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Introduction
The clinical role of Cardiovascular Magnetic Resonance (CMR) continues to expand1,
supported by ongoing technological advances that have shortened acquisition times while
maintaining and often improving image quality. New applications of CMR in cardiovascular
imaging continue to emerge and results from larger clinical trials are beginning to define the
role of CMR in a range of clinical scenarios. Current accepted indications for CMR include
the assessment of congenital heart disease, the great vessels, acquired myocardial and
pericardial disease and chronic coronary artery disease (CAD)1. The role of CMR in the
assessment of acute coronary syndromes (ACS) is less well established. However, evidence
is accumulating that CMR provides often unique information in chest pain syndromes that
can aid the detection and differential diagnosis of ACS, guide clinical decision-making and
improve risk-stratification after an event.

Following a review of the relevant CMR methodology, this article presents the current
evidence for CMR in ACS and gives an outlook of future developments.

CMR methods
The following CMR methods are most commonly used for the assessment of ACS (see
Figure 1) and can be incorporated into a clinical protocol that can be performed within an
hour.
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Cine Imaging
The assessment of global and regional left ventricular (LV) and right ventricular (RV)
function by CMR is typically based on a cine data set aligned in the true LV short axis that
covers the heart in 10-12 consecutive two-dimensional slices2. Alternatively, three-
dimensional cine data sets covering the entire heart in a single breath-hold can be acquired3,
4. In addition to its high tissue contrast, the main advantage of CMR over other imaging
modalities is that imaging planes can be freely and reproducibly defined. Consequently,
CMR is the most accurate and reproducible imaging modality for the assessment of global
ventricular volumes and function 5, 6. In addition, regional contractile function can be
assessed either by visual interpretation of cine loops7, 8 or by measuring wall motion,
thickening and strain using myocardial tagging methods9, 10. Myocardial tagging during
low dose dobutamine stress has been used to measure parameters of diastolic dysfunction
such as the time to peak untwist which may identify coronary stenosis11,12. Following
AMI, low dose dobutamine cine CMR can be used to predict viability and functional
recovery13-16. High dose dobutamine stress CMR has high diagnostic accuracy to identify
inducible LV wall motion abnormalities indicative of flow-limiting coronary stenosis17-19.

First Pass Myocardial perfusion
Current first pass myocardial perfusion CMR methods track the passage of a bolus of a T1-
shortening contrast agent injected into a peripheral vein20, 21. Data acquired during
intravenous vasodilator-stress (most commonly with adenosine) delineate relatively
underperfused regions associated with myocardial ischemia. The spatial resolution of CMR
myocardial perfusion imaging of 2 to 3 mm is vastly superior to other imaging modalities,
so that subendocardial ischemia can be more reliably identified. Recent developments have
seen further improvements in spatial resolution to around 1 mm in the imaging plane22 and
acquisition at 3-Tesla promises improved signal to noise ratio and diagnostic yield23, 24.
Both of these developments should continue to enhance the value of CMR perfusion
assessment. The interpretation of CMR myocardial perfusion studies in clinical practice is
most commonly visual, but quantitative approaches that measure characteristics of
myocardial signal intensity profiles are available21, 25-28 and have been validated against
x-ray angiography, SPECT and PET29-31. The recent MR-IMPACT study in 234 patients
reported improved detection of coronary stenosis by CMR compared with SPECT in the first
multi-centre, multi-vendor comparison32. In the context of ACS, myocardial perfusion
CMR imaging can be used to delineate microvascular obstruction and ischaemia, as
described in subsequent sections.

