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Abstract
We investigated the ability of humans to optimize face recognition performance through rapid
learning of individual relevant features. We created artificial faces with discriminating visual
information heavily concentrated in single features (nose, eyes, chin or mouth). In each of 2500
learning blocks a feature was randomly selected and retained over the course of four trials, during
which observers identified randomly sampled, noisy face images. Observers learned the
discriminating feature through indirect feedback, leading to large performance gains. Performance
was compared to a learning Bayesian ideal observer, resulting in unexpectedly high learning
compared to previous studies with simpler stimuli. We explore various explanations and conclude
that the higher learning measured with faces cannot be driven by adaptive eye movement strategies
but can be mostly accounted for by suboptimalities in human face discrimination when observers are
uncertain about the discriminating feature. We show that an initial bias of humans to use specific
features to perform the task even though they are informed that each of four features is equally likely
to be the discriminatory feature would lead to seemingly supra-optimal learning. We also examine
the possibility of inefficient human integration of visual information across the spatially distributed
facial features. Together, the results suggest that humans can show large performance improvement
effects in discriminating faces as they learn to identify the feature containing the discriminatory
information.

Introduction
Perceptual learning, whereby humans are able to improve their performance for perceptual
tasks via practice, is a well-documented phenomenon (Goldstone, 1998; Gilbert, Sigman &
Crist, 2001; Fine & Jacobs, 2002). Most work has investigated this learning for low-level
feature properties, such as orientation (Ahissar & Hochstein, 1997; Matthews, Liu, Geesaman
& Qian, 1999), frequency (auditory, Hawkey, Amitay & Moore, 2004, and visual, Fiorentini
& Berardi, 1980), textural segregation (Karni & Sagi, 1991; Karni & Sagi, 1993), and motion
(Ball & Sekuler, 1982; Ball & Sekuler, 1987), to name a few. Studies suggest multiple
possibilities for the genesis of this performance improvement, including tuning of basic sensory
neurons early in the perceptual stream (a bottom-up effect; Saarinen & Levi, 1995; Li, Levi &
Klein, 2004), increase in gain (i.e., stimulus enhancement; Dosher & Lu, 1999; Gold, Bennett
& Sekuler, 1999), reduction of internal noise (Dosher & Lu, 1998; Lu & Dosher, 1998), re-
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weighting of visual channels (Dosher & Lu, 1998; Shimozaki, Eckstein & Abbey, 2003) to
enhance task-relevant features and locations, and top-down attentional mechanisms (Ahissar
& Hochstein, 1993; Ito, Westheimer & Gilbert, 1998; Gilbert et al., 2001), thus freeing
computational constraints and reducing extraneous sources of noise.

Common to many of the sensory tuning and channel re-weighting mechanisms is the concept
that the human perceptual system amplifies relevant information (the signal of interest) while
suppressing irrelevant information (i.e., ambiguous data from irrelevant features).

Classic work by Eleanor Gibson has described how performance improvement in perceptual
tasks is mediated by the observers’ ability to reduce the uncertainty about which features are
relevant for the visual task (Gibson, 1963). Dosher and Lu present an account of this utilization
improvement (1998). Their study demonstrates that a selective weighting of channels (e.g.,
enhancing or ignoring responses from neurons excited by specific, narrow frequency bands)
can account for performance gains in a simple orientation discrimination task. This gain is
attributed to a drop in additive internal noise through the reduction of contributing visual
channels coupled with an enhancement, or narrowing, of a relevant perceptual filter or template.

In previous work we have pursued studying the process of feature re-weighting with
computational approaches. In particular, we have developed a paradigm (Eckstein, Abbey,
Pham & Shimozaki, 2004; Abbey et al., 2008) that allows us to systematically quantify how
well human performance in a visual task improves relative to an ideal observer as humans
discover which is the discriminating feature(s) from a set of many possible features (e.g.,
orientation, spatial frequency, contrast polarity, etc.).

Humans are also able to learn perceptual tasks involving more complex, higher-dimensional
stimuli comprising an assortment of low-level features in a proficient manner. Anyone who
has purchased a new set of luggage can attest to the difficulty of picking out their bags from
the bedlam found at the airport baggage claim fracas. Initially, identifying our luggage might
be quite difficult among the similar bags. Yet, after a modest amount of experience we may
start to notice that our bag’s green handle and iridescent logo are somewhat rare among the
otherwise nondescript (with regards to our selected visual features) brown lumps. As we
develop more and more experience our ability to quickly and accurately spot our bag, with its
distinguishing relevant feature, improves.

Here we investigated such a learning process with the ubiquitous yet complex set of stimuli
comprising human faces. In order to measure these effects we implement the recently devised
technique of the optimal perceptual learning (OPL) paradigm (Eckstein et al., 2004; Abbey,
Pham, Shimozaki & Eckstein, 2007). Previous studies have shown humans are able to quickly
learn to use task-relevant features to aide performance, with learning manifesting after a single
trial. The essence of this paradigm is a task, such as localization of a bright bar, which can be
performed more efficiently when a specific feature, such as the bar’s orientation, is attended
to. Initially, the observer must complete the task without any prior knowledge as to the
characteristics of a possibly useful feature. However, with feedback he or she can ascribe more
“weight”, or a higher probability, to certain features of the visual scene. For instance, the
observer can use location feedback to calculate the evidence for the target bar being of a certain
orientation by comparing the data at the true location with bars of varying angles.

