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Abstract
Urocortins, three paralogs of the stress-related peptide corticotropin-releasing factor (CRF) found in
bony fish, amphibians, birds and mammals, have unique phylogenies, pharmacologies, and tissue
distributions. As a result and despite a structural family resemblance, the natural functions of
urocortins and CRF in mammalian homeostatic responses differ substantially. Endogenous
urocortins are neither simply counterpoints nor mimics of endogenous CRF action. In their own right,
urocortins may be clinically relevant molecules in the pathogenesis or management of many
conditions, including congestive heart failure, hypertension, gastrointestinal and inflammatory
disorders (irritable bowel syndrome, active gastritis, gastroparesis, rheumatoid arthritis), atopic/
allergic disorders (dermatitis, urticaria, asthma), pregnancy and parturition (preeclampsia,
spontaneous abortion, onset and maintenance of effective labor), major depression and obesity.
Safety trials for intravenous urocortin treatment have already begun for the treatment of congestive
heart failure. Further understanding the unique functions of urocortin 1, urocortin 2 and urocortin 3
action may uncover other therapeutic opportunities.
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1. Introduction
Since the isolation of corticotropin-releasing factor (CRF) in 1981 [284], three mammalian
CRF-like paralogs have been identified. The first of these – urocortin 1 (Ucn 1) – was identified
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in 1995 for its cross-reactivity to antisera against suckerfish urotensin I, a fish peptide
structurally related to CRF and now hypothesized to be an ortholog of mammalian Ucn 1. Ucn
1 was named for its similar primary structure and bioactivity to both urotensin I and CRF
[289]. Because Ucn 1 exhibited greater affinity for and activation of type 2 CRF receptors
(CRF2) than did CRF, it was hypothesized to be a natural CRF2 receptor ligand [253,289]. Ucn
2 and Ucn 3 prohormones, subsequently identified in 2001 [113,165,226], were recognized for
their structural relation to both CRF and Ucn 1 preproteins, but named “urocortins” due to the
predominant affinity of predicted mature peptides for the CRF2 receptor. Although Ucn
peptides share moderate sequence identity with one another and with CRF, each is
phylogenetically distinct, with the CRF/Ucn peptide family resulting from multiple gene
duplication events during evolution prior to the divergence of modern vertebrate fish from
tetrapods [28,113,165]. Each peptide has a unique anatomical distribution under the control of
different genes. Consequently, despite a structural family resemblance, the natural functions
of Ucns and CRF in stress responses in vivo may differ significantly, as will be apparent in the
current review.

1.1. Structure of Ucns, CRF and Related Peptides
The rat Ucn 1 cDNA was cloned from a library constructed from mRNA extracted from a
portion of the rat midbrain that included the Edinger-Westphal (EW) nucleus in 1995 [289].
The gene codes for a 122 residue preprotein, with Ucn 1 contained in the carboxyl terminus.
The Ucn 1 genes for several fish species (pufferfish, Takifugu rubripes; carp, Cyprinus
carpio; goldfish, Carassius auratus; sucker, Catastomus commersoni; trout, Oncorhynchus
mykiss; flounder, Platichthys flesus, sole, Hippoglossoides elassodon; and zebrafish, Danio
rerio [28,36]), frog (Xenopus laevis and Xenopus tropicalis) [28], mouse [312], hamster
(Mesocricetus auratus) [230], sheep (Ovis aries) [41], capuchin monkey (Cebus apella)
[288], rhesus monkey (Macaca mulatta)(GenBank XM_001092536.1), dog (Canis
familiaris), cow (Bos taurus)(XM_618452, XM_596525) and human [81,312] also have been
cloned or predicted and found to be similar across species. The human Ucn 1 gene resides on
chromosome 2 (2p23-p21) and has two exons, with the coding region residing entirely in the
second exon, like the CRF gene [81]. The Several possible transcription-factor binding sites
have been identified by sequence homology in the Ucn 1 promoter, but few have yet been
tested for actually controlling Ucn 1 transciption. Putative regulatory elements include a TATA
box, GATA-binding sites, a CCAAT enhancer binding protein (C/EBP) transcription factor-
binding site, a binding site for the POU domain transcription factor Brn-2, and a cyclic
adenosine monophosphate (cAMP) responsive element (CRE) [312]. Four base pairs upstream
of the CRE site, the Ucn 1 promoter contains a consensus half-site for glucocorticoid response
elements (GRE), consistent with the ability of glucocorticoids to upregulate Ucn 1 mRNA
synthesis [130]. The CRE is involved in both constitutive and forskolin-stimulated activity
[312].

The murine and human cDNAs for Ucn 2 and Ucn 3 were identified by two groups from
sequence homology searches of the mouse and human genomes, with the putative Ucn 2 peptide
contained in the C-terminus of a 112 amino acid residue preprotein, and the putative Ucn 3
peptide encoded in a precursor deduced to span 161 residues [113,165]. The identity and
existence of endogenous peptides derived from the Ucn 2 and Ucn 3 preproteins remains
predicted, as mature peptides have not been isolated or sequenced from any species (but see
[235]). Reflecting this uncertainty, one group predicted sequences other than Ucn 2 and Ucn
3 to be mature peptide products of the human Ucn 2 and Ucn 3 prohormones, stresscopin-
related peptide and stresscopin, respectively. These alternatively predicted peptides are N-
terminally extended analogs of the predicted Ucn 2 and Ucn 3 sequences, as shown in Figure
1. To explain this ambiguity, Ucn 3 prohormone sequences from several species (fish, cow,
dog, chicken, frog) contain a prototypical dibasic cleavage sequence (arginine-arginine; RR)
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at the N-terminus that could result in a mature 40-amino acid sequence, as exemplified in the
predicted peptide stresscopin. However, the dibasic arginine residues (RR) are not conserved
in humans, rhesus monkey, or rodents, which led to the alternate prediction of a mature 38-
amino acid peptide, cleaved following the threonine-lysine residues (TK) of the preprotein as
exemplified in rodent, dog or human Ucn 3 (see Figure 1) [28]. For the Ucn 2 prohormone, the
uncertainty relates to the presence of a potential N-terminal flanking cleavage site (serine-
arginine) that would predict the 38-residue peptide Ucn 2 whereas an upstream site (threonine-
arginine) might predict the 43-residue stresscopin-related peptide (see Figure 1). Even further
complicating the identity and existence of a human Ucn 2/stresscopin-related peptide in
humans, the human Ucn 2 prohormone lacks the proteolytic cleavage site (RR) seen in Ucn 2
prohormones from other species that should follow the putative C-terminal amidation donor
glycine residue.

In addition to mouse and human sequences, Ucn 2 preproteins have also been identified in rat
(GenBank accession: AY044835), chicken (Gallus gallus), fish (Tetraodon nigroviridi,
Takifugu rubripes), dog [28], and rhesus monkey (RefSeq accession: XM_001097967.1), and
Ucn 3 preproteins likewise in rat (XM_574076), rhesus monkey (XM_001104616.1), dog
(XM_845862.1), chicken, fish (Tetraodon nigroviridi, Takifugu rubripes, Danio rerio), and
frog (Xenopus laevis and Xenopus tropicalis) [28]. The human genes for Ucn 2 and Ucn 3
reside on chromosomes 3 (3p21.3–4) and 10 (10p15.1), respectively [165,226]. The Ucn 2
promoter contains several GREs and is positively regulated by glucocorticoids, representing a
molecular link between CRF1-mediated HPA-axis activity and Ucn 2 responses to stress
[57].

In terms of primary structure (see Figure 1), Ucn 1 resembles CRF as much as, or more, than
it resembles Ucn 2 and Ucn 3. In contrast, Ucn 2 and Ucn 3 resemble one another more than
they do CRF, a distinction coupled with their greater selectivity for the CRF2 receptor that has
led to their description as “type 2 Ucns” [318]. Thus, an ancient gene duplication event prior
to the evolutionary divergence of teleost bony fishes from tetrapods is hypothesized to have
resulted in separate “type 1 Ucn/CRF” (Ucn 1/CRF) vs. “type 2 Ucn” (Ucn 2/Ucn 3) lineages
with subsequent gene duplication events giving rise to additional paralogs within each
phylogenetic branch (see Figure 2).

1.2. Distribution of Ucns
1.2.1. Central Nervous System (see Table 1)
Ucn 1: In the brain, Ucn 1 has a restricted, subcortical, predominantly caudal distribution. The
major site of brain Ucn 1 synthesis is the Edinger-Westphal nucleus (E-W). The prominent
synthesis and expression of Ucn 1 in the E-W is well-conserved across rats [27,158,289], sheep
[41], humans [114], monkeys [288] and frogs [156]. Recent double-label
immunohistochemistry studies suggest that Ucn 1-expressing neurons in the E-W, a dorsal
midbrain structure originally recognized for its role in oculomotor and pupillary control, may
not be the same as those which control “classic” oculomotor E-W functions, as Ucn 1-
immunoreactive neurons are not preganglionic cholinergic neurons [232,298]. Perhaps
reflecting this, some evidence suggests additional functions for the E-W that may be subserved
by urocortinergic neurons. These proposed, but not fully substantiated, functions include the
regulation of food and water intake [297], behavioral responses to stressors [127,299],
temperature homeostasis [12,204,251], nociception [120,153], motor control [231], vestibular
function [137], and the effects of and motivation to consume alcohol [11,13]. Certain stressful
stimuli (e.g., ether, lipopolysaccharide, and restraint, but not hyperosmotic or hemorrhagic
stress) activate the E-W Ucn 1 system, demonstrated by Fos expression in Ucn 1-
immunoreactive neurons or increased Ucn 1 mRNA. Chronic stress results in a partial
habituation of Ucn 1 mRNA, but not Fos protein, responses to stress in the E-W [93,150,
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154]. On the other hand, conditions that chronically increase brain CRF activity have been
observed to reduce E-W Ucn 1 activity [157], whereas conditions that lower CRF levels are
associated with increased E-W Ucn 1 activity [245,299], raising the possibility of a long-term,
inverse relation between CRF and E-W Ucn 1 systems in homeostatic stress responses.

