancer subtype

• Survival duration or response to treatment

As is the case for model organisms, forward genetic screening using a tumour cell-line model
(particularly given recent advances in RNAi technology) can be used to identify cancer-
relevant genes. Such in vitro screens are limited by the kinds of phenotypes amenable to high-
throughput screens in culture (such as viability and growth assays). Nonetheless, recent studies
that combine high-throughput RNAi-based screening with in vitro genomic profiling of
primary human tumour specimens have led to the identification of the transcription factor
REST as a tumour-suppressor protein in colon cancer63, IKBKE (which encodes a signalling
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molecule) as an oncogene in breast cancers64, and PIK3CA mutations as important
determinants of resistance to treatment with trastuzumab65.

Cell lines are also important models for assessing drug sensitivity and resistance in the quest
to identify biomarkers that can guide early-phase clinical-trial studies; to identify drugs that
might be effective in cancer subtypes that are resistant to the drug(s) used in the current standard
of care; and to identify effective drug combinations. Although still in its infancy, an increasing
number of studies support the concept that molecular biomarkers for predicting drug responses
can be uncovered by analysing how molecularly characterized tumour cell lines respond to
particular chemotherapeutic agents (which target molecular mechanisms that are intrinsic to
the tumour cells)66-70. As a corollary, these analyses also identify drugs with a high specificity
for subsets of tumour cells defined by certain molecular characteristics. Examples are in
vitro analyses that predict the known sensitivities to trastuzumab71 and lapatinib68 of tumours
in which ERBB2 has been amplified, sensitivity to gefitinib of tumours harbouring EGFR
mutations 3-5, resistance to gefitinib conferred by an acquired mutation in EGFR72, and
resistance to imatinib mesylate in tumours with mutated or amplified BCR-ABL73.

Using cell-line model systems that include large numbers of independent, established tumour
cell lines of broad molecular and cellular diversity, together with comprehensive genomic
characterization, can be and will be tremendously effective for translating genomic insights
into clinical end points. But these systems could be further improved by developing co-culture
or three-dimensional culture conditions that more closely model in vivo microenvironments,
as well as by developing strategies to establish primary or short-term cultures that minimize
the ‘culture shock’ associated with adapting to plastics.

A molecular understanding
The identification of driver or contributor GEOIs, especially the weaker or less prevalent ones,
can be greatly accelerated by integrative analyses of multidimensional data and by comparisons
with data from multiple model systems or species (Fig. 2). But identification of a GEOI is
insufficient for its translation into a clinical end point. Cancer is a complex and heterogeneous
collection of disease entities that are defined by clinical, histopathological and genetic
parameters. Given this disease heterogeneity, even if a strong correlation between a GEOI and
cancer is found in the laboratory in a test validation set (for example, a collection of genomic
data, behaviour in a model system or even responses in a clinical trial), this correlation, no
matter how significant, might not apply to every patient or trial subject. Without a definition
of the genomic and biological context under which a GEOI exerts its cancer-associated
activities, the full diagnostic and prognostic and therapeutic value of these genomic insights
will not be realized.

Consider the example of EGFR mutations in non-small-cell lung cancer and glioblastoma
multiforme (GBM). Mutational activation of EGFR in non-small-cell lung cancer is present in
a subpopulation of patients who are highly responsive to targeted inhibition of EGFR. The
proportion of patients with non-small-cell lung cancer who have an activating mutation in
EGFR is small (about 10% in studies carried out in the United States and somewhat higher in
Asian populations)37. Thus, the response of these patients to gefitinib, which inhibits the
tyrosine-kinase activity of EGFR, would not have emerged in the absence of genetic
stratification of this clinically distinct population. Conversely, amplification of a mutant form
of EGFR known as EGFRvIII is prevalent in GBM (in about 45% of primary GBM cases)74,
yet EGFR-specific tyrosine-kinase inhibitors have strikingly little clinical effect. A positive,
albeit transient, clinical response has been detected in subsets of patients in whom EGFR is
amplified or mutated but PTEN is intact 75, indicating that this key molecule downstream of
EGFR in the signalling pathway can modify the biological response of the tumour (Fig. 3).
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However, these positive responses do not last, despite documented pharmacological extinction
(that is, inactivation) of mutated or amplified EGFR. In this case, the proteomic profiling of
receptor-tyrosine-kinase activation patterns in solid tumours, including GBM and lung cancer,
has provided a rational explanation for the patterns of clinical responses. Specifically, Jayne
Stommel et al.76 showed that established GBM cell lines, GBM xenotransplants and GBM
primary tumour specimens from patients contain several coactivated receptor tyrosine kinases
and that inhibition of EGFR alone can lead to its replacement with other coactivated receptor
tyrosine kinases in the phosphatidylinositol-3-OH-kinase (PI(3)K) signalling complex, thus
maintaining downstream signalling and cell survival. Signalling downstream of PI(3)K was
extinguished only when multiple receptor tyrosine kinases were targeted by RNAi or by a
combination receptor-tyrosine-kinase inhibitor76. Thus, the integration of genomic and
proteomic insights with the molecular dissection of the signalling complex now provides a
more accurate blueprint for the rational deployment of receptor-tyrosine-kinase inhibitors for
treating GBM, tumours of the lung and other solid tumours.