Early and late gadolinium enhancement
Following acute ischemic injury, the myocardial distribution volume of extra-cellular
gadolinium-based contrast agents is increased because of the presence of sarcrolemmal
disintegration and abnormal wash-out kinetics. In chronic myocardial infarction, the
presence of fibrotic tissue increases the distribution volume of the contrast agents. The
resulting differences in contrast distribution between normal and injured myocardium can be
delineated with T1-sensitive inversion-recovery CMR methods. Imaging within the first few
minutes after contrast administration is the method of choice to delineate microvascular
obstruction (MVO), which prevents contrast delivery to the infarct core and thus results in
low signal on T1-weighted imaging33. Acutely injured and chronically infarcted tissue
without MVO on the other hand retains contrast agent and therefore appears bright34-37.
The preferred imaging time for scar is between 10 and 20 minutes after contrast agent
administration, when the differences between scar, normal myocardium and blood pool are
maximal. This method is referred to in the literature variably as late gadolinium enhanced
CMR (the currently preferred term), late-contrast enhanced, delayed contrast-enhanced or
hyperenhancement CMR. It has become the reference standard for the in vivo assessment of
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myocardial viability because of its very high spatial definition and high contrast to normal
myocardium, which allows a detailed assessment of the spatial distribution of scar. Because
of its high spatial resolution late gadolinium enhanced CMR can detect infarction in as little
as 1ml of tissue, substantially less than other in vivo methods. The technique has been
extensively validated in animal models showing excellent agreement with histology and has
been applied in numerous recent human studies33-38. Most notably, it was shown that CMR
is more sensitive in detecting subendocardial MI than SPECT or PET and in chronic CAD
that the extent of scar on CMR predicts the potential for functional recovery after
revascularisation 39-41. Figure 2 shows a case example of early and late gadolinium
enhancement following acute MI.

T2-weighted imaging
Myocardial edema is a feature of many forms of acute myocardial injury that are associated
with inflammation. Edema alters myocardial T2-relaxation and can therefore be detected
with T2-weighted CMR imaging42. Following acute myocardial infarction, T2-weighted
CMR can be used to delineate the ischemic risk region, which typically extends beyond the
scar (see Figure 3). This is discussed in greater detail later. However, both the relatively
small contrast-to-noise ratio between edematous and normal myocardium (around 2 to 3)
and artefacts from slow flowing blood at the subendocardial border can make interpretation
of T2-weighted images more challenging than other CMR methods, although recent
methodological developments promise to improve these limitations43.

Coronary MR angiography
CMR imaging can be used to delineate coronary morphology and detect at least proximal
coronary stenosis44. Coronary MR angiography, however, is rarely used in ACS, where
invasive angiography is a routine test and non-invasive coronary imaging has little to add to
the diagnostic process.

In summary, CMR offers a wide range of tools that can be utilized for the detection,
differential diagnosis and management of patients with acute and chronic manifestations of
CAD. Data acquisition times for most CMR methods continue to be reduced, allowing
multi-parametric assessment in a single imaging session. In the following sections the
established and evolving clinical applications of CMR in ACS will be discussed.

Detecting and differentiating ACS
Detection of ACS

Patients with suspected ACS are increasingly managed with early interventional
strategies45. However, in low-risk patients or in the presence of concomitant medical
problems that increase the risk of complications from cardiac catheterization, an initial non-
invasive functional test may be preferred45. In this context, CMR presents an attractive
alternative to established diagnostic methods. A study by Kwong and colleagues suggested
that CMR imaging may more accurately identify ACS than conventional markers46. In 161
consecutive patients presenting to the emergency room with cardiac chest pain but no
evidence for MI, CMR was performed within 12 hours of presentation. The CMR protocol
comprised myocardial perfusion at rest, cine imaging and late gadolinium enhancement. The
study reports a sensitivity and specificity of 84% and 85%, respectively, of CMR for
detecting subsequent ACS defined as 70% coronary stenosis or positive stress test within 8
weeks of the index event. Detection of regional wall motion abnormalities was the most
powerful part of the CMR study in this setting where perfusion abnormalities may be normal
in between episodes of pain and infarction may not yet be established. CMR was more
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sensitive than ECG, troponin and the Thrombolysis in Myocardial Infarction (TIMI) risk
score and was the strongest predictor of ACS on multivariate logistic regression analysis.