Unlike oriented Gaussian bars (Eckstein et al., 2004; Abbey et al., 2007) and letters (Eckstein
et al., 2003), faces, like extreme versions of our orphaned luggage, are naturally intricate
structures. Multiple complex features (e.g., eyes), themselves constructed from multiple lower-
level features (e.g., contrast, frequency, orientation), are located and oriented according to a
distinct configuration. Also, human faces are much more natural stimuli. Studying people’s
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learning and potential bias for identifying such objects may lead to different and interesting
patterns of results compared to simpler, more artificial stimuli.

The theory and rationale of the ideal learner
A consistent increase in performance from trial to trial certainly implies a learning effect.
However, it does not tell us how well, or efficiently, the observer has improved. The task’s
stimuli may be inherently easier or more difficult to learn. Imagine a task where the observer
is asked to locate a square among a large array of distracting pentagons. For each trial the color
of the square remains constant while the pentagon colors are allowed to randomly vary
(including the square’s assigned color). If the color is highly salient it is easy for an observer
to inspect the location indicated by feedback and deduce the relevant color. A human would
learn this task very well and very quickly. It is obvious, though, that this is an effect of the
stimulus. We are really interested in the human’s perceptual and decision mechanisms and
their efficiencies independent of task difficulty. Thus, we implement an ideal observer analysis
(Burgess, Wagner, Jennings & Barlow, 1981; Liu, Knill & Kersten, 1995; Eckstein et al.,
2004) to compare how well a human performs and learns a task against an absolute maximum,
or standard. If a hypothetical task A is easy to learn, the ideal observer will quickly improve
performance. A human must also increase performance quickly or lose ground to the ideal
observer. In that case, the human has learned a lot, but not as much as he or she could have
learned. On the other hand, there might be another task B in which human observers learn less
than in task A but in which human learning is comparable to the ideal observer’s learning.

Thus, comparisons of human vs. ideal learning using efficiency measures can isolate human
ability to learn from the inherent properties of the task.

In this paper we will explore if indeed humans can quickly learn to use discriminating features
for a complex visual stimulus such as a face and compare the pattern of learning to that
measured with simpler stimuli. Some researchers have termed humans “face experts” (Gauthier
& Tarr, 1997; Kanwisher, 2000); here we see how efficient people actually are at using
available evidence. With years of near-constant exposure to faces do humans develop specific
learned strategies for face recognition? We will see if these strategies appear in the data, and,
if so, can people efficiently learn to use an adaptive strategy given appropriate evidence.

Theory
Optimal perceptual learning paradigm (OPL)

We conducted the study using an optimal perceptual learning (OPL) paradigm (Eckstein et al.,
2004). For the purposes of this paper we shall define some terminology. A “feature set” is the
collection of all exemplars (faces here) that are maximally discriminated by the same feature.
For instance, all faces in the “nose set” contain the vast majority, though not all, of their
identification evidence within a distinct nose region. A “learning block” is defined as a short
set of consecutive trials, called learning trials, consisting of stimuli culled from a single feature
set.

At the onset of each learning block a discriminating feature is randomly selected. Before each
learning trial, one of four faces is randomly sampled from the chosen feature set. The face is
embedded in white Gaussian noise and displayed to the observer. At the conclusion of a
learning trial, the observer identifies which face he or she saw by selecting from the possibly
presented faces (Figure 1). Performance is measured in terms of percent correct identification.
While the observer selects both the identity and the feature, only the identity factors into
performance.
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Ideal Observer for the OPL paradigm
The ideal observer computes the probability of a specific face (or target) being the one randomly
selected for the trial given the observed (noisy) data. By comparing these probabilities and
choosing the maximum the ideal observer is using a Bayesian decision rule to optimally identify
the underlying identity.

Thus, on each trial the ideal observer computes the posterior probability of identity i being the
displayed face given the observed image, g, denoted as P(i|g). We can compute this probability
through Bayes’ rule (Peterson, Birdsall & Fox, 1954; Green & Swets, 1966), which states:

(1)

Here, P(g|i) is the probability of observing the data, g, given the underlying face presented
corresponded to identity i. This is often called the likelihood, l. P(i) is the prior probability of
the face with the ith identity being present. Since the faces were randomly selected with equal
probability, P(i) is constant across identities (P(i)=0.25). P(g) is the probability of observing
the data, which does not change across possible identities and thus can also be taken as 1. The
problem simplifies to computing the likelihoods for each identity given the observed data and
choosing the maximum.

