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Abstract

Background: Chronic obstructive pulmonary disease (COPD) is characterized by both airway remodeling and parenchymal
destruction. The identification of unique biomarker patterns associated with airway dominant versus parenchymal
dominant patterns would support the existence of unique phenotypes representing independent biologic processes. A
cross-sectional study was performed to examine the association of serum biomarkers with radiographic airway and
parenchymal phenotypes of COPD.

Methodology/Principal Findings: Serum from 234 subjects enrolled in a CT screening cohort was analyzed for 33 cytokines
and growth factors using a multiplex protein array. The association of serum markers with forced expiratory volume in one
second percent predicted (FEV1%) and quantitative CT measurements of airway thickening and emphysema was assessed
with and without stratification for current smoking status. Significant associations were found with several serum
inflammatory proteins and measurements of FEV1%, airway thickening, and parenchymal emphysema independent of
smoking status. The association of select analytes with airway thickening and emphysema was independent of FEV1%.
Furthermore, the relationship between other inflammatory markers and measurements of physiologic obstruction or airway
thickening was dependent on current smoking status.

Conclusions/Significance: Airway and parenchymal phenotypes of COPD are associated with unique systemic serum
biomarker profiles. Serum biomarker patterns may provide a more precise classification of the COPD syndrome, provide
insights into disease pathogenesis and identify targets for novel patient-specific biological therapies.
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Introduction

While airflow obstruction is the hallmark of chronic obstructive

pulmonary disease (COPD), the distinct processes of parenchymal

destruction and small airway fibrosis can induce similar impair-

ments in expiratory flow. Varying contributions of airway

remodeling and emphysema can be found in any individual,

leading to significant heterogeneity in disease expression [1,2,3,4].

The precise classification of these disease phenotypes is paramount

to the elucidation of pathogenic mechanisms and the development

of innovative, effective therapies for COPD. In fact, future

research efforts will be immobilized without a more thorough

understanding of the molecular pathogenesis driving phenotype

expression and a more refined schema for characterizing disease.

Although the presence of systemic inflammation in COPD is

widely accepted [4,5,6,7], the inter-individual variation in the

patterns of the inflammatory response is not emphasized in the

existing literature. The diverse presentation of disease resulting

from a single environmental exposure, cigarette smoke, suggests

the presence of distinct bio-molecular and cellular pathways

leading to a divergence of anatomic phenotypes. However, the

variation of peripheral inflammatory mediators and the associa-
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tion with pulmonary histopathologic phenotypes remains a largely

uninvestigated research area. Whereas the recent evolution of

quantitative computed tomography (CT) technology has provided

a non-invasive method of estimating the contribution of airway

thickening versus parenchymal emphysema within an individual

patient [2,8,9,10,11], we postulated that characterization of the

inflammatory profile within radiographic sub-types of COPD will

provide a basis for the refinement of disease classification, offer

insights into variations in disease pathogenesis and identify novel

therapeutic targets and surrogates associated with clinically

meaningful outcomes. Therefore, we conducted a cross-sectional

study examining both the association of unique serum inflamma-

tory profiles with quantitative CT derived airway and parenchy-

mal phenotypes of COPD and the variation of these associations

with smoking status.

Methods

The following is an abridged version of the methods section.

Please refer to Methods S1 for detailed methodology.

Ethics Statement
The study protocol was approved by the University of

Pittsburgh Institutional Review Board. Participating subjects

provided written informed consent for research use of their CT

scans and blood samples.

Subject Selection
Two hundred and thirty-four participants were selected from

the Pittsburgh Lung Screening Study (PLuSS) cohort. Participants

were current or former smokers ages 50–79 and were selected to

represent the spectrum of visual radiographic emphysema and

airflow obstruction (Table S1, Table S2, Table S3). Subjects with a

restrictive spirometric pattern, history of lung cancer, or suspicion

of lung cancer at screening were excluded from the study. All

subjects were ambulatory and self-referred from a mass-mailing

recruitment effort.

Pulmonary Function Testing
Spirometry was performed on all subjects upon entry into the

PLuSS cohort. Testing was performed using standard methodol-

ogy [12,13] and reference equations [14].