CMR is also helpful in differentiating acute from chronic MI by combining late gadolinium
enhancement with T2-weighted imaging, which will delineate the edema associated with
acute infarction. In a study of 73 patients with acute and chronic MI by Abdel Aty and
colleagues, CMR was 96% sensitive in differentiating acute from chronic MI42. The
incremental value of T2-weighted imaging for the detection of ACS was the subject of a
recent study of 64 consecutive patients47 presenting with chest pain to the emergency room
with negative cardiac enzymes and no ECG changes suggestive of coronary ischemia.
Adding T2-weighted imaging and left ventricular wall thickness measurements to a core
CMR protocol of cine and late gadolinium enhancement imaging increased the specificity,
positive predictive value, and overall accuracy in detecting ACS from 84% to 96%, 55% to
85%, and 84% to 93%, respectively. CMR provided incremental value in the detection of
ACS over and above traditional risk stratification with the changes detected by CMR
occurring before the rise in cardiac enzymes (6±12 hours).

As well as detecting early changes following ACS, CMR is useful in the setting of delayed
presentations where cardiac markers may have returned to normal, while abnormalities on
T2-weighted CMR can persist for several weeks48.

Differential diagnosis of ACS
CMR can facilitate the differential diagnosis of ACS, in particular in the context of a normal
coronary angiogram. In a study of 27 patients with troponin-positive chest pain and normal
x-ray coronary angiogram, half showed subepicardial or mid-wall late gadolinium
enhancement, suggesting myocarditis, while the other half demonstrated subendocardial or
transmural enhancement typical of myocardial infarction49. Another study of 61 patients
presenting with troponin positive chest pain and normal coronary angiography showed that
contrast enhanced CMR was able to identify a cause in 65% of cases with the commonest
being myocarditis (50%), followed by myocardial infarction and cardiomyopathy50. Laissy
and colleagues came to similar results in a study of 55 patients, which included 24 patients
with clinically suspected myocarditis and normal coronary angiography and 31 with a
history of atypical myocardial infarction and coronary stenosis51. In all but one patient with
myocarditis, CMR perfusion was normal and late gadolinium enhanced CMR showed either
epicardial or diffuse non-segmental enhancement, while MI patients showed typical
endocardial enhancement. The pattern of CMR abnormalities in myocarditis may even
predict long-term outcome52. Figure 4 shows an example of enhancement in a patient with
myocarditis.

Tako Tsubo cardiomyopathy, or apical ballooning syndrome, is a syndrome with distinctive
features such as acute chest pain and shortness of breath, ST-segment elevation on
electrocardiogram and release of cardiac enzymes. Consequently it can mimic acute
myocardial infarction (AMI) at clinical presentation. The diagnosis is usually suspected
during invasive coronary angiography, which typically reveals non-obstructed coronary
arteries and an apical wall motion abnormality crossing coronary supply territories. CMR
can reliably make the diagnosis of abnormal apical contraction that characterizes the
syndrome and late gadolinium enhanced CMR shows absence of myocardial necrosis in this
syndrome and reliably predicts recovery (Figure 5) 53, 54. A study by Eitel et al
demonstrated the ability of CMR to distinguish acute apical myocardial infarction from
apical ballooning syndrome without infarction and myocarditis in patients with
angiographically normal coronary arteries and characteristic wall motion abnormalities55.
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In summary, CMR may be a useful and accurate test to detect the presence of ACS and can
be considered as an additional diagnostic tool to differentiate ACS from chronic MI and
from disease entities with similar clinical presentations.

Management of ACS
Non ST elevation ACS

Current guidelines for the management of non-ST elevation ACS recommend that low risk
patients with normal biomarkers should undergo a stress test (nuclear perfusion imaging or
stress echocardiography) within 72 hours as an alternative to inpatient admission45. Plein et
al showed that CMR can also be used safely in the context of ACS56. A CMR study
incorporating cine imaging, rest and stress perfusion, coronary MRA and late gadolinium
enhancement was performed within 2-5 days of non-ST elevation ACS in 72 patients. CMR
reliably predicted the presence of coronary stenosis requiring revascularisation on
subsequent X-ray coronary angiography, in particular when several of the CMR modules
were interpreted in combination (sensitivity 96%, specificity 83%). Furthermore, this was
superior to the prediction based on the TIMI risk score. Figure 6 gives a case example of a
patient presenting with a biomarker-negative ACS, in whom CMR identified unknown
previous MI and inducible ischemia in two separate coronary territories.