We are left with computing and comparing likelihoods for each of the I possible identities (I
= 4 in the current study). Recall, though, that the face is a selection from a subset of all possible
faces; namely, from one of the J possible feature sets (J = 4). Therefore, the ideal observer can
preferentially weight the likelihoods from different feature sets based on past observations
since it knows that a single feature set is used throughout a learning block. This leads to a
weighted sum of likelihoods (SLR). The ideal observer computes individual likelihoods for
each of the J templates associated with an identity. It then multiplies each likelihood by its
corresponding prior probability, πj, and sums across these weighted likelihoods, as illustrated
by

(2)

Here, ℓi,t,j is the likelihood of identity i on learning trial t for feature set j. πj,t is the weight
ascribed to feature set j for the tth trial (the prior). On trial t the ideal observer selects the largest
SLRi,t as its best estimate for the displayed identity.

Recall each stimulus consists of an additive combination of a 256-level grayscale face and
white Gaussian noise. In this case the likelihood for each template is (Peterson et al., 1954)

(3)

with si,j representing a column vector which contains the template of the ith identity in the jth
feature set (the two-dimensional picture is linearly re-indexed into a one-dimensional vector).
Similarly, the column vector gt represents the data (the observed stimulus) on trial t. Ei,j is the
energy of the ith identity in the jth feature set (Ei,j=si,jTsi,j; here, we equalized the energies
across templates). Also, σ is the standard deviation of the noise (in levels of gray) at each pixel.
Figure 2 shows a diagram of the ideal observer decision process.
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Now we need to compute the weights (or prior probabilities) for each trial for each feature set.
The weights are identical on the first trial since the relevant feature set is chosen at random.
At the conclusion of each trial the observer is given feedback as to the identity of the stimulus,
which we will call ip for identity present. The ideal observer, utilizing its perfect memory,
modifies these weights for the next trial, t+1, according to the likelihood (already computed
above) of feature j being true given identity i was shown on trial t:

(4)

Figure 3 shows a diagram of the prior updating process. Across the four learning trials, on
average, the ideal observer places more and more weight on the relevant feature. On average
(across trials), the likelihood of the correct feature is greater than the likelihoods for the
irrelevant features for the given identity. Figure 4 displays a progression of prior probabilities
across learning trials for an example feature (the nose in this case) and averaged across many
learning blocks.

Ideal observer analysis: Threshold energy and efficiency
We define the contrast energy of a signal as:

(5)

where SSave is the sum of the squared average pixel values for all templates, A is the area of a
pixel in degrees2, T the stimulus’ display time in seconds and C the contrast of the image.

Following a classic definition of efficiency (Barlow, 1980; Abbey, Eckstein & Shimozaki,
2001), we define an observer’s efficiency for feature j on trial t as:

(6)

Eobs is the observer’s contrast energy (held constant through all trials) and EIO(PCj,t) is the
contrast energy necessary to equate the ideal observer’s proportion correct to the observer’s
for feature j on trial t. This is also called the threshold energy. The efficiency gives us a measure
of how well the observer is utilizing the available discriminatory information.

There are several ways in which a human observer’s efficiency relative to the ideal observer
can change over the course of a learning block. Note, that we are interested in changes in
efficiency across learning trials which is distinct from the initial level of absolute efficiency.
A low initial task absolute human efficiency does not preclude a significant efficiency decrease.
For example, if the human does not improve performance across a learning block and the ideal
observer does, the human efficiency will decline across learning trials irrespective of the initial
absolute efficiency. Figure 5 illustrates a few possible scenarios. The black line shows the ideal
observer’s performance given the contrast level that leads to some (arbitrary) trial 1 proportion
correct. This line also represents the performance of an observer who matches the ideal
observer’s performance (with the lowered contrast) on each learning trial. By definition this
observer’s efficiency stays constant. An observer who displays a learning signature like this is
said to be a “complete learner”. On the opposite end of the spectrum is the red line. This “non-
learner” shows flat performance across learning trials, leading to a precipitous efficiency loss
when compared to the ideal observer’s Bayesian prior updating. The green line represents a
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“non-complete learner”, an observer whose performance increases but not as much as that of
the ideal observer. In general, we would expect most learning signatures to share these major
features of a non-complete learner’s learning profile. The orange line represents the case of an
observer who learns as much as the ideal observer, but at a slower pace. Finally, we have the
blue line, representing an “over-complete learner”. This is an observer who exceeds “ideal
learning” by actually out-learning the ideal observer. A situation like this would require a
careful investigation and explanation, as the observer is clearly doing something more than
just prior updating.

Methods
Stimuli

One of the major difficulties with face perception psychophysics is lack of control over the
stimuli. This becomes especially problematic when we implement an ideal observer model
which uses information at each pixel in an image perfectly. A small discrepancy (by human
standards) between template and signal in a region with which we are not concerned can greatly
affect the ideal observer’s identification performance. This can lead to mislocalization of
diagnostic information.