Descending Ucn 1-LI-positive fibers of possible E-W origin are observed in (1) midbrain:
substantia nigra, periaqueductal gray, interpenduncular nucleus, and red nucleus; (2) caudal
midbrain/rostral pons: dorsal raphe nucleus, ventral tegmentum, basilar pontine nuclei, and
parabrachial nucleus; (3) medulla: including the facial, lateral reticular, and spinal trigeminal
nuclei, inferior olive, and the dorsal column nuclei, nucleus of the solitary tract (NTS) and area
postrema; (4) cerebellum: in the flocculus and paraflocculus as well as deep cerebellar and
vestibular nuclei [257]; and (5) spinal cord: throughout the spinal gray and, less so, in the dorsal
and ventral horns. The most prominent ascending Ucn 1-LI-positive projection from the E-W
origin targets the septal/preoptic region, robustly to the lateral septum (LS) and less so to the
bed nucleus of the stria terminalis (BNST), globus pallidus and medial septal/diagonal band
complex. Other ascending Ucn 1-LI-positive fibers innervate the hypothalamus, the thalamus
and the rostral periaqueductal gray.

Validated secondary sites of brain Ucn 1 synthesis include the lateral superior olive, the
supraoptic nucleus (SON) [27], the lateral hypothalamic area, and, most caudal, several
brainstem and spinal cord motoneuron nuclei [27]. Possible additional sites of Ucn 1 synthesis
include the mammillary nucleus of the hypothalamus, sphenoid nucleus, substantia nigra,
tegmentum, periaqueductal gray (PAG), raphe, and vestibular nucleus [27,158,310]. Ucn 1-LI
generally is scarce or absent in many regions in which its paralog, CRF, is prominent, including
the external layer of the median eminence, the hypophysiotropic, dorsal medial parvocellular
subdivision of the paraventricular nucleus of the hypothalamus (PVN), basal ganglia,
amygdala, hippocampus, locus coeruleus (LC) and cerebral cortex [27,114,158,186].

Ucn 2: Ucn 2 also exhibits a restricted, subcortical expression in rodent brain [175,226,311].
Like Ucn 1, Ucn 2 mRNA is localized in the SON and magnocellular subdivision of the PVN
as well as in brainstem motoneurons and the spinal cord. Unlike Ucn 1, Ucn 2 also has marked
expression in the arcuate nucleus of the hypothalamus and the LC. The projection targets of
Ucn 2 neurons are unknown. Non-neuronal Ucn 2 expression is present in the meninges, but
not in glial cells [226].

Ucn 3: Ucn 3 exhibits the most rostral distribution of the Ucns, again expressed subcortically
[113,165,167,175,291]. The three prominent sites of forebrain Ucn 3 synthesis are (1) the
median preoptic nucleus of the hypothalamus, (2) a hypothalamic region bordered laterally by
the fornix and medially by the PVN that extends rostrally into the posterior BNST, and (3) the
dorsal medial amygdala. Less prominent forebrain sites of Ucn 3 synthesis are the dorsomedial
hypothalamus, both magnocellular and parvocellular components of the PVN, a region dorsal
to the SON, and the posterior cortical and amygdalohippocampal transition areas of the
amygdala. In addition to peptide expression at sites of synthesis, Ucn 3-like immunoreactive
fibers of unknown origin project heavily to the VMH and arcuate nucleus, and medial amygdala
Ucn 3 neurons project to the ventral premammillary nucleus [40]. Ucn 3 fibers are scarcer in
the SON, PVN and anterior, dorsomedial and lateral areas of the hypothalamus and are seen
in the internal, but not external, zone of the median eminence [167]. Outside the hypothalamus,
forebrain Ucn 3 fibers of uncertain origin are abundant in the LS, posterior BNST and the
medial amygdala and scattered in the basomedial and posterior cortical nuclei of the amygdala
and the ventral hippocampus. The topographical distribution of Ucn 3 in the LS differs from
that of Ucn 1 with the former innervating ventral and intermediate aspects of the structure, and
the latter innervating dorsal aspects [167]. Caudally, Ucn 3 cell bodies are found in the auditory
complex, notably in the superior paraolivary nucleus, and scattered Ucn 3 fibers are present in
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the periacqueductal gray, superior and inferior colliculi, and the ventral lateral lemniscus
[167] (see Table 1 for summary).

1.2.2. Periphery
Ucn 1: Ucns also are substantially distributed in the periphery [15,27,103,130,155]. Ucn 1
expression has been observed in adipose tissue [243], heart [145,193,197] (especially
ventricles), and immunological tissue [14,15,22], including thymus [130], spleen [15,130], and
skin [247,248], evident at the cellular level in lymphocytes, macrophages, fibroblasts [280],
and mast cells [141], as well as in synovial cells from patients with rheumatoid arthritis [149,
280]. Ucn 1 also is present in the enteric nervous system of the duodenum, small intestine and
colon [27,103], as well as in testis [130], kidney [130], adrenals (especially the medulla)
[90], and, possibly, anterior (but not posterior) pituitary [115]. In the human pituitary, Ucn 1-
like-immunoreactivity was coexpressed with growth hormone (77% of Ucn 1-positive cells)
and, to a lesser degree, prolactin (22%), but negligibly with adrenocorticotropic hormone
(ACTH) (<1%) [115]. Ucn1-like-immunoreactivity also has consistently been observed in
parietal and oxyntic cells of the stomach [54,155], but the proportion of Ucn 1 actually
synthesized by gastric tissue remains uncertain. Indeed, Ucn 1 is synthesized by lamina propria
macrophages, components of the stomach’s inflammatory mucosal immune system [53,187,
235,236]. Finally, Ucn 1-like-immunoreactivity is evident in human placenta and fetal
membranes [21,213], produced by chorio-decidual cells [96], and is reportedly maintained at
elevated levels in maternal plasma from 16 weeks of gestation through birth [64,85,87,96].

Ucn 2: In humans, Ucn 2 gene expression was observed in most peripheral tissues analyzed
by polymerase chain reaction (PCR) analysis, with higher levels observed in heart, lung,
muscle, stomach, adrenal and peripheral blood cells [55,113] and more recent identification in
skin [246] and placenta and fetal membranes [119]. Survey of peripheral rodent tissue for Ucn
2 gene expression revealed high levels in skeletal muscle and skin, moderate levels in lung,
stomach, adrenal, ovary, brown fat, spleen, thymus, and uterus, and lower or negligible levels
in testes, kidney, liver, pancreas, white fat and intestine [55,311]. Unlike in humans, low Ucn
2 mRNA expression is seen in rodent heart or aorta [55,311]. Detailed studies of murine tissue
confirmed that Ucn 2 is synthesized by cultured skeletal myocytes and that Ucn 2-like-
immunoreactivity is present throughout epidermis and dermis regions of the skin [55]. In rat,
Ucn 2-like-immunoreactivity also was seen in hypothalamus, β-endorphin-containing cells of
the anterior/intermediate pituitary and adrenal medulla [311]. Expression of Ucn 2 mRNA in
skin, but not skeletal muscle, is inversely related to circulating glucocorticoid levels, as
manipulated by exogenous administration or adrenalectomy [55].

Ucn 3: Ucn 3 gene expression has been detected in adipose tissue [243], heart [265], and skin
[165], albeit at levels considerably lower than those of Ucn 2. Ucn 3 also is present in thyroid,
adrenals [90,263,265], pituitary, [265], β-cells of the pancreas [166], spleen [265], ovary
[265], placenta and fetal membranes [119], kidney [113,165,265] and the muscularis mucosa
of the gastrointestinal (GI) tract, notably in the stomach, small intestine, colon, and rectum but
not esophagus [113,165,235].

1.3. Pharmacology of Ucns
As shown in Table 2, Ucn 1 has high affinity for every CRF binding site identified to date,
including the CRF1 and CRF2 receptor families and the CRF-binding protein (CRF-BP) [25,
165,289]. This promiscuity differs from that of the type 2 Ucns (as well as stresscopin-related
peptide and stresscopin), each which show selective CRF2 affinity, and no or only moderate
affinity for the CRF-BP in both mammalian [113,165,226,269,291] and non-mammalian
vertebrates [28]. Two CRF receptor subtypes have been identified [50,62,148,169,171,207,
255,293], with catfish having a duplicate genomic analog of CRF1 [7,7,49]. The subtypes are
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encoded by separate genes, share high sequency homology (∼70%) differing predominantly
at the N-terminus, and have unique tissue distributions and pharmacological affinity profiles,
implying a diversity of function [20,169,255]. CRF receptors belong to the G-protein coupled,
seven transmembrane domain receptor family (GPCR). Multiple splice variant isoforms have
been observed for each receptor subtype family, and include both membrane-bound and soluble
variants [59,71,171,209,215].