Quantitative CT Analysis
The subjects underwent low-dose CT examinations performed

on either a LightSpeed Plus 4-detector (n = 110) or LightSpeed

Ultra 8-detector (n = 124) (GE Healthcare). The CT examinations

were acquired using a helical technique at 120 or 140 kVp with a

mean tube current-time product of 28.9 (+7.9) mAs. Images were

reconstructed contiguously at 2.5 mm section thickness with a

2.5 mm interval using a GE Healthcare high-spatial frequency

kernel with a range of pixel dimensions from 0.54 to 0.98 mm.

The apical bronchus of the right upper lobe was manually

selected from the CT images and analyzed in cross-section. Wall

area as a percentage of total airway area (WA%), which has been

associated with lung function [15,16], was computed using a

partial membership algorithm developed at the University of

Pittsburgh [17,18] and used as a measure of bronchial thickening.

The lung depicted in CT images was segmented [19] and the

extent of emphysema was assessed using the density-mask

technique [9]. Parenchymal voxels with computed attenuation

values less than 2950 Hounsfield Units (HU) were defined to be

associated with emphysema. The volume of lung associated with

emphysema was represented as the fraction voxels less than the

2950 HU threshold of the total computed lung volume (F-950).

Serum biomarker measurements
Stored serum samples were analyzed for thirty-three serum

chemokines and growth factors using a bead-based cytometric

immunoassay system (Luminex, Austin, TX). A detailed description

of the methods of the multiplex assay performed at the Core facility

has been described previously by others [20]. Standard curves were

generated for each cytokine in concordance with the manufacturer’s

instructions and the concentrations of unknown samples were

calculated using a 5 parametric curve-fitting program with logistic

regression (Bio-Rad Laboratories, Hercules, CA).

Statistical Analysis
Continuous data were summarized as either mean 6 standard

deviation or median and quartiles and categorical data were

expressed as percentages. The association between the forced

expiratory volume in the first second percent predicted (FEV1%)

and WA% and F-950 was analyzed using univariate linear

regression analysis. The contribution of WA% and F-950 to

FEV% was then determined using multiple regression analysis.

Finally, the relationship between WA% and F-950 was assessed

with the Pearson’s correlation coefficient.

Serum biomarkers with concentrations above or below the

detection threshold of the assay were respectively assigned the

highest or lowest extrapolated value for that given marker (Table S4).

Because the data was not normally distributed, biomarker levels were

log-transformed and the association between the log-transformed

values and FEV1%, WA% and F-950 for the entire cohort was

assessed using univariate linear regression analysis and multiple

regression analysis after adjusting for smoking status. Linear

regression analysis stratified for smoking status was then performed

to evaluate the association of serum inflammatory markers and

FEV1%, WA% and F-950 separately in current and former smokers.

All statistical procedures were performed using SAS version 9.1.

Results

Subject demographics
The selected cohort consisted of 149 current and 85 former

smokers (Table 1). The subjects’ FEV1% ranged from 15 to 134%

with a mean of 68.2% (627.1%). The mean subject age was 61.3

years with a range of 50 to 78 years.

Table 1. Subject Characteristics by GOLD Classification.

Characteristics GOLD Category

At Risk 1 2 3 4

(n = 56) (n = 38) (n = 58) (n = 64) (n = 18)

Age 59.167.2 62.168.0 61.767.2 62.567.1 60.666.5

Sex

Male 25 (45%) 22 (58%) 29 (50%) 33 (52%) 7 (39%)

Female 31 (55%) 16 (42%) 29 (50%) 31 (48%) 11 (61%)

Current Smoker 30 (54%) 27 (71%) 43 (74%) 41 (64%) 8 (44%)

FEV1 (%) 98.4613.0 92.168.4 67.268.0 40.965.9 23.864.8

FEV1/FVC (%) 76.964.5 63.564.3 59.667.5 44.267.3 32.766.5

doi:10.1371/journal.pone.0006865.t001
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Quantitative CT analysis
Both WA% and F-950 were correlated with FEV1% in univariate

analysis (r = 20.39, p = ,0.0001; r = 20.43, p = ,0.0001) and each

CT parameter independently contributed to FEV1 decline in

multivariate analysis (r = 0.6). Although there was a strong association

of airway thickening and parenchymal emphysema CT phenotypes

with FEV1%, there was no association of the CT phenotypes to each

other (r = 20.055, p = 0.40) suggesting that each parameter repre-

sents an independent, unique phenotype (Fig. 1).