We wanted to confine discriminating information to specific regions of the face; namely, the
nose, eyes, mouth and chin. In order to control for the discriminating information across the
features we opted to use the commercial software program FaceGen (Singular Inversions,
Vancouver, British Columbia), which allowed us to change individual features on synthetic
faces. Granted, the exact definitions and boundaries of these common features are somewhat
arbitrary and ill-defined. In order to decrease ambiguity we selected and changed two distinct
parameters for each feature (Eyes: size, distance between; Nose: bridge length, nostril tilt;
Mouth: width, lip thickness; Chin: width, pointedness). The feature parameters were not
completely independent, with some information “leaking” away from the region of interest.
The dispersion was not egregious though, as we shall see shortly.

We started the stimulus-creation operation with a single “base face”. We then created 16
distinct stimuli arranged into four “feature sets” (nose, eyes, mouth and chin), each containing
four distinct identities (Al, Bill, Carl and Dave; See Figure 6). For example, the nose set
consisted of four faces which were identical except for the nose region. Each face was
standardized for the same external size and shape. We lowered these faces’ contrast and
embedded them in zero-mean, 20 gray-level (3.9 cd/m2) standard deviation white Gaussian
noise for presentation. An identity was defined as a simple linear combination of the individual
features (the base face with all four features changed).

In order to measure the efficacy with which we confined the diagnostic discriminating
information to specific spatial regions, we also created a separate set of “blocked” templates.
We masked non-overlapping regions with black boxes, eliminating the visual information.
Each of the original templates could have an associated eye, nose, mouth or chin mask (Figure
7).

Experiment
Images were displayed on an Image Systems M17LMAX monochrome monitor (Image
Systems, Minnetonka, MN) set at a resolution of 1024 by 768 pixels. A linear gamma function
was used to map gray levels to luminance (256 levels of gray, 0-50 cd/m2 luminance range).
Images were 400 by 400 pixels with a mean luminance of 25 cd/m2. Observers were kept 50
cm from the display, leading to each pixel and each image subtending 0.019 degrees and 7.68
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degrees of visual angle, respectively. We ran the experimental program using MATLAB (The
MathWorks, MA) and the PsychToolbox (Brainard, 1997).

Three human observers (MP, WS and RL; one female, aged 20-24 years with normal or
corrected to normal visual acuity) participated in the study. Each participant completed an 800
trial training session followed by two distinct sections.

The first experiment focused on evaluating how well we were able to contain the diagnostic
information to desired regions of the face. Observers participated in 32 sessions of 200 trials
each, leading to a total of 6,400 trials (and, on average, 320 trials per data point). Each session
sampled templates from a single feature set. Mask location was also randomly sampled (nose,
eyes, chin, mouth or no mask). The observer started each trial by clicking a mouse button. An
image (a combination of face, mask and noise) was displayed in the middle of the monitor for
two seconds, after which he or she selected one of the four templates (displayed at the bottom
of the screen, unlimited response time) comprising the current feature set. Feedback was then
given regarding the true displayed template.

The second experiment utilized the aforementioned OPL paradigm. Observers participated in
50 sessions of 50 learning blocks each, which were further subdivided into four learning trials
per block, leading to a total of 10,000 trials (and, on average, 625 trials per data point). Again,
observers initiated each trial with a mouse click. A feature set was randomly sampled for each
block, and an identity was randomly sampled from that feature set for each trial. An image (a
combination of template and noise) was displayed in the middle of the monitor for two seconds,
after which he or she selected one of the 16 templates (with unlimited response time). Feedback
was given as to the identity.

Model simulations
Ideal observer analysis was run using MATLAB. We simulated 1,000,000 Monte Carlo trials
per data point. The images were the same as in the human design except with varied contrast
levels. Decision rules followed Equations 1 through 4.

Results
Blocked features

Mean identification performance across the three human observers as well as for the ideal
observer (both measured in proportion correct) and the mean efficiency results for the masked-
features experiment are shown in Figure 8. Within each feature set, human performance on
trials where the relevant feature was blocked was significantly reduced from all other masking
conditions. Figures 9 and 10 show individual subject data, displaying general consistency
across observers. Again, when the relevant feature was blocked human performance was
severely impaired (with the exceptions of WS, where blocking the eyes (p=.93), chin (p=.056)
or the mouth (p=.12) in the nose set was not significantly different from blocking the nose, and
RL, where blocking the eyes (p=.18) in the nose set produced similarly insignificant
performance changes; otherwise, blocking the relevant feature decreased performance at p<.
001; Figure 9 and Table 1 in the Supplementary Material). Indeed, performance on these
conditions was not significantly different from chance (p>.1, again with WS causing an
exception whereby we could marginally reject the null hypothesis of chance performance, p=.
04, when the nose was blocked in the nose set; Table 1 in the Supplementary Material). While
the ideal observer’s performance dropped significantly under these conditions compared to
other masking locations, it did not fall to chance levels, leading to extremely low human
efficiencies (Figure 10). However, the ideal observer did suffer the greatest performance drop
when the relevant feature was blocked while falling only slightly in performance when an
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irrelevant feature was blocked. Thus, we were able to confine almost all of the discriminating
information to the feature of interest (Figure 8a). Also, the nose set contained the most
information according to the ideal observer, yet humans performed poorly in this condition.
The mouth set, however, contained the least information yet led to consistently high human
performance. These results show observers process information efficiently in the mouth region
and inefficiently in the nose region.