1.3.1. CRF1 receptors—The CRF1 receptor is a class B (“secretin-like”) GPCR spanning
∼415 amino acids [62,78,207]. At least eight alternatively spliced transcripts of CRF1 have
been identified in humans, three in rats, four in mice, and nine in hamsters [109,214–216].
However, only one of these splice variants is known to induce signal transduction in humans
and rodents (CRF1(a)), so the following information applies to that isoform. Ucn 1 exhibits
reversible, saturable, high-affinity binding to CRF1 receptors transfected in stable cell lines
(Ki=0.2 nM). Indeed, Ucn 1 is ∼3 fold more potent than CRF at binding to the CRF1 receptor
and 1–2.5 fold more potent than CRF in stimulating the production of cAMP from CRF1
expressing cells (see Tables 2 and 3). Ucn 1’s affinity for the CRF1 receptor is determined by
regions in the first, second and third extracellular domains of the receptor [208,304]. In contrast
to Ucn 1, Ucn 2 and Ucn 3 have very low potencies to bind CRF1 and thereby activate adenylate
cyclase (Tables 2 and 3), and Ucn 3 also shows negligible potency to stimulate ACTH release
in vitro (≫1 μM), a CRF1-mediated bioassay [165]. Unlike Ucn 3, which appears to show no
functional activity whatsoever at CRF1 receptors, Ucn 2 acts as a very low potency, but full
agonist at CRF1 receptors. For example, Ucn 2 showed maximum functional efficacy (100%)
comparable to that of CRF (110%) and Ucn 1 (93%) to induce cAMP accumulation in AtT20
cells, but was much less potent than both peptides (EC50’s=360, 1.3 and 1.1 nM, respectively)
[110] (see also Table 3). The CRF1 receptor can employ multiple signal transduction pathways
when stimulated by Ucn 1 [109]. These include activation of adenylate cyclase with production
of cAMP and activation of protein kinase A-dependent pathways; activation of phospholipase
C with production of inositol-1,4,5-triphosphate which in turn activates protein kinase C-
dependent and calcium activated pathways; MAP kinase-dependent pathways; nitric oxide
production; and proximate interactions with calcium channels [32,83,109,201,289,302].

1.3.2. CRF2 receptors—CRF2 receptors also are class B GPCRs. To date, four major
CRF2 splice variants have been identified, including membrane-bound and soluble isoforms
of CRF2(a), and membrane-bound CRF2(b) and CRF2(c) receptors. The CRF2(c) receptor has
only been observed in human limbic neurocircuitry [151], and sub-variants of CRF2(a) and
CRF2(b) also have been identified [109,199,281]. Membrane-bound CRF2 receptors are
respectively ∼411, 431 and 397 residues in length, differing only in their extracellular N-
terminal domains [44,151,171]. The 143 residue soluble CRF2(a) isoform was identified in
mice, and results from a frame-shift deletion of exon 6 [59]. Unlike CRF, all Ucns bind with
high affinity to membrane-bound CRF2 receptors transfected in stable cell lines [165,226,
289] or to endogenously expressed CRF2 receptors [111]. Human Ucn 1 and Ucn 2 are each
∼1–2 orders more potent than CRF at binding to membrane CRF2 receptors, with murine and
human Ucn 3 (in rank order) only slightly less potent (Ucn 1=Ucn 2>Ucn 3>CRF) (Table 2).
In contrast to membrane-bound CRF2 receptors, the soluble CRF2(a) receptor unexpectedly
shows high affinity for Ucn 1 and CRF (classically, CRF1 ligands), and low affinity for Ucn
2 and Ucn 3 (Table 2) [59]. Neuroanatomical and functional studies suggest that, similar to the
CRF-BP (see below), the soluble CRF2(a) receptor may curb CRF1 signaling by competitively
sequestering ligand.

The combination of high membrane CRF2 potency and low CRF1 potency makes type 2 Ucns
much more selective CRF2 agonists than Ucn 1. Ucn 2 (which is a full, albeit very low affinity,
CRF1 agonist) shows ∼1000-fold greater functional selectivity for the CRF2 than does Ucn 1.
Ucn 3 does not show CRF1-like agonism, making it the most selective, albeit not most potent,
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CRF2 agonist (Tables 2 and 3). The CRF2 receptor also can activate the mitogen-activated
protein (MAP) kinase pathway, with some evidence suggesting that Ucn 3 may be less
efficacious than Ucn 1 or Ucn 2 at engaging this signal transduction mechanism [32,56].

Chimeric CRF2/CRF1 receptor studies show that the strong selectivity of human Ucn 2 and
Ucn 3 for the CRF2 receptor is mainly determined by the extracellular domain of the CRF2
receptor with an additional contribution of the juxtamembrane domain for Ucn 2 [110]. In
contrast, the (weaker) selectivity of human Ucn 1 for the CRF2 receptor is determined entirely
by the juxtamembrane domain of the receptor, further underscoring different ligand CRF2
binding determinants across the Ucns [110]. The high potency binding shared by Ucns depends
on a stabilizing interaction with the juxtamembrane domain of the CRF2 receptor that putatively
involves the N-terminal peptide end [110]. Whereas the ability of Ucn 1 (and other agonists)
to bind CRF1 receptors is highly dependent on receptor coupling to G-proteins (2–3 orders
greater affinity to coupled receptors), the affinity of Ucn 2 and Ucn 3 for CRF2 is only mildly
greater (<1 order) in the G-protein coupled state, and Ucn 1’s CRF2 affinity is insensitive to
uncoupling [110], underscoring differential CRF1 vs. CRF2 binding determinants for Ucns.

1.3.3. CRF-Binding Protein (CRF-BP)—The CRF-BP is an evolutionarily conserved 37-
kDa secreted glycoprotein that binds CRF with high affinity [26,198,300]. Cloned from human
liver, rat cerebral cortex and mouse brain, CRF-BP cDNAs encode a ∼322 residue protein. The
mature CRF-BP protein is not membrane-associated, lacking prototypical transmembrane
domains or a phosphatidyl inositol anchor signal. The CRF-BP has been hypothesized to limit
CRF receptor agonist effects by sequestering secreted ligand and facilitating subsequent
enzymatic degradation, thereby limiting peptide bioavailability [23,24,24,124,211,211,241,
241,317,317]. In contrast, it also has been postulated that the CRF-BP, like other binding
proteins [84], may enhance the effects of bound ligand, by shielding peptide from metabolic
degradation during diffusion to membrane-bound CRF receptors [139]. A more recent
suggestion is that the CRF-BP may have signaling properties [45], some of which may depend
on ligand/CRF-BP complexes [279]. Finally, the degree to which the Ucns themselves are
sequestered by the CRF-BP under basal conditions would constitute a physiologically relevant
reservoir that could be competitively “freed” by another CRF-BP ligand that otherwise has
different direct pharmacological properties (such as CRF). Thus, the degree to which Ucns
interact with the CRF-BP may have great biologic relevance.

Ucn 1 is approximately equipotent to CRF at binding to the CRF-BP in mammals (Table 2),
less so in frogs (Ki=50.3 vs 4.1 nM for Ucn 1 vs. CRF) [28]. The region of Ucn 1 that has
affinity for the CRF-BP (residues 4–28) differs from those responsible for its affinity for CRF
receptors [109,123,256,300]. Ucn 1 is believed to be the predominant natural ligand for the
CRF-BP in ovine brain and dissociates from the CRF-BP approximately twice as slowly as
does CRF [107], potentially increasing the physiologic significance of Ucn 1/CRF-BP
interactions. In contrast to CRF and Ucn 1, Ucn 3 does not appreciably bind to the human, rat
or frog CRF-BP (Table 2, Ki>1 μM for frog) [28]. Again underscoring pharmacological
differences between the type 2 Ucns, murine Ucn 2 does bind with moderately high affinity to
the rat and frog, but not human, CRF-BP albeit slightly less potently than CRF/Ucn 1 (Table
2) [28,125,165].

1.4. Physiologic and Behavioral Effects of Ucns
Because CRF and Ucns are putative paralogs derived from a common ancestral gene [49], they
are hypothesized to share complementary regulatory properties to create an integrated organism
response to threats to homeostasis.
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1.4.1. Hypothalamic-pituitary-adrenal axis—Unlike CRF, peripheral Ucn 2 or Ucn 3
administration does not increase corticosterone secretion [291] (Fekete, ÉM and Zorrilla, EP,
unpublished observations), consistent with the relative absence of CRF2 on ACTH-secreting
pituitary corticotroph cells [170]. However, intracerebroventricular (icv) or intravenous (iv)
administration of Ucn 1 activates the pituitary-adrenal axis (as or more potently than CRF),
via a CRF1-dependent mechanism, stimulating ACTH release and proopiomelanocortin
synthesis in pituitary corticotrophs [9,73,74,223,289]. However, Ucn 1 is not a likely
physiologic regulator of the HPA axis. Unlike CRF-deficient mice [290], Ucn 1-deficient mice
exhibit normal basal and stress-induced HPA hormone levels [292,296]. Similarly, unlike CRF
antisera, peripheral administration of specific Ucn 1 antisera does not modify basal, stress-
induced or adrenalectomy-induced ACTH levels [179,278]. Finally, unlike the distribution of
CRF, Ucn 1-immunoreactive fibers are scarce in the PVN and the external layer of the median
eminence under basal conditions [100,101,158].