Ingkanisorn et al. showed subsequently that CMR adds significant prognostic value in
predicting future diagnosis of CAD, MI, or death over clinical risk factors57. They studied
135 troponin-negative patients presenting to the emergency room with chest pain using
adenosine stress perfusion CMR. CMR had 100% sensitivity and 93% specificity to predict
the development of CAD at one-year follow-up.

ST-elevation MI
Following acute ST-elevation MI (STEMI) patients may not receive definitive
revascularisation at the time of initial presentation for a variety of reasons, including late
presentation, concomitant medical problems that exclude reperfusion strategies or
widespread or complex coronary disease that is not suitable for percutaneous
revascularisation. The detection and quantification of scar by late gadolinium enhanced
CMR is increasingly used to guide revascularisation decisions in these patients in particular.
In a group of 50 patients with myocardial infarction, of which 6 were studied within two
weeks of infarction, Kim et al. showed that late gadolinium enhanced CMR predicts
reversible myocardial dysfunction. Ninety percent of the myocardial segments studied that
contained hyperenhancement between 51% and 75% of tissue and virtually all of those with
transmural infarction did not improve after revascularization. Conversely, 256 out of 339
(78%) of hypokinetic segments containing no hyperenhancement had improved contractility
after revascularization 34. A subsequent study by Nijveldt et al. in 60 patients with recent
AMI confirmed that segments with >75% transmural enhancement are unlikely to function
completely at follow-up, while in about half of the segments with less than 25% transmural
enhancement function improved completely58. These results were supported by Bodi et al.
who showed that the amount of viable myocardium on CMR predicts functional recovery in
thrombolysed STEMI patients who receive post-hoc revacularisation59.

In patients receiving thrombolytic therapy for the treatment of acute STEMI, functional
assessment with exercise testing or a pharmacological imaging study is recommended for
low risk patients before discharge from hospital60. Greenwood and colleagues showed in a
small sample of 35 patients that CMR imaging with adenosine stress perfusion, viability and
function assessment can be safely performed within a few days of acute STEMI and is more
accurate than an exercise tolerance test for detecting residual ischemia61.
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Complications of ACS
In addition to supporting management decision-making in ACS, CMR reliably detects
important complications of AMI. Ventricular aneurysms and ventricular septum defects are
clearly identified on cine images. With late gadolinium enhanced CMR, these pathologies
can be further characterized in the context of the acute injury and may aid planning of
surgical or percutaenous procedures 62. Early or late gadolinium enhanced imaging is also
very useful to identify LV thrombus 63, 64 (Figure 7).

In summary, there is early evidence that using CMR in ACS patients is safe and provides a
comprehensive assessment of the sequelae of AMI that can help to guide patient
management. CMR has the benefit over other imaging modalities of providing the most
accurate information on cardiac morphology, function and scar. In addition, CMR can
determine the presence of residual myocardial ischemia and reliably detects complications
associated with ACS.

Risk-stratification after ACS
In patients with known or suspected coronary artery disease CMR has comparable predictive
value for future adverse cardiac events with nuclear scintigraphy or stress
echocardiography65. Even small amounts of scar on late gadolinium enhanced CMR
provide incremental prognostic value beyond the usual clinical, angiographic, and functional
predictors66. In the context of ACS, several CMR measures are associated with prognosis
(see Table 1).

Infarct size
Infarct size measured by late gadolinium enhancement is directly associated with outcome.
Tarantini and colleagues71 showed in 76 patients with acute revascularized MI that the
amount of transmural necrosis on late gadolinium enhanced CMR predicted adverse LV
remodelling, with significant additional predictive value to infarct size and microvascular
obstruction. These findings were confirmed by Roes et al who showed in 231 patients with
healed myocardial infarction that infarct size on late gadolinium enhanced CMR was a
stronger predictor of all-cause mortality than LVEF and LV volumes. Transmurality of
infarction was also associated with worse outcome73. Wu et al showed that acute infarct
size as determined by CMR, which was independent of LV stunning and loading, directly
relates to LV remodeling and is a stronger predictor of future events than measures of LV
systolic performance74.