Learning
Figure 11 displays ideal observer performance at a set contrast level (lower than that used for
the human trials in order to set performance at a commensurate level for display purposes)
across learning trials. Feature-specific performances represent blocks where stimuli were
drawn from the corresponding feature set. Overall performance is simply the average
performance across all conditions for a given learning trial.

Figure 12 shows raw performance for each observer. Learning (measured as the difference in
PC from first to fourth trial) was significant for all observers and all features (p<.001, with the
exception of RL, who showed reduced yet still highly significant learning for the chin set (p=.
02) but no significant learning for the nose set (p=.41); see Table 2 in the Supplementary
Material).

The ideal observer results show directly that the feature sets were not homogenous in their
available information; indeed, faces in the nose set were the easiest to discriminate, followed
by the eyes, chin, and mouth. However, this rank order did not hold for humans, implying non-
ideal, non-uniform processing and/or identification strategies for different features. This can
be quantified and clarified through the measure of efficiency.

Efficiency
Efficiency across learning trials, shown in Figure 13, varied across features and observers. This
follows directly from the varying performance levels exhibited in Figures 11 and 12. Changes
in efficiency between the first and fourth learning trials, measured as the ratio between
efficiency change and the efficiency on trial 1, ranged from losses of 19% to gains of 68% (see
Table 3 in the Supplementary Material). These trends were highly idiosyncratic, with one
observer displaying only gains, another only losses, and a third with both gains and losses.
While the absolute changes in efficiency varied considerably, some clear trends emerged. In
general, efficiency was highest when the mouth and eyes were relevant.

Discussion
Efficiency of learning faces vs. simple stimuli

In previous OPL studies (Eckstein et al., 2004; Abbey et al., 2007) stimuli were small and
simple, with exemplars differing along few dimensions (e.g. orientation, spatial frequency,
contrast, etc). Although human performance improved across learning trials the efficiency
dropped from trial 1 to trial 4. We define the overall change in efficiency from trial 1 to trial
4, Δη, and the normalized change in efficiency, Δη0 as:

(7)

(8)
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Eckstein et al. 2004 found an average Δη0 across four learning trials for an oriented Gaussian
bar localization of -23.3%, while Abbey et al., 2007 observed an average Δη0 of -24.7% for a
similar task

In the current study the stimuli were decidedly not simple. Each image contained four possible
widely spatially distributed feature regions. Each feature in itself was visually large and
complex. The gathering, processing and analyzing of the visual information offered by the
faces requires a larger assortment of neural mechanisms than those needed for Gaussian blobs,
Gabors and other comparable stimuli. Indeed, these simpler “objects” have correlates in the
early stages of visual processing that can be approximated as linear detectors (Hubel & Wiesel,
1962,1968), minimizing the need for computing sub-ideal, non-linear combinations of
information from multiple independent detectors.

In order to see how well humans learned this task, overall, compared to an optimal learner we
will first look at raw performance. Figure 14 shows learning signatures for each human observer
collapsed across feature conditions. For comparison we have added the results from ideal
observer simulations where the contrast has been set so as to match the human’s performance
on trial 1. Surprisingly, individuals are able to match and even surpass the optimal learner’s
improvement. This can also be seen as changes in efficiency in Figure 15.

Remarkably, efficiencies either dropped only slightly (RL; Δη=-0.08%; Δη0=-0.17%; p=.018
one-tailed), remained essentially constant (WS; Δη= -0.03%; Δη0=-0.05%; p=.98 two-tailed),
or actually improved (MP; Δη=+0.19%; Δη0=+0.34%; p=.001 one-tailed) (see Table 3 in the
Supplementary Material).

Why is this result surprising? It says that humans are able to match or surpass an ideal observer’s
learning given their starting (trial 1) performance. This is in stark contrast to the aforementioned
OPL studies with simple stimuli where efficiencies invariably dropped between each
successive learning trial.

Indeed this is expected to be a hallmark of such a paradigm: the ideal observer learns ideally.
The question that follows, then, is what is mediating the dichotomy in efficiency across simple
and face stimuli?

A potential conclusion is that the relatively stable or increasing efficiency with faces vs. simpler
Gaussian blobs or letters is related to specialized neural mechanisms in the human brain (e.g.,
the fusiform face area) dedicated to the evolutionary importance of face recognition. While
possible, there are a number of alternative explanations related to visual processing that we
consider:

1. Adaptive eye movement strategies

2. Differential feature-specific internal noise

3. Inappropriate bias in trial 1 to certain features

4. Inefficient integration of information across facial features in trial 1

The hypothesis related to eye movements is tested with a supplementary control study while
the internal noise and inappropriate initial bias hypotheses are evaluated using computational
modeling. Finally, the inefficient integration of information explanation is discussed in the
context of previous results and a subset of our blocked facial features data.