It remains possible, however, that the type 2 Ucns modulate HPA-axis activity at the
hypothalamic level in paracrine or autocrine fashion. Indeed, Ucn 2 and Ucn 3 mRNA are
increased in the parvocellular PVN following immobilization/restraint stress [267,291], and
hypothalamic Ucn 2 expression is increased by glucocorticoids [57]. More importantly, female
mice deficient for Ucn 2 or for CRF2 receptors recently were found to exhibit greater peak
corticosterone (CORT) and ACTH levels at the circadian light→dark phase transition. Ucn 2
knockout mice showed greater hypothalamic magnocellular expression of AVP, which is
known to augment ACTH secretion, while exhibiting normal stress endocrine responses to
restraint and forced swimming. Thus, Ucn 2 via CRF2 receptors may endogenously modulate
basal HPA-axis circadian amplitude via an arginine vasopressin (AVP)-dependent mechanism
(see Figure 3) [58].

Ucns also might directly modulate other adrenal functions (if not adrenocorticoal activity).
Ucn 1 and Ucn 3, as well as CRF receptors, are observed in non-pathological adrenal glands,
but at reduced levels in tumor cells of pheochromocytomas, adrenocortical adenomas and
carcinomas [90,266], suggesting physiologic relevance or regulation of their expression. Ucn
2 may regulate catecholamine synthesis and release in the adrenal medulla, as, in PC12 cells,
it induces noradrenaline release and phosporylation of tyrosine hydroxylase through protein
kinase A and protein kinase A-Erk1/2 pathways, respectively [190].

1.4.2. Osmoregulation—Because of the presence of Ucn 1 and Ucn 2 in magnocellular
neurons of the SON and the existence of Ucn 1 projections to the posterior pituitary, an
osmoregulatory role for Ucns is hypothesized. Such a function would correspond well to the
ancestral phylogenetic relation of the CRF/Ucn lineages to orthologous diuretic hormones in
teleost fish, insects and other invertebrates [49]. Accordingly, salt loading, dehydration and
hypophysectomy increase Ucn-like-immunoreactivity in magnocellular SON and PVN
neurons, whereas food deprivation decreases Ucn- like-immunoreactivity in the SON (studies
in which the antibody specificity for Ucn 1 vs. Ucn 2 is uncertain) [100–102]. Specific increases
in SON Ucn 1 mRNA expression also have been observed following salt loading [118]. Chronic
osmotic stimulation (by salt loading or water deprivation) increases CRF2 mRNA levels in the
SON and magnocellular PVN, potentially increasing sensitivity to resident Ucns [8]. Finally,
female Ucn 2 KO mice recently were found to exhibit increased hypothalamic magnocellular
AVP expression (Figure 3) and a blunted circadian regulation of water intake across the day,
failing to show the typical difference in food/water ratios between light and dark phases which
reflects a greater sensitivity to osmotic stress during the nocturnal/feeding phase [58].
Collectively, the findings support an endogenous role for Ucns 1 and 2 in the regulation of salt/
water balance.
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Peripheral Ucns also may control body fluid homeostasis as a result of their potency to stimulate
atrial natriuretic peptide release from cardiomyocytes [116], through a putative CRF2
mechanism. Atrial natriuretic peptide, present in cardiac atrial tissue, has profound effects on
salt and water homeostasis [105], as it reduces blood volume, acutely by sequestering plasma
and longer term by promoting renal salt and water excretion. Atrial natriuretic peptide
antagonizes the renin-angiotensin-aldosterone system at many levels [6]. Interestingly, this
property of Ucns would reduce the preload or after-load on a compromised heart, to
complement their direct vasodilatory effects, modulation of cardiac function and
cardioprotection (see below) [74].

1.4.3. Cardiovascular function—Ucns (and CRF) are vasodilatory via arteriole and
cardiac CRF2 receptors when given intravenously in animal models [1,2,51,60,66,92,131,
203,223,268,289]. Conversely, CRF2-deficient mice exhibit elevated mean arterial pressure
suggesting an endogenous relaxant function of Ucn/CRF2 interactions on vasculature in vivo
[18]. The vasodilatory effects of Ucns are orthologous to the properties of urotensin I and other
fish and invertebrate peptides of the CRF/Ucn superfamily that evolved to subserve
osmoregulatory functions [49]. Vasodilatory effects of Ucn 2 in rat thoracic aorta are mediated
by protein kinase A and MAP kinase signaling pathways [131], and relaxation of pulmonary
arteries involves inhibition of a protein kinase C-dependent contractile mechanism [46].
Vasodepressor effects of Ucn 1 in rodents did not appear to involve activation of the nitric
oxide/L-arginine pathway, prostanoid production, or K+ channels and were not counteracted
by compensatory vasoconstrictive mechanisms (e.g., angiotensin, endothelin) [2,92].

The human cardiovascular system also expresses high numbers of CRF2 receptors [63,303].
Accordingly, both Ucn 2 and Ucn 3 produced potent, sustained, direct, endothelium-
independent vasodilating effects in an in vitro human internal mammary artery model of
endothelin-1 induced constrictions [303]. Ucn 1 also produced endothelium-dependent
vasodilating effects in this model, putatively mediated (unlike in vivo rodent studies) by nitric
oxide and, downstream, cyclic guanine 3′,5′ monophosphate-dependent stimulation of
calcium-activated K+ channels in vascular smooth muscle [63]. However, in humans, in vivo
hemodynamic effects of Ucn 1 were not observed following acute bolus doses (i.v. 50 μg) that
were sufficient to activate the HPA-axis [73,74]. Perhaps higher doses or CRF2 selective
ligands would produce such effects.

Complementing their hemodynamic effects, Ucns have cardioprotective and cardiovascular
function-enhancing effects on compromised heart [37,196,220,237]. Systemic or in vitro Ucn
1 infusion has prolonged cardiac inotropic actions [202,268], increasing cardiac contractility,
heart rate and aortic blood flow independent of changes in peripheral vascular resistance [19,
51]. Ucns also are cardioprotective when added to post-ischemic/hypoxic cardiomyocytes or
to isolated intact heart during reperfusion after regional ischemia [33,35,47,126,161,163,164,
239,285]. For example, Ucn 1 promoted hemodynamic and bioenergetic recovery of isolated,
paced rat hearts following post-ischemia reperfusion, effects associated with improved
ventricular performance [239]. Ucn 2 and Ucn 3 reduced infarct size in isolated rat hearts after
post-ischemia reperfusion [33] and also protected human heart from reperfusion injury [51].
In ventricular pacing large animal models of congestive heart failure, Ucn 1 and Ucn 2 similarly
had palliative effects, the latter reducing left atrial pressure, brain natriuretic peptide and
vascular resistance (see Figure 4). These changes were accompanied by normalizing decreases
in circulating vasopressin, aldosterone, endothelin-1, and epinephrine levels, with
corresponding increases in sodium and water excretion, indicating effective “unloading” of
compromised cardiovascular/renal systems [37,220,221,223] (see also Figure 4).

The cardioprotective effects of Ucns are mediated by a CRF2-dependent mechanism [19,33]
and involve multiple signal transduction pathways. Ucn 1 increased synthesis, expression and
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translocation/activation of the protein kinase C epsilon isozyme in primary rat cardiomyocytes
and in Langendorff perfused ex vivo heart. Ucn 1 no longer reduced apoptosis resulting from
ischemia-reperfusion in isolated cardiomyocytes when peptide inhibitors of the isozyme were
present, and the cardioprotective effects of Ucn 1 on whole heart were absent in protein kinase
C epsilon-deficient mice [162,164]. Similarly, chelerythrine, a specific PKC inhibitor,
eliminated Ucn 1-induced cardioprotection of isolated rat heart following ischemia-reperfusion
[91]. Conversely, Ucn 1 reduced ischemia-induced increases in mRNA and protein expression
of a calcium-insensitive phospholipase A2 enzyme (iPLA2) as well as levels of its toxic
metabolite lysophosphatidylcholine in isolated cardiac myocytes [163,164]. Ucn 1, Ucn 2 and
Ucn 3 cardioprotection also involves MAP kinase signaling, as each peptide phosphorylated
Erk1/2-p42, 44 in neonatal cardiomyocytes and reduced post-reperfusion infarct size by a
CRF2 dependent mechanism, effects abolished by inhibitors of MEK1, Ras, or Raf-1 [32,34,
47,160,240]. Ucn 1 also increased synthesis of the mitochondrial KATP potassium channel
subunit Kir 6.1. in cardiomyocytes, with general and mitochondrial-specific KATP channel
blockers blocking the cardioprotective effects of Ucn 1 both in isolated cardiac cells and in
intact heart [161,164]. Finally, both cardioprotective and (undesired) hypertrophic effects of
Ucns also involve activation of a phosphatidylinositol-3 (PI-3) kinase/Akt-dependent pathway
[47,48,126], which ultimately reduces Beclin-1 expression and resulting autophagic cell death
in cardiomyocytes [285]. Importantly, some of Ucns’ cardioprotective effects are dissociable
from their hypertrophic effects, opening potential therapeutic avenues [48,72,225].