Establishing the molecular basis of action of a GEOI in a specific tumour-biological context
is perhaps the most difficult step in cancer genomics. Compounding the challenges of lengthy
and laborious functional and clinicopathological validation (Box 2) is the biological
phenomenon of false negatives. False negatives can arise in many ways; for example, when
the cancer-associated biological activities of a GEOI (such as interaction with the host stroma)
are not captured by standard cell-based assays; when a GEOI has a relevant role but only in a
particular cellular or genetic context that is not recreated in the validation assay; and when a
GEOI contributes only part of the overall activity conferred by a genomic event (so that the
activity of a single GEOI is negligible in the absence of this cooperating partner or partners).
Therefore, validation must not rely on just a single type of assay that involves a single
manipulation.

Gain-of-function and loss-of-function manipulations for multiple tumour phenotypes using
multiple cell lines should be carried out to search for the context in which biological activity
can be uncovered. This process can be aided by knowledge obtained from other analyses, such
as information about the biology of the tumour, the gene family of the GEOI, the pathways
that the GEOI product is involved in, and insights from integrative analyses that nominated
the GEOI. For example, if a GEOI identified by integrative genomic analyses is prioritized
further on the basis of its known role in neural stem-cell homeostasis, then the next step would
be to assess how manipulation of the GEOI affects the renewal, maintenance and differentiation
of neural stem cells, in addition to carrying out the more generic assays of anchorage
independence or cell proliferation (Box 2). Similarly, if a GEOI is identified in a subset of
tumours with a particular genotype (such as with activated RAS or a mutation in EGFR), then
its biological importance needs to be assayed in the appropriate context. This process has been
demonstrated in two recent studies47,48. Kim et al.47 showed that NEDD9 had gain-of-function
pro-invasion activities only in cells in which BRAF or RAS was concomitantly activated, an
experimental design that was informed by the characteristics of the metastatic escapers
harbouring NEDD9 amplification. Zender et al.48 showed that the inhibitor of apoptosis IAP1
(also known as BIRC2) and the transcription factor YAP had oncogenic activities in Tp53+/-

hepatoblasts with Myc activation but not in those with Akt1 or Ras activation. This finding is
consistent with the presence of an amplicon in the chromosomal region 9qA1 (which contains
the genes encoding IAP1 and YAP) in this mouse model of hepatocellular carcinoma. In the
study by Zender et al.48, both IAP1 and YAP were shown to be targets of 9qA1 amplification,
showing that a single genomic aberration can dysregulate more than one gene that contributes
to the pathophysiology of the cancer. The chances of missing important GEOIs in a region of
recurrent aberration can be reduced by using efficient functional genomic assays to assess the
consequences of changing the expression levels of all GEOIs associated with the aberration.
For example, genetic screens can be carried out with low-complexity libraries representing
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GEOIs resident in a particular genomic event (which is especially useful for regions that are
large and gene-rich), allowing the identification of cooperating contributors (which together
confer the biological advantage selected for in the cancer cells). This functional genomic
approach will be important for sorting out which of the less impressive ‘hills and valleys’ are
biologically important.

Similarly challenging is the issue of biological false positives. For example, an RNAi-mediated
loss-of-function assay is a powerful way to determine whether the expression of a GEOI is
required in a cell for a specific tumorigenic phenotype (such as cell survival, anchorage
independence or invasion). However, given the innumerable genetic and epigenetic alterations
that are present in established tumour cells (and, consequently, the altered signalling between
pathways and networks), the observed phenotype might be an artefact. In this case, finding a
complementary gain-of-function activity can help to increase the evidence in support of a
particular GEOI being a true driver or contributor to cancer. In addition, the type of functional
activity also conveys a different level of confidence; for example, anchorage-independent
growth in soft agar is a more stringent assay than increased proliferation in fully supplemented
culture medium.

Biological false positives can also emerge as a direct consequence of the artificial nature of
the assays used. Consider the possibility that overexpression of a GEOI confers a strong
anchorage-independent phenotype; this effect might, however, result from the
supraphysiological level of expression in vitro. Conversely, knockdown of a GEOI might result
in cell death because its expression is required for the survival of all cells not just cancerous
ones. To this end, clinicopathological validation through analysis of the DNA, messenger RNA
and protein levels in normal samples and tumour samples arranged in microarrays can provide
support for cancer relevance, by demonstrating the prevalence of genomic aberrations or
dysregulated GEOI expression in large independent cohorts of specific tumour types. This can
be particularly informative if the tumour cohorts are annotated with the clinical outcome
because such a survey will not only add to the evidence but also provide invaluable insight into
possible clinical contexts for therapeutic development. Ultimately, it is the cumulative weight
of evidence based on the strength of particular functional activities, the magnitude of
clinicopathological data and the importance of mechanistic clues that provides the confidence
to assign a GEOI as a cancer-relevant driver or contributor rather than a mere passenger.