Eye movements
Studies have shown normal human fixations concentrate on the eye and, to a lesser extent, the
mouth regions during face recognition tasks (Dalton et al., 2005; Barton, Radcliffe,
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Cherkasova, Edelman & Intriligator, 2006). This strategy, applied to the foveated human visual
system, may be a component of sampling inefficiency at the beginning of learning blocks.
Recall, the ideal observer model does not have a fovea; rather, every pixel is sampled and
processed equally regardless of spatial position. Conversely, humans must move their eyes
about the stimulus to compensate for the lower information resolution in the periphery. If
human fixations become more concentrated around the feature of interest across learning trials
one would expect performance improvements related to the improved foveal sampling of the
stimuli. Thus, the current ideal observer cannot capture improvements due to improved foveal
sampling.

We tested this hypothesis with a control study using two observers (MP from the first study
and a new, naïve observer, IC, a 22 year old male with normal acuity). The paradigm was the
same as in the main learning study, but now the observers were forced to either fixate on the
upper portion of the face (halfway between the eyes, midway down the bridge of the nose) or
the lower portion (between the tip of the chin and the center of the mouth). One of these two
fixations was randomly sampled before each learning block and kept through the four learning
trials. The image was displayed for 250ms during which eye movements were prohibited (the
image was the same as used in the main study except with a decreased noise amplitude, standard
deviation of 15 gray levels or 2.93 cd/m2, to compensate for the shorter viewing time).

The results from this study, summarized in Figure 16, show little support for the hypothesis
that an improved fixation strategy can account for the pronounced human improvement. With
the previous results from the main perceptual learning study shown as a reference we can see
that even when eye movements are precluded human observers displayed a significant increase
in efficiency across learning trials. Moreover, the main study incorporated a two second display
time, allowing observers to foveally sample the entire face image (verified through self-
reports). While the current results do not allow us to rule out the possibility that adapting eye
movement strategies can be a source of enhanced human learning, we can safely say that eye
movement strategies cannot fully account for the high learning of humans in this paradigm.

Initial bias towards features
Aside from being more visually complex, faces are also more natural, familiar stimuli. More
importantly, the face recognition task itself is performed many times a day effortlessly, rapidly,
and reliably. It would not be unreasonable to expect this lifetime of experience to foster task-
specific strategies; specifically, strategies honed through exposure to certain faces. This
preexisting experience could lead to two possible confounding issues: a tendency to more
heavily weight information from features which have been found to be reliable for face
recognition in everyday life, and differential processing efficiency for different features due
to disparities in amount of experience or inherent properties of the brain. Could either, or both,
of these scenarios help explain the large measured human learning effects?

Recognizing bias—First we must ask if there is an indication of bias in the data. We define
feature bias, FB, for feature j on trial t as:

(9)

Here, NRobs,j,t is the number of times the human observer selected templates from feature set
j on trial t, while Nobs,j,t represents the number of times the relevant feature was j on trial t. We
apply the same calculation to the ideal observer. If an observer responds with a feature more
often than that feature was actually presented, we may be tempted to call this a bias. However,

Peterson et al. Page 10

Vision Res. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



we need to compare this to an ideal observer’s results since this over selection may be due to
the stimuli (that is, if the signals from one feature set are inherently more discriminating, or
contain more evidence, the ideal observer will tend to select templates from this set more often
even for the equalized feature prior probabilities for trial 1).

Figure 17a shows the ideal observer’s response frequency relative to the display frequency for
trial 1. This “bias” is actually a product of the varying information in the stimuli as explained
above and not the priors. This selection disparity is attenuated as the prior probabilities are
updated across learning trials: the asymptotic drive toward complete certainty of the relevant
feature dominates any one set’s preponderance of visual sensory evidence. The mistakes by
the ideal observer become driven solely through uncertainty of the identity within the relevant
set, and thus the most heavily contributing template to the final decision is increasingly likely
to be a member of this group.

Humans display a much different pattern (Figure 17b). Controlling for stimulus effects as per
Equation 9 leads to human feature bias (trial 1 displayed in Figure 17c). The results are clear
and strikingly consistent: humans are biased away from the nose, towards the eyes and mouth,
and are essentially agnostic toward the chin. Next, we consider two ideal observer models with
built-in human biases and the effects on learning. The human-biases in the ideal observer were
simulated by using differential internal noise for each feature (Ahumada, 1987) and
inhomogeneous initial priors across features.

Differential noise ideal observer—The first model we will consider is an ideal observer
that encounters different levels of noise dependent on the relevant feature of the stimuli. In
human terms, this corresponds to varying amounts of additive internal noise. Due to its additive

nature we can supplant the ideal observer’s noise variance term for feature j, , as such:

(8)

The total noise level of a signal when feature j is relevant is a sum of the constant external
noise level (standard deviation of 20 gray levels) and an internal noise level conditional on the
feature of relevance. In order to set these internal noise levels we used a steepest descent
optimization algorithm (Nocedal & Wright, 1999). We used four free parameters (σnose,
σeyes, σchin, and σmouth) to minimize the difference between the ideal observer’s proportion
correct on the first trial for each feature set and that of the human observers. We then allowed
the ideal observer to perform the task as usual, updating prior probabilities in an ideal Bayesian
manner, while keeping the differential noise levels constant throughout the learning blocks.