Supporting an endogenous compensatory response for Ucns in cardioprotection, Ucn 1, 2 and
3 are present in the heart [55,145,193,197,264], with Ucn 2 and Ucn 3 expression abundant in
myocardium. Plasma Ucn 1-like-immunoreactivity is increased in human systolic heart failure
[191] as well as in an experimental model of heart failure [52], and Ucn 1 expression is
increased in diseased human heart [117,193]. Ucn 1 expression also increased more than 9-
fold in viable, apoptotic-resistant human myocytes after surgical cardioplegic arrest-
reperfusion for coronary bypass surgery [237,238]. Finally, Ucn 1 mRNA is increased in post-
hypoxic cardiomyocytes, and isolated cardiomyocytes treated with CRF receptor antagonists
or from CRF2-deficient mice are more susceptible to ischemia-perfusion injury [19,35].
Endogenous Ucn/CRF-related peptides also may be involved in hemodynamic adaptations to
heart failure, because intravenous infusion of a preferential CRF2 receptor antagonist produced
greater acute effects on arterial pressure, peripheral resistance and circulating renin and
endothelin-1 levels in a pacing-induced, ovine model of heart failure than in the non-diseased
state [222]. Finally, human venous endothelial cells synthesize and secrete Ucn 1 in response
to inflammatory cytokines, such as tumor necrosis factor-α and interferon-γ. This response has
been hypothesized to oppose damaging effects of oxidative stress because incubation with Ucn
1 suppressed angiotensin II-induced accumulation of reactive oxygen species in human
umbilical vein endothelial cells [112].

1.4.4. Energy balance—Exogenous administration of Ucns promotes negative energy
balance, by both increasing energy expenditure and decreasing food intake. The reviewed
distributions of the Ucns support the hypothesis that they may regulate metabolism or food
intake by interacting with CRF2 receptors, including concordant hypothalamic expression in
the VMH (Ucn 3), arcuate nucleus (Ucn 2, Ucn 3) and PVN (Ucn 1, Ucn 2) of the hypothalamus,
lateral septum (Ucn 1, Ucn 3), and in the NTS of the caudal hindbrain (Ucn 1) [27,43,165,
167,170,226,287]. In addition, VMH CRF2 mRNA levels vary directly with circulating leptin
levels [104,174,194,227,272], potentially modulating sensitivity to catabolic Ucn action, and
circulating leptin facilitates the entry of peripheral Ucn 1 into the central compartment [134,
135]. The presence of Ucns in the GI tract, glucoregulating tissue (e.g., pancreas, VMH) and
adipose tissue also is consistent with a hypothesized peripheral role for Ucns in the short- or
long-term regulation of energy balance.
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Energy expenditure: With respect to energy expenditure, Ucn 1 (i.c.v.) increases whole body
oxygen consumption as measured by indirect calorimetry, and increases signs of sympathetic
nervous system activity, including mean arterial pressure and colonic body temperature [76,
253]. The hypothalamus is a candidate site of metabolic action for Ucns, because intra-PVN
Ucn 1 increases plasma leptin levels, induces BAT uncoupling protein-1 (UCP1) mRNA
synthesis, and increases relative utilization of fat as an energy substrate [152]. Similarly, intra-
PVN Ucn 1 blocked the ability of NPY to promote food intake or the preferential utilization
of carbohydrates as an energy substrate [68]. Whether the energy expenditure-increasing
effects of Ucn 1 are shared by the type 2 Ucns and mediated by CRF2 receptors is unclear.
Supporting a role for CRF2 receptors in the body weight-reducing effects of Ucns, Ucn 1
promoted greater, more sustained reductions in body weight in CRF1 knockout mice relative
to their wild-type littermates despite achieving similar anorexia across genotypes [30]. In
addition to these central actions of Ucns, peripheral activation of CRF2 receptors in oxidative
skeletal muscle also directly promotes thermogenesis via substrate cycling between de novo
lipogenesis and lipid oxidation [252].

Food intake: With respect to food intake, peripheral administration of Ucn 1 or stresscopin
reduces food intake in rodents (see Figure 5A for effects in fasted mice), possibly in part by
slowing gastric emptying [10,113,294], and Ucn 1 suppresses operant responding for food
reward [146]. Sustained intravenous infusion of Ucn 1 also reduced food intake in an
experimental ovine heart failure model for 2 days, but with subsequent tolerance observed
[223]. The receptor subtype mediating these actions remains uncertain.

Central infusion of Ucns also potently suppresses feeding in mammalian and non-mammalian
vertebrates, effects shown to be at least partly CRF2-mediated in studies that used selective
agonists (see Figure 5B for effects in non-fasted rats) or antagonists, antisense knockdown of
receptor expression, and knockout mice [28,67,77,195,206,253,316,318]. CRF2 KO mice are
constitutively hyperphagic on high-fat diets [17] or on 15% corn syrup-sweetened chow pellets
(Consoli D., Diaz-Chaves Y., Monseingeon M., Corcuff J., Drago F., Vale W., Bale T., Koob
G., Contarino A., Zorrilla E., and Tabarin A., unpublished observations). Unlike CRF1
agonists, type 2 Ucns do not produce malaise, arousal or anxiety-like effects at the minimum
central doses needed to reduce food intake in rats [77,121,195,206,226,282,316,318]. Also
unlike ligands with CRF1 affinity, the anorectic effects of i.c.v. type 2 Ucns are delayed
approximately 2-6 hr in onset, again perhaps reflecting slowed gastric emptying (see below).
The degree to which endogenous brain Ucns produce these effects under physiologic conditions
remains unclear, because Ucn 1 and Ucn 2 deficient mice exhibited normal spontaneous food
intake [58,292]. On the other hand Ucn 2 deficiency did blunt the anorectic effects of
fenfluramine, suggesting a downstream role in serotonin’s satiating effects [58].

In addition to the hypothesized anorectic role of central Ucns via the CRF2 receptor, brain Ucn
1 also may reduce food intake via additional acute onset CRF1-dependent mechanisms [318].
Brain CRF1 stimulation suppresses feeding through a different behavioral mechanism than
CRF2 receptor activation, as evidenced by different time courses, effects on meal patterning
and dietary self-selection [316,318]. Possible loci for endogenous Ucn 1-CRF1 mediated
anorexia include the dorsomedial nucleus of the hypothalamus, the parabrachial nucleus and
other caudal hindbrain glucoregulatory sites. Ucn 1 infused into the fourth ventricle reduced
intraoral sucrose solution intake even in chronically maintained decerebrate rats, supporting a
hindbrain mechanism of anorectic action for brainstem Ucn 1 [70].

Ucn 3 is present in pancreatic islet β-cells, and secretion of Ucn 3-like immunoreactivity by
MIN6 cells is increased by extracellular glucose [166]. In vivo and in vitro studies demonstrated
that exogenous Ucn 3 increased glucagon and insulin levels, resulting in a net increase in blood
glucose levels. Effects were abolished by pretreatment with a selective CRF2 antagonist, and

Fekete and Zorrilla Page 11

Front Neuroendocrinol. Author manuscript; available in PMC 2009 August 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



suggest an autocrine or paracrine regulation of glucose homeostasis by pancreatic Ucn 3
[166].

Human genetic studies also suggest a relation of CRF2 receptors and, by association, Ucns to
energy balance. Four genome-wide linkage analyses have revealed an association between
energy balance-related endpoints, including body mass index (BMI) [3,306], type 2 diabetes
[305], and lean body mass [42], with the portion of chromosome 7 that includes the CRF2 gene
(7p15–7p21) [180]. In addition, a study of early-onset (<10 years of age) obesity identified a
single nucleotide mutation substitution (Val411Met) in the CRF2 gene of a hyperphagic,
severely obese 5-year old girl that was not evident in 140 alleles from control subjects. The
heterozygous substitution also was observed in the hyperphagic proband’s mother and maternal
grandfather, both of whom also were obese.

1.4.5. Gastrointestinal motility and function—Stressors release CRF-related peptides
which inhibit gastric emptying through brain-gut CRF2 receptor systems [177,318]. For
example, stress-induced gastric stasis is reversed by central or peripheral pretreatment with
nonselective or selective CRF2 receptor antagonists [106,143,177,183,262]. Similarly,
nonselective or selective CRF2 receptor antagonists, but not CRF1 antagonists, block the ability
of i.c.v., i.v., or i.p. administered Ucns/CRF to slow gastric emptying [61,142,177,189,229,
294]. Through vagal efferents, central infusion of CRF or Ucn 1 reduces antral gastric motility,
inhibits high amplitude gastric contractions, and shifts duodenal activity from fasted to fed
motor patterns [142]. Intracisternal infusion of Ucn 2 also suppresses gastric emptying, but
unlike Ucn 1 and CRF, its effects are mediated by a non-vagal, central CRF2-dependent alpha-
adrenergic1 receptor mechanism [69].