Peri-infarct zone
On late gadolinium enhanced CMR images, a border zone of intermediate signal can be
observed between the infarct and surrounding tissue. This peri-infarct zone may reflect
partial volume or partial myocardial necrosis and edema. A study by Kwong et al. suggested
that the extent of the peri-infarct zone is an independent predictor of post-MI mortality. In
144 patients with documented coronary artery disease and previous MI, they found that the
amount of myocardium exhibiting an intermediate signal on late gadolinium enhanced CMR
images was a strong predictor of all-cause mortality75. A subsequent study suggested that
one mechanism for this increased mortality may be that the peri-infarct zone is a substrate
for arrhythmias76. CMR data on scar and peri-infarct zone could thus prove useful in the
future to identify patients for implantable cardioverter/defibrillator and cardiac
resynchronisation therapy (CRT)77, 78.
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Microvascular obstruction
Early contrast-enhanced CMR can reliably demonstrate the presence and extent of MVO
following reperfused AMI. MVO results in poor tissue perfusion despite restoration of
epicardial blood flow to the infarcted region. It is the consequence of clogging of the small
myocardial arterioles with embolic debris, acute inflammation, platelet aggregation and
vasospasm. Studies have shown that the presence and extent of MVO following AMI as
measured by early gadolinium enhancement CMR is associated with adverse ventricular
remodelling16, 68, 79-81 and clinical outcome that is independent of the infarct size67, 69.
Baks et al examined patients with CMR soon after primary percutaneous revascularisation
for STEMI and again at five months. They found that dysfunctional segments without MVO
had early increased wall thickness and late partial functional recovery compared to segments
with MVO that showed late wall thinning and no functional recovery 70. Nijveldt et al
demonstrated that MVO had incremental diagnostic value over transmurality of infarction in
particular in segments with 75-100% transmural enhancement58.

Area at risk
The area at risk (AAR) is defined as hypoperfused myocardium at the time of an ischemic
episode82. Currently the gold-standard for determining the AAR is single photon emission
tomography with injection of Technitium-99m tracer into the occluded coronary artery prior
to revascularisation83. In the experimental setting, myocardial contrast echo has also been
used84.

T2-weighted CMR offers a potentially attractive alternative for the non-invasive
measurement of AAR. The increased water content of myocardium following acute
ischemia-reperfusion injury85 leads to high signal on T2-weighted images86 and combined
with late gadolinium enhancement allows the delineation of areas that are injured but not
infarcted following reperfusion87, 88. The areas of T2 enhancement are invariably
transmural and subsequently larger than the regions of late gadolinium enhancement89 88
and the difference between the two likely represents myocardial salvage90. The advantages
of this method are that such a region can be retrospectively determined days after the acute
event87 and without the need for direct injection of agents into the coronary artery at the
time of primary reperfusion. So far, no outcome studies based on a CMR assessment of
AAR have been published.

Right ventricular infarction
It is well recognized that involvement of the right ventricle (RV) in acute MI is associated
with adverse clinical outcome. RV function is difficult to assess reliably with most imaging
modalities, while it poses no particular challenge to CMR cine imaging (Figure 8).
Kaandorp et al. showed that RV infarction can be detected by late gadolinium enhancement
and that the extent of scar tissue is linearly related to the severity of RV dilatation at 6
months follow-up91. Kumar et al. found in 37 patients that acute RV infarction is more
frequently detected by late gadolinium enhancement than by ECG and echocardiography92.
Finally, Larose et al. have shown that RV ejection fraction measured by CMR is an
important predictor of prognosis after AMI72. In 147 consecutive patients studied late after
MI, RVEF <40% was strongly associated with mortality (hazard ratio 4.02), independent of
patient age, LV infarct size and LVEF.