Association between serum inflammatory markers and
FEV1%

Four of the 33 markers were modestly associated with FEV1%

(p = ,0.05) before and after adjustment for current smoking status

(Table 2). Eotaxin, matrix metalloproteinase (MMP)-1, and MMP-

7 were inversely associated with FEV1%. Epidermal growth factor

receptor (EGFR) showed a direct association with FEV1% and

thus decreased with increasing GOLD classification.

Association between serum inflammatory markers and
WA%

Seven of the 33 biomarkers were associated with WA%.

Interleukin (IL) -6, IL-13, IL-2 receptor, Interferon gamma (IFN-

c), and c-reactive protein (CRP) were directly associated with

WA% while regulated on activation normal T cell expressed and

secreted (RANTES) was inversely associated with this CT

parameter (Table 3, Table S5). Notably none of these markers

demonstrated independent association with FEV1. On the other

hand, consistent with its direct relationship with FEV1%, EGFR

decreased as WA% increased. All relationships held with

adjustment for current smoking status. Notably, none of the

above markers, except IL-6, demonstrated an association with F-

950 despite their association with airway wall thickness.

Association between serum inflammatory markers and
F-950

Three of the 33 inflammatory markers, IL-6, MMP-7 and tumor

necrosis factor alpha (TNF-a), were associated with quantitative

emphysema (Table 4, Table S5). While IL-6 and MMP-7 were

directly associated with F-950, TNF-a was inversely related to

emphysema severity. Again, adjustment for smoking status had little

effect on the association of biomarkers and emphysema. Of note,

MMP-7 showed consistent associations across both FEV1% and F-

950, demonstrating an inverse relationship with FEV1% and a

direct relationship with F-950 but not WA%.

Figure 1. Scatter plot of the fraction of CT voxels with attenuation values less than 2950 Hounsfield Units (F-950) plotted on the X-
axis and the right upper apical lobe bronchus wall area as a percentage of total airway area (WA%) plotted on the Y-axis. Tertiles of
F-950 and WA% are demarcated by the dotted vertical and horizontal lines within the scatter plot with the mean FEV1 percent predicted (FEV1%)
values represented in the corresponding color-coded grid. No association exists between F-950 and WA% (r = 20.055, p = 0.40) and the severity of
parenchymal emphysema and airway disease cannot be predicted based on FEV1 alone.
doi:10.1371/journal.pone.0006865.g001

Table 2. Association Between Log Transformed Serum
Markers and FEV1 Percent Predicted (N = 234).

Analyte Co-Efficient (log pg/ml / % predicted) P-Value

Eotaxin 217.09 0.04

MMP-1 28.55 0.02

MMP-7 218.19 0.02

EGFR 42.16 0.05

doi:10.1371/journal.pone.0006865.t002

Table 3. Association Between Log Transformed Serum
Markers and Percent Wall Area (N = 234).

Analyte Co-Efficient (log pg/ml / WA%) P-Value

IL-2R 3.17 0.003

IL-6 1.58 0.01

IL-13 4.68 0.009

IFN-c 3.03 0.01

EGFR 212.65 0.04

RANTES 21.76 0.05

CRP 2.36 0.03

doi:10.1371/journal.pone.0006865.t003
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The interaction of serum inflammatory markers and
smoking

Stratified analysis by smoking status revealed a relationship

between specific biomarkers and FEV1% (Table 5) that differs

based on smoking status. The association of eotaxin, EGFR,

MMP-1, and MMP-7 with obstruction was significant in former,

but not current, smokers.

Likewise, the relationship between serum biomarkers and WA%

in current versus former smokers demonstrated associations

dependent on current smoking status (Table 6). While IL-13

concentrations were directly associated with WA% (Table 3) and

increased with increasing WA% tertiles (Fig. 2), these relationships

were only observed in current smokers (Table 6; Fig. 3). Similarly,

a significant association of IL-6, IFN-c, and CRP with WA% was

present only in current smokers (Table 6). This is in contrast to

serum EGFR concentrations, which were directly associated with

FEV1 (Table 5) and showed a trend toward decreasing with

increasing GOLD classification in former, but not current,

smokers (Fig. 4). MMP-2, MMP-7 and TNF-a receptor two

(TNF-RII) were also significantly associated with WA% in ex-

smokers alone. Notably, subjects’ smoking status did not affect the

associations between serum inflammatory markers and quantita-

tive emphysema.