Looking at Figure 18 one result becomes immediately apparent: overall learning, defined here
as the difference in performance between trials 1 and 4 collapsed across features, is, if anything,
slightly decreased by differential noise. Learning with individual feature sets can change, but
the increased learning of the lower noise conditions is more than offset by the decreased
learning of the higher noise conditions. More learning is expected with lowered noise levels
as stimulus evidence is stronger and thus the updating process is faster. It is also not surprising
to find overall learning relatively unaffected: here, the non-ideality is the noise which remains
unchanged across learning trials. Indeed, a more complicated model whereby the additive
internal noise evolves across trials is quite possible but not explored here.

Inhomogeneous priors ideal observer—It is possible that humans give different weights
in the decision process to different feature sets. If, in the humans’ vast real-world experience,
some features are generally more informative than others, it is entirely reasonable to expect a
biased decision strategy which capitalizes on this property. Indeed, humans seem to
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preferentially use eye and mouth information (Schyns, Bonnar & Gosselin, 2002) and to
predominantly fixate these features during face recognition (Dalton et al., 2005; Barton et al.,
2006). In an ideal observer framework this would translate to non-uniform prior probabilities.

We attempted to model such an observer by matching feature-specific performance on trial 1
to human data through fixing of the initial prior probabilities. In this scheme we have four free
parameters (three prior probabilities, the fourth being constrained because their sum must equal
one, and signal contrast) and four values to fit (the PCs for each feature), leading to a unique
solution. The fitted priors and their overall progression, relative to an unbiased ideal observer,
are shown in Figure 19a. Essentially, the biased priors ideal observer “unbiases” itself through
the prior updating process: evidence tempers bias.

Does this unbiasing process affect learning? The results in Figures 19b and 19c confirm that
indeed it does. Overall learning is increased relative to the ideal observer. An ideal update
process pushes the non-ideal prior distribution toward ideal; this evidence-driven optimization
leads the biased-priors ideal observer to an inherent increased learning. Broken down by feature
(Figure 19c) we see this learning is driven by the most under-valued priors (usually the nose
and chin). This is conceptually interesting: Human supra-learning could be at least partially
explained by learning to weight, or not ignore, some features, an imperative when each feature
is equally likely to be the singularly relevant one. If humans are simply ignoring or throwing
out evidence due to misguided a priori weighting we would expect learning to be greatly
facilitated through a trend toward a more egalitarian weighting distribution. Thus, our
simulation results suggest that initial inhomogeneity of priors in humans might add to the
inefficient spatial integration of features in explaining the dramatic human improvement in
face discrimination performance.

Inefficient integration of information
On the first learning trial, observers (human and ideal alike) are unaware of the block-relevant
feature and thus are required to integrate information across the different facial features. A
possibility is that humans are inefficient at this integration process. By the fourth learning trial
observers are well aware of the relevant feature. The growing dominance of the relevant
feature’s information in the decision-making computations across learning trials minimizes the
effects of human integration inefficiency.

Tasks using small, low-dimensional stimuli tend to produce quite high efficiencies. Examples
include mirror symmetry detection of dot displays (25%; Barlow & Reeves, 1979), amplitude
discrimination of sinusoids in noise (70-83%; Burgess et al., 1981), localization of oriented
elongated Gaussians (15-27%; Eckstein et al., 2004) and detection (39-49%), contrast
discrimination (24-27%) and identification (35-55%) of Gaussian and difference of Gaussians
blobs (Abbey & Eckstein, 2006).

By comparison, tasks using complex stimuli comprised of multiple features and large spatial
extent tend to produce much lower human efficiencies. Examples include general object
recognition (3-8% efficiency; Tjan, Braje, Legge & Kersten, 1995), recognition of line
drawings (0.1-3.75%) and silhouettes (0.08-3.23%; Braje, Tjan & Legge, 1995) and, most
relevant to this study, human faces (around 0.4-2%, commensurate with our findings; Gold et
al., 1999).

There are many potential reasons why human efficiencies are lower for larger stimuli composed
of multiple feature dimensions. One of these is a human difficulty with binding information
between spatial locations and features. Indeed, there is evidence that humans are inefficient at
integrating spatially distributed information of complex stimuli. For instance, Pelli, Farell and
Moore describe a word-length effect whereby the efficiency of recognizing common words in
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noise drops as the inverse of the number of letters (e.g., 4.8% efficiency recognizing a 3-letter
word while the individual letters are recognized with 15% efficiency) (2003). This linear law
suggests a failure of holistic processing, even for such commonly encountered stimuli as words.