Parallel to the central pathways for stress-induced gastric stasis, peripheral CRF2 receptor
activation delays gastric emptying, with peripheral (i.v. or i.p.) administration of agonists with
high (i.e., Ucn 1) or selective (i.e., Ucn 2) CRF2 affinity delaying gastric emptying more
potently than CRF (see Figure 6) [177,178]. Similar to central administration, peripheral Ucn
1 reduces antral gastric motility in fed rats and shifts gastric motor patterns from a fasted to
fed state [142]. Ucn 1 also hyperpolarizes stomach smooth muscle [210]. Candidate substrates
that mediate CRF receptor-induced gastric stasis include, centrally, the PVN and dorsal vagal
complex, via an undefined subset of its descending autonomic efferents [294,295], and,
peripherally, myenteric fibers of the enteric nervous system [54,142] and the gastric antrum,
each which expresses CRF, Ucn 1, Ucn 2 and both CRF receptor subtypes [219]. Outside the
stomach, CRF-like peptides also inhibit phasic contractions of the CRF2-expressing ileum of
the small intestine, an effect that, similar to stomach, was blocked by CRF2, but not CRF1,
antagonists [218]. An endogenous role for Ucns in stress-induced changes in gastrointestinal
motor function is also supported by the presence of Ucns in the PVN, NTS of the caudal
hindbrain, GI tract and enteric nervous system. Consistent with this hypothesis, site-specific
RNA interference knockdown of Ucn 2 (or CRF) expression in the terminal ileum increased
diurnal fecal output under basal conditions, suggesting a physiologic role for Ucn 2 in the
regulation of ileal motility [159].

Gastric Ucn 1 also may participate in the control of gastric acid secretion [54]. Ucn 1 colocalizes
with tyrosine hydroxylase in parietal cells of the stomach, in proximity to CRF2, but not
CRF1 receptors [54,155]. CRF2 receptors, in turn, co-localize with H+/K+-ATPase the enzyme
gastric proton pump, and somatostatin, which inhibits parietal cell activity and secretion of
gastrin and histamine [54]. Perhaps accordingly, peripheral administration of nonselective
CRF2 receptor agonists inhibits gastric acid secretion and increases gastric mucosal blood flow.

In contrast to their inhibitory effects on gastric and ileal motility, diverse stressors stimulate
colonic motor function, seen as increased colonic motility, decreased colonic transit time,
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defecation and watery diarrhea [259,261,318]. Central and peripheral administration of
CRF1, but not CRF2, agonists also stimulates colonic motility, and selective CRF1, but not
CRF2, antagonists attenuate stress- or CRF/Ucn 1-induced colonic hypermotility [177,318].
An apparent exception to this pattern of CRF1 activation selectively stimulating colonic
motility is that central murine Ucn 2 infusion also increased colonic motility. However, central
administration of Ucn 3 (an even more selective CRF2 agonist) did not similarly stimulate
colonic motility, and actions of Ucn 2 could be reversed by a selective CRF1 receptor
antagonist. Thus, CRF1 activation was still an essential (if not proximate) mediator of the
colonic motor stimulating effects of i.c.v. Ucn 2 [177]. Candidate substrates for CRF1-mediated
stimulation of colonic motility include, centrally, the PVN and LC/Barrington nuclei that
activate sacral parasympathetic nervous system activity, and, peripherally, the colonic
myenteric nervous system, tissue in which Ucn 1 is expressed. Ucn 1 also was recently shown
to increase duodenal contractile activity in vitro, an effect reversed by CRF1, but nor CRF2,
antagonists [218]. Thus, endogenous Ucn 1 may partly mediate the colonic and duodenal motor
stimulating effects of stress.

Peripheral CRF receptor signaling, perhaps initiated by Ucns, also modifies visceral
nociception, in particular that related to painful gastrointestinal stimuli. For example,
peripheral (i.p. or i.v.) or intrathecal administration of Ucn 2 or stresscopin, selective CRF2
agonists, reduced behavioral and visceromotor responses to duodenal or colorectal distension
[176,192]. Similarly, peripheral sauvagine (an amphibian CRF/Ucn-related peptide with high
CRF1/CRF2 affinity) and Ucn 2, but not CRF, prevented experience-induced increases (i.e.,
sensitization) in visceromotor responses to colorectal distension. These palliative effects were
reversed by CRF2 antagonist pretreatment [182,184]. Peripheral antinociceptive effects of
Ucns and Ucn-related peptides were not CRF1-mediated, as i.p. CRF produced
pronociceptive effects in the duodenal distension pain model via a CRF1-dependent mechanism
[192,259]. In fact, selective CRF1 receptor antagonists reversed stress and experience-induced
increases in visceromotor hyperalgesic-like responses to colorectal distension [181,182]. The
actions of exogenous CRF and Ucns on GI function as well as the ability of selective CRF
antagonists to modify similar effects of stress have led to a proposed involvement of
endogenous Ucns (and CRF) in stress-related functional GI disorders, such as irritable bowel
syndrome [258].

1.4.6. Immune function—As reviewed previously, Ucns are expressed in immunological
tissue, including thymus, spleen, and/or skin, with Ucn 1 seen at the cellular level in
lymphocytes, macrophages, fibroblasts, and mast cells. Exogenous Ucn 1 administration has
palliative effects in experimental models of autoimmune encephalomyelitis [217], thermal
injury-induced edema [277], and Crohn’s disease [95], though these actions may reflect
glucocorticoid, vasodilatory or cytoprotective (rather than direct immune) mediated
mechanisms [4]. Still, converging lines of evidence suggest that immune-derived Ucns locally
and directly modulate proinflammatory responses to perceived environmental insults, with the
direction of this effect depending on the tissue or CRF receptor subtype [270].

For example, Ucn 1 mRNA is expressed in lamina propria macrophages, and Ucn 1-like-
immunoreactivity is detected throughout the entire lamina propria layer of the intestine [187,
236]. Although intestinal lamina propria inflammatory cells are evident as early as 12–18 weeks
of gestation, Ucn 1-like-immunoreactivity is not detectable until after birth [187]. This suggests
that intestinal Ucn 1 activity may be regulated by changes in the intestinal milieu, such as
passage of dietary factors or food-associated bacterial antigens. Ucn 1-like-immunoreactivity
is further elevated in intestinal lamina propria macrophages of patients with ulcerative colitis,
where it is hypothesized to have a proinflammatory effect via CRF1 receptors [236].
Intraperitoneal administration of CRF1 agonists, such as Ucn 1, also increases intestinal
mucosal permeability to macromolecules [258,260]. Interestingly, a history of early trauma
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potentiates the effects of acute stress on intestinal mucosal dysfunction in adult rats, a response
blocked by peripheral injection of a CRF receptor antagonist [258,260]. Chronic psychosocial
stress also reduces intestinal host defense and initiates intestinal inflammation through a mast
cell, putatively CRF1 receptor dependent, mechanism [258,260]. In contrast to Ucn 1, Ucn 3
was hardly detected in lamina propria inflammatory cells in colonic mucosa, although it was
detected in other gastrointestinal tissue, underscoring peptide specificity in the physiological
roles of Ucns [235].

Other stress-related inflammatory conditions are also accompanied by locally increased Ucn
1 expression. In rheumatoid arthritis, Ucn 1-like-immunoreactivity and Ucn 1 mRNA are
substantially elevated in synovium, and the number of Ucn 1-positive cells in synovia [280],
including leukocytes and marcophages, is higher and significantly correlates with
inflammation severity [149,280]. The same degree of synovial Ucn 1 activation is not observed
in osteoarthritis [149]. Supporting a proinflammatory action of secreted Ucn 1, Ucn 1
stimulates IL-1β and IL-6 secretion by peripheral blood mononuclear cells in vitro, presumably
via a CRF1-mediated mechanism [149].

Some stress-related dermatological inflammatory conditions also have altered Ucn/CRF
crosstalk between mast cells, neurons and keratinocytes [246–250,302]. Mast cells, which play
a role in allergy and inflammation by releasing histamine, proteases (tryptase, chymase),
proteoglycans, prostaglandin D2, leukotriene C4, and several multifunctional cytokines, are
distributed widely in the skin. Mast cells recently were recognized to synthesize and secrete
both CRF and Ucn 1 in response to psychosocial stress or immunoglobulin E receptor
crosslinking [141,172,244,270,271]. Mast cells also express CRF receptors, activation of
which leads to the release of cytokines and other pro-inflammatory mediators (e.g., vascular
endothelial growth factor) and increased skin vascular permeability [38,39,82,270]. Finally
hair follicles are both sources and targets of CRF/Ucn 1 lineage peptides with resulting effects
on pigmentation [122,138]. Thus, it has been suggested that disorders such as atopic dermatitis,
psoriasis [270], alopecia areata [31,136], and chronic urticaria [200] involve a stress-related
precipitation or exacerbation of skin mast cell activation (and possibly other resident skin cells)
via local CRF/Ucn 1–CRF receptor signaling.

The endometrium, myometrium, and outer decidua of the reproductive tract also contain mast
cells [140,173]. Ucn 1-like-immunoreactivity is increased more than 10-fold in spontaneous
abortion products (which include myometrium, fetal membranes and chorionic villi) from
women with a history of multiple non-elective abortions relative to products from elective or
non-habitual abortions [86,173]. Supporting the hypothesis that the increase in Ucn 1-like-
immunoreactivity is related to mast cell activation, levels of tryptase, which constitutes 20%
of total protein in mast cells, and IL-8, an abortogenic mast cell-derived cytokine, also are
robustly elevated in habitual spontaneous abortions. Endometriosis also is associated with an
increased number of activated mast cells in association with strong positive Ucn 1
immunostaining [140]. Normal endometrium, in contrast, shows low tryptase and Ucn 1
immunoreactivity [140]. Thus, Ucn 1 expression and mast cell activation, increased in
inflammatory conditions of the reproductive tract, may correlate with increased risk for
spontaneous abortion.