Discussion

Recently, the paradigm has shifted away from viewing COPD

as a single disease entity to viewing it as a heterogeneous syndrome

with variable contributions of peripheral airway fibrosis and

emphysema. Our study illustrates this heterogeneity in a cohort of

high-risk smokers and demonstrates systemic inflammatory

patterns distinctive to individual anatomic phenotypes. Although

the presence of a generalized systemic inflammatory response in

individuals with both stable and progressive COPD has been well

established [4,5,6,7], only recently have studies explored the

relationship between inflammatory biomarkers and distinct disease

phenotypes. Elevation of select biomarkers have been implicated

in COPD patients with increased resting energy expenditures [21]

and skeletal muscle loss [22]. Blood markers or genetic

polymorphisms have been shown to vary independently with

functional capacity, severity of dyspnea, diffusing capacity, and

BODE score [23,24,25]. To our knowledge, no study has explored

the variation of serum inflammatory markers in association with

CT indices of emphysema and airway disease.

The severity of airway remodeling and parenchymal emphyse-

ma can be characterized with quantitative CT analysis. Histolog-

ical-radiological correlate studies have demonstrated a relationship

between the extent of low attenuation areas depicted on CT

images and histologic emphysema [8,9]. Quantitative CT analysis

of low generation airways have also been shown to correlate with

disease of the small airways [26], the dominant site of airway

Table 4. Association Between Log Transformed Serum
Markers and Percent Emphysema (N = 234).

Analyte Co-Efficient (log pg/ml / F-950) P-Value

IL-6 0.016 0.02

TNF-a 20.011 0.04

MMP-7 0.047 0.04

doi:10.1371/journal.pone.0006865.t004

Table 5. Association Between Log Transformed Serum
Markers and FEV1 Percent Predicted Stratified by Current
Smoking Status.

Analyte
Co-Efficient
(log pg/ml / % pred) P-Value

Co-Efficient
(log pg/ml / % pred) P-Value

Former n = 85 Current n = 149

EGFR 68.07 0.04 19.28 0.49

Eotaxin 232.78 0.02 26.97 0.51

FAS-L 234.53 0.02 4.27 0.64

MMP-1 216.91 0.01 23.95 0.39

MMP-7 229.58 0.009 27.30 0.48

doi:10.1371/journal.pone.0006865.t005

Figure 2. Bar graph representing mean (standard error of the
mean) interleukin 13 (IL-13) serum levels between tertiles of
wall area percentage (WA%) and emphysema (F-950). IL-13
serum levels increase with increasing tertiles of WA% with the highest
levels occurring in those subjects with the most airway thickening
(p = 0.038). IL-13 serum levels do not significantly vary between tertiles
of F-950.
doi:10.1371/journal.pone.0006865.g002

Table 6. Association Between Log Transformed Serum
Markers and Wall Area Stratified by Current Smoking Status.

Analyte
Co-Efficient
(log pg/ml / WA%) P-Value

Co-Efficient
(log pg/ml / WA%) P-Value

Former n = 85 Current n = 149

IL-2R 3.81 0.01 2.69 0.06

IL-6 0.23 0.84 2.16 0.006

IL-13 2.51 0.33 6.46 0.008

IFN-c 1.85 0.28 3.97 0.01

CRP 0.47 0.79 3.47 0.01

EGFR 219.86 0.02 26.24 0.47

TNF-RII 10.14 0.03 0.78 0.82

MMP-2 18.33 0.05 27.94 0.41

MMP-7 8.01 0.006 23.07 0.34

doi:10.1371/journal.pone.0006865.t006
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resistance in COPD [27]. Similar to others [2,16,28], we found a

significant contribution of quantitative CT estimates of airway

remodeling and parenchymal emphysema to FEV1 in smokers

with a wide spectrum of airflow obstruction, supporting the

coexistence of two unique CT phenotypes that correlate with

disease severity and vary remarkably between individuals.