This difficulty with efficient integration appears in studies of face perception as well. Using a
range of Gaussian aperture sizes to selectively mask human face images, Tyler and Chen
showed that near-threshold face detection improves with increasing size in a manner consistent
with linear spatial summation up to an area roughly approximating the larger facial features.
Performance continued to improve for larger apertures, but at a decreasing rate, until the entire
central area of the face (constituting the eyes, nose and mouth) was visible, after which
performance stabilized. While the task was face detection, not identification, the evidence
points toward a deficiency in integration of visual information across larger facial features. If
this were the case in the present study, greater than optimal learning could be a product of
minimizing the effects of non-ideal integration as the human observer’s effective area of
information summation shrinks from trial to trial.

Further evidence for human inefficiency at integrating spatial information for object
recognition can be found in the blocked feature study we conducted. In the blocked sessions,
the human observers knew explicitly the feature set being sampled. This led to high
performance when the known relevant feature was visible. Essentially, the observers were cued
on the task relevant feature and thus could weight and select information at the information-
rich region. However, when the relevant feature was hidden, human performance plummeted
to chance. The ideal observer, on the other hand, could still maintain relatively high
performance, indicating that while the relevant feature possessed a high concentration of
information, other areas contained useable (but more diffuse) information as well. These results
attest to a crippling difficulty for humans relative to the ideal observer when faced with a need
to integrate information across many features and large spatial regions. Tying back to the supra-
optimal learning, as humans are able to ignore irrelevant features they perform the task by
using the information at the relevant feature which can be processed in a much more efficient
way. That is, humans reap large efficiency improvements when they do not need to integrate
information across multiple features. However, there exists the possibility that human strategy
was critically disrupted by the addition of the highly salient masks. Humans, knowing the
relevant feature, may have simply given up when that feature was removed.

In the end, the data from this study cannot firmly state the contribution of integration
inefficiencies toward the learning results. We believe further studies are needed to explore this
possibility thoroughly and rigorously. However, the previous evidence and the blocked features
study seem to hint at a human reliance on concentrated visual information and sparse feature-
coding. Though speculative, it is possible that over learning trials the task evolves into one
more easily accommodated by human visual processing strategy.

Implications for face recognition
The literature on object recognition and face recognition in particular is vast (Kanwisher,
2000; Haxby, Hoffman & Gobbini, 2000). Most studies have focused on the mechanisms
humans may use for the task. Generally this has condensed down to three main possibilities:
featural (Biederman, 1987; Carbon & Leder, 2005; Martelli, Majaj & Pelli, 2005), configural
(Diamond & Carey, 1986; Maurer, Le Grand & Mondloch, 2002) and holistic, or template-
based, processing (often mentioned in the same breath as configural; Tanaka & Farah, 1993;
Farah, Tanaka & Drain, 1995; McKone, Martini & Nakayama, 2001; Michel, Rossion, Han,
Chung & Caldara, 2006; for an overview and discussion on the definitions of these complex
concepts, see Leder & Bruce, 2000). This study was concerned with the effects of manipulating
individual features while leaving their relative configurations unchanged. We attempted to also
eliminate holistic information by constraining the regions of discriminability (the fact that
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humans could not use the information separated and dispersed from the features, as shown in
the blocked-features sessions, would actually tend to conflict with holistic theories, though the
amount of information was very small and may not have aided humans even if the same amount
of information had been completely restricted to the individual features). The consistently
higher efficiencies seen with the eye and mouth sets implies either a more effective recognition
strategy (i.e., directing more attentional weighting and gaze toward these regions), or some
inherent or experience-driven advantage given to these features in the brain’s recognition
system (such as increased gain or sharper tuning for specific features). In sum, humans can use
individual features for recognition, provided they occur within the context of a human face.
Features by themselves, divorced from this context, may lead to poor recognition performance
even though the same amount of discriminating information is available. We are planning a
study to test this possibility.

Conclusions
This study incorporated the natural, complex stimuli of human faces into a rapid perceptual
learning paradigm (OPL). Similar to simpler stimuli, such as oriented bars, humans were able
to learn which stimulus feature was relevant for identity recognition after a single trial, with
performance increasing (at a declining rate) across four consecutive learning trials. Compared
to an ideal observer, overall human efficiency was much lower than that observed in previous
studies with less complex stimuli (though consistent with published object and face recognition
efficiencies). However, across learning trials recognition efficiency did not consistently
decrease as with previous simpler stimuli showing human learning that is comparable to that
of an ideal learner. Modeling and a subsequent study controlling for eye movements suggest
that the surprisingly high human efficiency at learning to recognize faces cannot be accounted
for by eye movement strategies and might be a by-product of feature biases, as indicated by
observers’ tendencies to select faces where the mouth and eyes were the relevant feature while
avoiding the nose templates. This phenomenon might be related to observers’ experience with
gazing at the eyes and mouth of real faces in social situations, or an experience-driven
recognition strategy given the natural information distribution of real human faces. A dynamic
eye movement strategy which allows the observer to foveate the feature relevant regions as the
trials progress did not seem to be a significant source of increased efficiency. We also speculate
based on previous studies and our blocked feature study that inefficient human integration of
spatially distributed information in the initial learning trial could also be contributing to the
larger performance gains across learning trials.
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Refer to Web version on PubMed Central for supplementary material.
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