Increased Ucn 1-like-immunoreactivity and mRNA also were observed in lung airway
epithelial cells of rats with experimental allergic asthma, where Ucn 1 increases pulmonary
vascular permeability via a mast-cell dependent mechanism [307,308]. Ucn 1 elevations were
reversed by effective glucocorticoid treatment. Finally, Ucn 1-IR was elevated in stomach
biopsies from patients with active gastritis [53]. The stomach does not contain the rich CRF1
distribution of the colon, but rather is rich in CRF2 receptors [54]. Correspondingly, in contrast
to the CRF1-mediated proinflammatory effects of intestinal Ucn 1, stomach Ucn 1 has been
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hypothesized, via CRF2 receptors, to protect or repair gastric mucosa from injury following
noxious stimuli [53]. Consistent with this possibility, immunoreactive Ucn 1 increases further
in treatment-responding, but not treatment-resistant, patients during disease regression.
Perhaps underlying this relation, both Ucn 1 and Ucn 2 reportedly have short-onset pro-
apoptotic effects on macrophages via CRF2 receptors [276], and Ucn 1 suppressed
lipopolysaccharide-induced TNF-α production by rat Kupffer cells in vitro ([4], but see
[275]).

1.4.7. Reproductive function—In addition to resident and infiltrating mast cells, the
human reproductive system itself expresses Ucn 1, CRF receptors and CRF-BP [89,196,242,
301]. In the ovary, Ucn 1 may suppress ovarian steroidogenesis [188], and Ucn 1 and Ucn 2
levels change dynamically in relation to the luteal phase [309]. In addition, as reviewed
previously, Ucn 1-like-immunoreactivity is produced by choriodecidual and placental tissue
and is elevated in maternal plasma from mid-gestation through birth [85,87,274]. Ucn 2 and
Ucn 3 gene expression also were recently observed in trophoblast and maternal decidua and,
especially in late pregnancy, fetal membranes [119].

Placental Ucn 1 appears to act as a relaxant on uteroplacental vasculature via local action at
CRF receptors. Supporting the physiological relevance of this function, pregnant women with
impaired uterine artery blood flow during mid-gestation exhibit significantly reduced
circulating Ucn 1 levels in proportion to the degree of increased arterial resistance [85].
Similarly, placental explants from women with preeclampsia were deficient in their cGMP
response to Ucn perfusion, a mechanism through which Ucns are hypothesized to produce
vasodilative effects on fetoplacental circulation [133].

Reproductive Ucns also may stimulate uterine contractility or augment contractility from other
stimuli (e.g., prostaglandins) [108,132,212]. Myometrium expresses both CRF1 and CRF2
receptors [88,242]. Ucns increase contractility via autocrine and paracrine CRF2-mediated
actions [132] and may facilitate degradation of extracellular matrices (and thereby rupture of
fetal membranes) via their ability to increase production of matrix metalloproteinase-9 [168].
Consistent with this hypothesis higher Ucn 1 levels at the time of medical induction of post-
term labor strongly predicts a shorter time to delivery (see Figure 7) [274]. Thus, Ucns may
regulate placental vessel resistance to blood flow and augment uterine contractility, suggesting
an important role in the physiology of pregnancy and parturition.

1.4.8. Anxiety- and depressive-related behavior—Central Ucn 1 administration shares
many neurochemical and behavioral properties of i.c.v. CRF treatment, reflecting their
pharmacological similarity. These include behavioral arousing properties in familiar
environments and proconvulsant and anxiogenic-like effects [315]. The anxiogenic-like
properties of central Ucn 1 infusion, mediated at least partly by CRF1 receptors, have been
shown in several paradigms, including the open field [185,317], elevated plus-maze [128,
185,254], light-dark box [185], defensive withdrawal [254] and social interaction tests [94,
233,234]. Ucn 1’s effects on acoustic startle responding appear to differ from those of CRF,
however, as exogenous Ucn 1 dampens rather than potentiates the acoustic startle response
[128].

Quite unlike CRF1 receptor agonists, i.c.v. administration of type 2 Ucns does not consistently
have anxiogenic-like effects in rats [77,273,282,283,291]. For example, Ucn 3 did not increase
anxiety-like behavior in the open field [291], elevated plus-maze [283,291], light/dark box
[291], social interaction [313], or defensive burying tests [313], under conditions in which
CRF1 agonists produced anxiogenic-like changes. In fact, i.c.v. Ucn 3 acutely produced
anxiolytic-like changes in the elevated plus-maze and light/dark box tests [283,291]. Ucn 2
(i.c.v.) also lacked anxiogenic-like effects in the rat open field and elevated plus-maze tests
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[282]. Rather, Ucn 2 had delayed, anxiolytic-like effects under high baseline anxiety conditions
in the plus maze [282] and opposed the anxiogenic-like effects of CRF in the open field
[291]. Finally, whereas CRF1 agonists increased activity in familiar environments, type 2 Ucns
had mild motor suppressing effects and opposed the activating effects of CRF [195,282,283,
316].

On the other hand, some studies have been interpreted as showing pro-stress-like effects of
CRF2 receptor activation in the lateral septum or dorsal raphe of rats [16,99,224], findings
apparently incongruous with the reviewed effects of i.c.v. type 2 Ucn administration.
Furthermore, exogenous i.c.v. administration of high doses of Ucn 2 (but not Ucn 3) to mice
increased anxiety-like behavior in the plus-maze [205,206] and acoustic startle responses
[228]. However, because Ucn 2 (unlike Ucn 3) can activate CRF1 receptors at high doses
[110] and displaces CRF1 agonists from the CRF-BP [125], the role of CRF1 vs. CRF2 receptors
in mediating these effects remains unclear. Overall, whereas CRF1 receptor activation has
known anxiogenic-like effects [314], conclusions regarding anxiety-related effects of central
type 2 Ucn administration are not yet possible and may be brain site-specific.

Moreover, the endogenous anxiety-related roles of Ucns remain similarly unclear as one Ucn
1-deficient mouse model exhibited normal anxiety-like behavior and autonomic responses to
stress [296], whereas another Ucn 1-deficient mouse model showed increased anxiety-like
behavior on the plus maze and open field tests [292]. Recently generated Ucn 2 deficient mice
also did not exhibit altered anxiety-like behavior in the plus maze, light/dark box or conditioned
fear tests [58].

While the role of endogenous Ucns in anxiety-related behavior is unclear, accumulating
evidence suggests a role for Ucn 2 in the regulation of depressive-related behavior, perhaps
via modulation of serotonergic signaling by the dorsal raphe nucleus (DRN). The DRN densely
contains CRF2 and, less so, CRF1 receptors [75,287]. Several studies indicate that CRF1
activation inhibits 5-HT release, whereas CRF2 activation has excitatory effects [97–99,147,
286]. Ucn 2, which is highly expressed in the locus coeruleus, may innervate the DRN via a
known reciprocal connection between these two brain regions [144]. Supporting a role for Ucn
2-CRF2 signaling in the DRN, intra-DRN administration of Ucn-2 dose-dependently increased
5-HT efflux in the basolateral amygdala [5] and led to “learned helplessness”-like behavioral
changes at doses 100-fold lower than those required for CRF, a less potent CRF2 agonist
[99]. Most recently, Ucn 2 deficient female (but not male) mice were shown to exhibit greater
antidepressant-like behavior in the forced swim and tail suspension tests (see Figure 8 [58]).
The resistance of Ucn 2 null females to acquire forced swim immobility resulted from a
persistence of swimming, rather than climbing [58], a behavioral profile linked to serotonergic
acting antidepressants in rodents [79,80]. Interestingly, female, but not male, 5-HT1B-deficient
mice also selectively show reduced immobility in the forced-swim and tail-suspension tests
[129], and other studies have seen a differential sensitivity of females to genetic deletion or
polymorphisms of serotonergic modulators [29,65,129]. These findings support the hypothesis
that Ucn 2-CRF2 signaling modulates 5-HT function..

1.4.9. Hearing—Ucn 1 may be required for the development and maintenance of normal
hearing. The distribution of Ucn 1-like-immunoreactive neurons within the margin of the
lateral superior olive of the brainstem as well as the presence of Ucn 1 fibers and terminals in
the inner spiral bundle of the organ of Corti suggests a role for Ucn 1 in audition [292]. Ucn-
like-immunoreactivity appears in the rat organ of Corti at 8 days of age, present only in the
inner hair-cell region, and not within the tunnel or in the outer hair cell region [292]. CRF1 and
CRF2 receptors also localize to the lateral portions of the organ of Corti, and include other hair
cells, Deiters cells, Henson cells and Claudius cells [292]. Supporting a functional role for Ucn
1 in hearing, Ucn 1-null mutant mice have shorter hair-cells and a higher response threshold
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in the auditory brainstem response examination than wild-type littermates [292]. Perhaps
reflecting impaired hearing, a different murine model of Ucn 1 deficiency had a reduced
acoustic startle response [296].