Our findings of distinct inflammatory patterns associated with

airway thickening and parenchymal emphysema supports the

existence of unique biological processes contributing to the

syndrome of COPD. Of the markers demonstrating a significant

association with airway thickening, only EGFR demonstrated an

association with FEV1 and only IL-6 was simultaneously associated

with parenchymal emphysema. Because our study focused on the

measurement of serum biomarkers, we can not know whether the

patterns of peripheral inflammation reflect a ‘‘spill-over’’ of the local

inflammatory milieu within the lungs or represent a synchronous,

systemic molecular diatheses associated with either airway or

parenchymal disease. The significant but modest associations imply

that a complex interplay of chemokines and growth factors, rather

than one or two inflammatory mediators, is associated with the

development of individual phenotypes.

In a complex disease where pathogenic processes progress after

cessation of cigarette smoking [29], we have also demonstrated

inflammatory marker associations with airway remodeling and

obstruction severity that varied according to current smoking

status. Both animal and human studies have shown increased

inflammatory proteins in the presence of cigarette smoke

[30,31,32] and prior groups have found smoking-dependent

differential associations between inflammatory proteins and

markers of disease severity [33]. Relevant to our finding of a

direct association of IFN-c and IL-13 with WA% in current, but

not former, smokers, others have also demonstrated interactions

between smoking and both IFN-c [34] and IL-13 [35]

polymorphisms in association with lung function. We have further

defined specific associations with CT measures of airway

thickening independent of airflow obstruction. This differential

relationship suggests that, while inflammation may persist

following smoking cessation, the specific biological processes may

differ from that in current smokers. Alternatively, underlying

processes associated with either innate [36] or adaptive immune

responses to colonization or autoimmunity[37,38] may be

dominated by the inflammatory effects of tobacco smoke. Such

associations emphasize the complexity of the inflammatory process

underlying the pathophysiology of COPD.

Although the multiple simultaneous measurements enabled by

the high-throughput nature of Luminex technology increases the

probability of type I error, we did not correct for multiple

comparisons in our analysis. A formal adjustment would minimize

the number of false positive findings but would also increase the

probability of missing clinically meaningful associations. In this

exploratory study, we did not want to overlook possible relation-

ships and instead focused on those markers that demonstrated both

biological plausibility and consistency in their associations with CT

parameters. For instance, we found that IL-13, a cytokine associated

with lung [39] and airway inflammation and fibrosis [40] in animal

models and lung function in human studies [25,35,41], was directly

related to WA% in our study cohort. Although IL-13 and FEV1%

were not inversely associated in this study, we did find a significant

indirect relationship in a separate cohort of individuals with COPD

[25]. EGFR, a soluble growth factor receptor which has been shown

to be decreased in individuals with breast carcinoma [42], non-

small cell lung carcinoma, and head and neck carcinoma [43] and

to be lower with increased melanoma tumor burden [44], appeared

to have a protective effect in our study cohort – levels increased with

increasing FEV1% and decreasing WA%. The biological plausi-

bility of IL-13 and the consistency across EGFR relationships

suggests clinically meaningful associations that are not merely a

result of increased type-I error. Although the number of plausible

associations we have observed are statistically unlikely to have

occurred randomly, we fully acknowledge that any individual

markers identified must be further validated in other ongoing

patient cohorts [45]. Likewise, as CT technologies evolve enabling

analysis of multiple, higher generation airways, further validation

studies will be necessary to either confirm these molecular

associations or to determine whether analysis of the right upper

Figure 4. Bar graph representing mean (standard error of the
mean) soluble epidermal growth factor receptor (EGFR) serum
levels between GOLD groups stratified by smoking status. EGFR
serum levels decrease with increasing GOLD group in former smokers
(p = 0.16) but do not significantly vary with severity of obstruction in
current smokers (FS = former smoker, CS = current smoker).
doi:10.1371/journal.pone.0006865.g004

Figure 3. Bar graph representing mean (standard error of the
mean) interleukin 13 (IL-13) serum levels between tertiles of
wall area percentage (WA%) stratified by smoking status. IL-13
serum levels increase significantly with increasing WA% tertile only in
current smokers (p = 0.003). Former smokers do not exhibit a significant
change in IL-13 levels with degree of airway thickening (FS = former
smokers, CS = current smokers).
doi:10.1371/journal.pone.0006865.g003
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lobe apical bronchus versus smaller airways provides independent,

meaningful information.