In summary, CMR imaging provides several independent measures of prognosis after ACS
that can all be obtained in a single imaging procedure and cannot be assessed equally with
other imaging modalities. A potential role for CMR may thus be to offer an improved
method for risk stratification in the early post ACS period.
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Future perspectives
Owing to ongoing technological advances (faster gradients, multi-channel receiver coils,
transform coding to accelerate data acquisition) scan times for many CMR methods continue
to be shortened. Until now, this development has usually been invested into obtaining higher
quality images (e.g. better spatial resolution, better temporal resolution, better signal to noise
ratio). However, given the image quality achieved today, future improvements of imaging
speed are likely to be reinvested into shortening scan time for a given CMR method. This
speed up can be used to evaluate more patients per time for chronic disease, but also to
answer numerous questions within a single short setting for patients with acute coronary
syndromes. A likely scenario for MR imaging in these patients will resemble one of the
current utilizations of CCT in patients with chest pain– the triple rule out of pulmonary
embolism, aortic dissection and myocardial infarction in a single imaging session. Such an
approach would look at wall motion abnormalities, edema and resting perfusion first, then
use a higher bolus of contrast agent for a time resolved 3D angiography which allows
assessment of the anatomy of the pulmonary arteries and the aorta within a single scan and
the final assessment of late gadolinium enhancement to visualize scar tissue.

In vivo MRI of advanced plaques in human carotid arteries using contrast-enhanced
techniques has identified lipid core with 85% sensitivity and 92% sensitivity93. In addition,
thin and ruptured plaques can be identified in vivo by MRI in a high proportion of patients
in whom it was subsequently identified on examination of post-atherectomy specimens94.
Improving methods95-97 and the introduction of 3-Tesla clinical imaging98 raise the
possibility that in the near future such techniques may be applied to the coronary arteries.

More specific techniques to visualize activation within a plaque using targeted (molecular)
contrast agents could be used as a potential predictor of plaque rupture, with the potential for
identification of specific disease processes in vivo. This has already been demonstrated in
animal models for fibrin specific contrast agents, which allow the highlighting of ruptured
plaques and thrombosis within the coronary arteries99, 100. Similarly, contrast agents
designed to show earlier processes of plaque vulnerability such as myeloperoxidase
activity101 and macrophage activation102,103 have been applied in animal models If
translated into clinical application, the ability to assess non-invasively plaque activity may
overcome a major limitation of the current practice of cardiology.

Which patient with ACS should undergo CMR imaging?
• In patients presenting with suspected ACS but no angiographic evidence of

coronary artery stenosis, CMR can contribute to the differential diagnosis of ACS
from other acute myocardial diseases such as myocarditis.

• In low risk patients presenting with suspected ACS, an early stress-perfusion CMR
scan can be considered as an alternative non-invasive stress test to risk stratify and
discharge patients.

• Patients with established myocardial infarction may undergo CMR following
diagnostic angiography to determine of the degree of myocardial necrosis and
likelihood of recovery to plan further revascularization strategies.

• Post-AMI, CMR may also be used to risk stratify patients using LV ejection
fraction, infarct size and characteristics and RV involvement. Based on these data,
high-risk patients, for example, with poor ventricular function and a large scar
burden can be selected for ICD implantation.
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• A CMR protocol for these clinical scenarios that follows the recent
recommendations of the Society of Cardiovascular Magnetic Resonance104 is
given in Figure 1b.