Conclusion
Cancer is the phenotypic end point of numerous genomic and/or epigenomic alterations that
have accumulated within cells, and of the interactions of such altered cells with the stromal
components in a unique host microenvironment. Some of the major challenges in translating
the knowledge gained from cancer genomics into clinical practice stem from the fact that many
cancer-associated changes in the genome are noise, as well as from the incomplete
understanding of the biological functions of many of the genetic elements that are present in
recurrent genomic alterations. Compounding these issues is the unfortunate reality that cancer
is a highly complex, nimble and versatile disease.

We argue here that making sense of this complexity can be greatly facilitated by integrating
genomic and biological insights from model systems with clinical knowledge of the disease.
Translation can further be accelerated by rigorous biological validation and mechanistic
exploration in preclinical settings to better define the clinical context(s) in which a genetic
element (or components of the pathways or networks that is involved in) is an effective point
of intervention for therapy. At the same time, we need to consider that the current understanding
of what makes a strong driver, a cooperating contributor or, for that matter, a genomic passenger
is limited at best and might be incorrect. Therefore, this must be an iterative learning process
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in which the results of downstream biological validation and mechanistic studies — and even
of clinical experiences from which inhibitors or biomarkers are developed and used — can and
must inform the integrative analyses and the validation approaches. This effort will be
facilitated by the development or assembly of model systems that are characterized to the same
degree as primary tumours and that can be used to quickly test hypotheses suggested by ‘omic’
analyses of tumours.

For the efficient translation of cancer genome information into the clinic, studies must go
beyond statistical analyses of large genomic data sets. This process will require the
amalgamation of expertise and insights from cancer biology, cancer genetics, cancer modelling
and systems biology, as well as clinical experiences. We suggest that this integrative process
will be facilitated by establishing international centres or cooperatives that organize the
information obtained from diverse genomic, biological and clinical studies in ways that guide
functional analyses and optimize the translation of the cancer genome into effective biomarkers
or therapeutics.
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Figure 1. Various types of genomic and epigenomic aberration in cancers
The main types of genomic and epigenomic aberration are illustrated together with examples
of how they can be detected. a, Changes in DNA sequence, such as point mutations, can be
assessed by DNA-sequencing techniques. b, Changes in genomic organization can be assessed
by using fluorescence in situ hybridization. In the example shown, DNA segments are
exchanged between the two (blue and green) DNA molecules. c, Changes in DNA copy
number, such as those that result from amplification, can be assessed by using comparative
genomic hybridization. d, Changes in DNA methylation and the resultant changes in chromatin
structure can be assessed by using chromatin immunoprecipitation plus microarray analysis of
immunoprecipitated DNA. Each of these types of change can alter the expression levels of
genes or non-coding microRNAs (referred to here as genetic elements of interest, GEOIs), alter
the splicing patterns of transcripts, or change gene function through mutation or through
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creating chimaeric genes. Many of these events can be as assessed by microarray analysis.
These changes ultimately translate into altered functions, leading to a diseased state, such as
cancer.
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Figure 2. Integration of complex multidimensional genomic data with insights from other model
systems
The identification of cancer drivers or contributors from multidimensional genomic data (such
as that shown in Fig. 1) from a particular human tumour type can be facilitated by integration
with similar data from other tumour types (for example, by searching for GEOIs that are
common to cancers of different lineages). Incorporating clinical information into the analysis
of this genomic data helps to narrow the focus to clinically relevant GEOIs. This genomic
knowledge can be further filtered by integrating it with insights obtained from studies in model
systems. These systems can include non-human model organisms (such as mice, zebrafish,
nematodes, fruitflies and yeast), which can be studied to identify evolutionarily conserved
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GEOIs, to define pathways that GEOIs influence and to elucidate the roles of GEOIs in normal
development. Cell-line model systems also can be useful, particularly for functional genetic
screening or monitoring responses to drugs. This type of integrative analysis, which extends
beyond the cancer genome, is an informative way to identify GEOIs that are likely to be drivers
or contributors. After such GEOIs have been identified, they need to undergo stringent
biological and clinicopathological validation (Box 2), a labour-intensive process that can be
accelerated by carrying out functional screening with a library of GEOIs rather than by
assessing one GEOI at a time. For successful translation into the clinic — that is, development
of a therapeutic agent that targets the GEOI or a biomarker for the GEOI — a basic
understanding of the molecular mechanism of action of the GEOI is helpful, particularly in
terms of the specific cellular and genetic context in which it maintains the tumour. Such a
biomarker or therapeutic agent will then need to be clinically validated before it can be adopted
for routine clinical practice. At each step of this process, the results can be fed back to inform
and refine the analyses and to help improve the validation platforms.
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Figure 3. Disruption of intracellular signalling by alterations in the cancer genome
A simplified signalling pathway is depicted to highlight known examples of bona fide
oncogenes that are subjected to dysregulation by various mechanisms. It is clear that a
signalling pathway can be disrupted at multiple points, and a variety of genomic and
epigenomic alterations can contribute to this, ultimately leading to cancer.
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