In conclusion, our study illustrates the heterogeneity of the

COPD syndrome exemplified by independent variability of airway

remodeling and parenchymal destruction and demonstrates an

association between distinct quantitative CT phenotypes and serum

inflammatory biomarker patterns. Many of these associations varied

according to current cigarette use, suggesting a complex interplay of

inflammation and environment leading to the variable expression of

airway disease and obstruction. The traditional definition of chronic

airflow obstruction fails to recognize the diversity of biologic

processes represented by varying patterns of disease expression,

which most likely will vary in response to molecular therapeutics.

The challenge is to develop tools that precisely classify individuals

based on their unique pathophysiologic phenotypes. Whereas

quantitative CT indices of emphysema and airway remodeling

have been shown to correlate with physiology and histology, the

identification of inflammatory markers that segregate with anatomic

phenotypes further validates and facilitates more robust disease sub-

classification and provides further insight into molecular-cellular

mechanisms, potential therapeutic targets and easily measured

surrogates of disease activity.
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gamma polymorphisms and their interaction with smoking are associated with

lung function. Human Genetics 119: 365–375.
35. Sadeghnejad A, Meyers DA, Bottai M, Sterling DA, Bleecker ER, et al. (2007)

IL13 Promoter Polymorphism 1112C/T Modulates the Adverse Effect of
Tobacco Smoking on Lung Function. Am J Respir Crit Care Med 176:

748–752.

36. Kim EY, Battaile JT, Patel AC, You Y, Agapov E, et al. (2008) Persistent
activation of an innate immune response translates respiratory viral infection

into chronic lung disease. Nat Med 14: 633–640.

37. Feghali-Bostwick CA, Gadgil AS, Otterbein LE, Pilewski JM, Stoner MW, et al.

(2008) Autoantibodies in patients with chronic obstructive pulmonary disease.
Am J Respir Crit Care Med 177: 156–163.

38. Sethi S, Wrona C, Eschberger K, Lobbins P, Cai X, et al. (2008) Inflammatory

profile of new bacterial strain exacerbations of chronic obstructive pulmonary
disease. Am J Respir Crit Care Med 177: 491–497.

39. Hoshino T, Kato S, Oka N, Imaoka H, Kinoshita T, et al. (2007) Pulmonary
Inflammation and Emphysema: Role of the Cytokines IL-18 and IL-13.

Am J Respir Crit Care Med 176: 49–62.

40. Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, et al. (1999) Pulmonary
expression of interleukin-13 causes inflammation, mucus hypersecretion,

subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin
Invest 103: 779–788.

41. van der Pouw Kraan T, Kucukaycan M, Bakker A, Baggen J, van der Zee J,
et al. (2002) Chronic obstructive pulmonary disease is associated with the -1055

IL-13 promoter polymorphism. Genes and Immunity 3: 436–439.

42. Muller V, Witzel I, Pantel K, Krenkel S, Luck HJ, et al. (2006) Prognostic and
predictive impact of soluble epidermal growth factor receptor (sEGFR) protein

in the serum of patients treated with chemotherapy for metastatic breast cancer.
Anticancer Res 26: 1479–1487.

43. Lemos-Gonzalez Y, Rodriguez-Berrocal FJ, Cordero OJ, Gomez C, Paez de la

Cadena M (2007) Alteration of the serum levels of the epidermal growth factor
receptor and its ligands in patients with non-small cell lung cancer and head and

neck carcinoma. Br J Cancer 96: 1569–1578.
44. Mouawad R, Soubrane C, Rixe O, Khayat D, Spano JP (2006) An unexpected

inverse correlation between soluble epidermal growth factor receptor and
interleukin-6 in metastatic malignant melanoma patients. Melanoma Res 16:

335–340.

45. Vestbo J, Anderson W, Coxson HO, Crim C, Dawber F, et al. (2008) Evaluation
of COPD Longitudinally to Identify Predictive Surrogate End-points

(ECLIPSE). Eur Respir J 31: 869–873.

Systemic Inflammation and COPD

PLoS ONE | www.plosone.org 7 August 2009 | Volume 4 | Issue 8 | e6865