Conclusions
CMR imaging is emerging as a versatile diagnostic tool for the management of the patient
with suspected or established ACS. It provides additional information over other clinical
tests for the detection, differential diagnosis and prognostication after ACS, owing to the
high spatial definition and multi-modal data it provides. Future larger studies will determine
more fully the role of CMR in the setting of ACS.
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Figure 1.
Figure 1a. CMR methods for assessment of ACS. The figure shows short axis views (of
different patients) illustrating the different imaging techniques used, their morphological
correlates main clinical application.
Figure 1b. These methods can be integrated into a suggested CMR protocol that provides a
comprehensive assessment of ACS patients and can be performed in less than 1 hour. Gd =
gadolinium.
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Figure 2.
Diastolic (A) and systolic (B) frame from a cine CMR study acquired at the mid-ventricular
level in short axis orientation in a patient with a recent anterior wall acute STEMI. The
arrows in B demonstrate the akinetic anterior wall with no systolic thickening compared to
the other myocardial segments. Panel 1C is an early gadolinium enhancement image taken 2
minutes after injection of a gadolinium-containing contrast agent and shows a large region
of MVO (dark areas) in the anterior wall. The late gadolinium enhancement image acquired
15 minutes after contrast application in panel 1D shows an extensive region of infarction as
demarked by the bright white regions of hyperenhancement with a core of MVO still visible.
Such extensive transmural infarction with a high burden of MVO suggests that functional
recovery in this region is unlikely.
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Figure 3.
CMR images taken 24 hours after primary percutaneous intervention in a patient with a
lateral STEMI. Panel A shows the T2 weighted images revealing a large area of edema that
represents the region of “threatened myocardium” and is clearly larger that the area of late
gadolinium enhancement shown in panel D. Resting first pass perfusion in Panel B shows a
region of microvascular obstruction in the subendocardial region at the infarct core that
closely correlates with the early gadolinium enhanced images (panel C).
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Figure 4.
CMR images from a 49 year-old female presenting with chest pain and breathlessness.
Cardiac serum biomarkers were raised and an ECG showed widespread T wave inversion.
Coronary angiography showed normal coronary arteries with no evidence for coronary
atheroma. CMR shows a regional wall motion abnormality predominantly in the inferior
segments (panel A diastole, panel B systole). Late gadolinium enhancement images (panel
C) show extensive epicardial hyperenhacement in the inferior and near transmural
enhancement in the lateral segments. Based on all available results, a clinical diagnosis of
myocarditis was made. The patient declined cardiac biopsy.
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Figure 5.
CMR images from a 52 year old female presenting with an episode of severe chest pain
associated with marked anterior ST elevation and raised serum biomarkers. Coronary
angiography revealed normal coronary arteries with no atheromatous disease. An LV
angiogram showed a marked apical wall motion abnormality, raising the suspicion of Tako-
Tsubo syndrome. CMR confirmed the typical diastolic apical “ballooning” on cine images
(panels A and B) and absence of scar on late gadolinium enhanced images (panel C).
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Figure 6.
CMR images from a patient with previous stents to the RCA and LAD 2 years earlier who
presented to the emergency room with troponin-negative chest pain. CMR was performed
within 24 hours of admission. Panel A shows inferior and anterior ischemia on adenosine-
stress perfusion imaging. Panel B shows late gadolinium enhanced images with a region of
subendocardial gadolinium enhancement in the inferior wall suggesting old myocardial
infarction that was not previously known about. T2-weighted images were normal (not
shown). Subsequent coronary angiography revealed tight in-stent restenosis in the RCA and
significant flow-limiting disease in the LAD (panel C) as assessed by a pressure wire during
hyperaemic conditions (fractional flow reserve 0.69). Both lesions were stented successfully
and the patient was discharged home.
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Figure 7.
CMR images in four-chamber orientation from a patient with previous antero-septal
myocardial infarction. The diastolic frame from a cine CMR study (panel A) shows thinning
of the interventricular septum with a mass lesion at the endocardial surface (arrow). Early
gadolinium enhanced images (panel B) show that the lesion does not take up contrast. Late
gadolinium enhanced images (panel C) delineate the extent of myocardial infarction (black
arrow) as hyperenhancement and show that the lesion remains unenhanced (white arrow),
suggesting a left ventricular thrombus.
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Figure 8.
CMR images from a patient with acute non-ST elevation myocardial infarction, evidenced
by a rise in cardiac enzymes and widespread ST segment changes on an electrocardiogram.
Invasive coronary angiography revealed three vessel coronary artery disease with an
occluded proximal right ventricular branch of the right coronary artery. A cine CMR image
in diastole (panel A) shows a subtle wall motion abnormality in the anterior right ventricular
free wall (arrow). The T2-weigthed image (panel B) shows high signal in this area with
corresponding high signal on the late gadolinium enhanced image (panel C). There is no
evidence for scar in the left ventricle, suggesting isolated right ventricular infarction.
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