1.5. Concluding remarks
In sum, understanding of Ucns has emerged from the shadow cast by their paralog CRF, with
each peptide having a unique phylogenetic history, gene, pharmacology, tissue distribution,
and functions. In several organ systems, type 2 Ucns exert pharmacological effects superficially
opposite to those induced by CRF1 ligands, including possible anti-inflammatory properties,
visceral antinociception, dearousal, possible anxiolytic-like activity, stasis of the
gastrointestinal tract, and hypotension. However, it appears to be an oversimplification that
Ucns are simply the yang to CRF’s yin, as Ucns, especially but not exclusively Ucn 1, share
several general properties with CRF (e.g., anorexia, increased energy expenditure/
thermogenesis, CRF1-mediated proinflammatory effects, roles in parturition and reproduction,
as reviewed elsewhere [14,20,78,106,108,260,314,318]) and have distinct ones of their own
(hearing, cardioprotection, hemodynamic and osmoregulatory actions). Even where apparently
“opposite” pharmacological effects exist, it is not clear whether the actions reflect counter-
regulatory actions of endogenous Ucns as opposed to self-regulating, negative feedback actions
of CRF at CRF2 receptors (e.g., anxiolytic-like behavior, dearousal) or indeed whether they
even are physiologically opposing actions (e.g., gastric stasis vs. colonic hypermotility,
peripherally-induced hypotension vs. centrally-induced hypertension). Also, because CRF has
previously been implicated as playing roles in many of the domains reviewed for Ucns, a critical
area of future research will be to clarify how each endogenous ligand singly, in combination
or in opposition subserves particular physiological functions. For example, the role of CRF,
but not Ucn 1, in endogenous HPA-stress responses was partly clarified by distinguishing the
degree to which each ligand did (CRF) or did not (Ucn 1) have stress-regulated access (PVN-
>median eminence-> portal blood) to the anatomical targets that govern ACTH release
(anterior pituitary corticotrophs) and which accordingly express the principal identified
regulatory receptor (CRF1 subtype). Analogously, further understanding of CRF/Ucn
physiology and pathophysiology in the functional domains reviewed above will involve even
closer study of how each natural ligand is differentially expressed and secreted in tissue-
specific fashion in concordance with its putative cognate receptor(s).

Thus, in their own right, Ucns may be clinically relevant molecules in the pathogenesis,
treatment or management of many conditions, including congestive heart failure, hypertension,
inflammatory disorders (irritable bowel syndrome, active gastritis, rheumatoid arthritis),
atopic/allergic disorders (dermatitis, urticaria, asthma), gastroparesis, pregnancy and
parturition (preeclampsia, spontaneous abortion, onset and maintenance of effective labor),
major depression and obesity. Safety trials for intravenous Ucn treatment have already begun
for the treatment of congestive heart failure. Further understanding the unique functions of Ucn
1, Ucn 2 and Ucn 3 action may uncover other therapeutic opportunities.
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Figure 1.
Comparison of the primary structures of urocortin/corticotropin-releasing factor (Ucn/CRF)
family mammalian peptides. Selected putative amino acid sequences for CRF and Ucn 1, 2
and 3 across human (Homo sapien), mouse (Mus musculus), rat (Rattus norvegicus), rhesus
monkey (Macaca mulatta), capuchin monkey (Cebus paella), hamster (Mesocricetus
auratus), sheep (Ovis aries), cow (Bos taurus), and dog (Canis familiaris). Boxed regions
indicate sequence identity. Black fill with white letters indicates CRF superfamily homology
(only 5 residues). Dark grey fill with white letters indicates selective “type 2 Ucn” (Ucn 2, Ucn
3) lineage homology (7 residues). Grey fill with black letters indicates selective type 1 Ucn/
CRF lineage (Ucn 1, CRF) homology (8 residues). Light grey fill with black letters indicates
pan-Ucn homology (3 residues). The threonine-lysine (TK) residues are shown parenthetically
for Ucn 3 because the flanking dibasic arginine residue (RR) cleavage site (not shown) is not
conserved in humans, rhesus monkey, or rodents. This leads to the prediction of a mature 38-
residue peptide cleaved after the TK residues. For species in which the RR residues are present
in the preprotein, a 40-residue peptide that includes the TK residues, orthologous to the
alternatively predicted peptide stresscopin (SCP), might be a mature prohormone product.
Similar uncertainty regarding the N-terminal proteolytic cleavage processing has led to the
alternative prediction of stresscopin-related peptide (SRP), rather than Ucn 2, as the mature
product of the Ucn 2 prohormone. The definitive identity of mature peptides derived from the
Ucn 2 and Ucn 3 prohormones remains uncertain.
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Figure 2.
Neighbor joining phylogenetic tree using p-distance of vertebrate CRF-like prohormone amino
acid sequences. Numbers at branch nodes represent the confidence level of 1000 bootstrap
replications. UI, Urotensin I; SVG, sauvagine; UCN1, urocortin 1; UCN2, urocortin 2; UCN3,
urocortin 3; Carp, Cyprinus carpio; Danio, Danio rerio, zebrafish; EurFld, Platichthys flesu,
European flounder; Te, Tetraodon nigroviridi, pufferfish; Fugu, Takifugu rubripes, pufferfish;
Gfish, Carassius auratus auratus, goldfish; Xlaev, X. laevis, South African clawed frog; Xtrop,
X. tropicalis; Rcates, Rana catesbeiana, North American bullfrog; Psauv, Phyllomedusa
sauvageii; Sckr, Catostomus commersoni, sucker; Spea, Spea hammondii, Western spadefoot
toad; Til, Tilapia mossambicus; Trout, Oncorhynchus mykiss.
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Prohormone GenBank Accession # / ENSEMBL ID

CRF

Bovine NM_001013400

Carp AJ317955

Chick AJ621492

Dog NM_001014278

Fugu SINFRUG00000146091

Gfish AF098629

Human NM_000756

Pig AF440229

Psauv AY596828

Rat NM_031019

Rcates AB161633

Sckr1 S65264

Sckr2 x58784

Sheep J00803

Spea AY262255

Til AJ011835

Xlaev S50096

Xtrop ENSXETG00000020294

UCN2

chick XM_425157.1

dog ENSCAFG00000012466

human NM_033199

mouse AF331517

rat NM_133385

Te AL175143

UCN1 / UI / SVG

carp UI M11671

Danio UI BX510372

dog UCN1 ENSCAFG00000004852

EurFld UI AJ517171

Fugu UI SINFRUG00000137751

Gfish UI AF129115

human UCN1 NM_003353

mouse UCN1 NM_021290

Psauv SVG AY943910

rat UCN1 NM_019150

Trout UI AJ005264

Xlaev UCN1 AY596827
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Prohormone GenBank Accession # / ENSEMBL ID

UCN3

chick BX930520.2

Danio BX004864.7

dog ENSCAFG00000005250

Fugu AJ251323.1

human NM_053049

mouse AF361944

rat XM_574076

Te GSTENG00027885001

Xlaev AY596826

Xtrop ENSXETG00000016289
Adapted from [28] with permission.
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Figure 3.
Amplified circadian peak of basal hypothalamic-pituitary-adrenal (HPA)-axis activity in
urocortin 2 (Ucn 2) or corticotropin-releasing factor type 2 (CRF2) receptor-deficient female,
adult mice. Panels A and B show plasma adrenocorticotropic hormone and corticosterone
levels, respectively, in Ucn 2 or CRF2 null (−/−) mutant mice and their respective wildtype (+/
+) littermate controls. Nocturnal peaks in ACTH and CORT levels (p.m., -1hr dark onset) were
greater in both mutant mice models, which did not differ in circulating nadir levels (a.m., -1
hr light onset). Effects of Ucn 2 deficiency were abrogated by ovariectomy (OVX). The
amplified circadian amplitude of adrenocortical activity was confirmed by time course analysis
in Ucn 2-deficient female mice (Panel C, shading indicates the 12-hr dark cycle), and may be
related to their increased expression of arginine vasopressin in the supraoptic (SON) and
paraventricular (PVN), but not suprachiasmatic nuclei (SCN) of the hypothalamus (Panel D).
Data reflect M±SEM. *p<0.05 vs. wildtype controls. Adapted from [58] with permission.
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Figure 4.
Effects of bolus intravenous mouse urocortin 2 (Ucn 2) infusion on hemodynamic (Panels A–
C) and cardiovascular-relevant hormonal responses (D–I) in sheep before or after induction of
heart failure by 7 days of rapid (225 beats/minutes) left ventricular pacing, as compared to
vehicle-infused (10 ml isotonic saline) controls. Ucn 2 tended to normalize all parameters in
the heart failure model, while having lesser direct effects in healthy sheep. Data reflect M
±SEM. *P<0.05, **P<0.01, P<0.001 vs. respective vehicle-treated controls. Adapted from
[220] with permission.
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Figure 5.
Anorectic effects of urocortins on incremental food intake. Panel A shows acute-onset, dose-
dependent anorectic effects of intraperitoneal (i.p.) rat urocortin 1 (Ucn 1) in previously fasted
(18–20 hr) adult male mice, with refeeding intake monitored by intermittent (30, 1 hr)
weighing. Panel B shows delayed-onset, dose-dependent anorectic effects of
intracerebroventricular human urocortin 2 (hUcn 2) in non-food deprived adult male rats, with
spontaneous nocturnal intake monitored by an automated precision-pellet system. Data reflect
M±SEM. *p<0.05 vs. vehicle-condition. Adapted from [294] and [121], respectively, with
permission.
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Figure 6.
Relative potency of intraperitoneal administration of urocortins (Ucn 1, Ucn 2) or rat/human
corticotropin-releasing factor (r/hCRF) to inhibit gastric emptying in conscious mice. Graphs
represent the % mean inhibition of gastric emptying of a solid nutrient meal in the 2 hr (mice)
after peptide administration; r=rat, m=murine, h=human. Adapted from [177] with permission.
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Figure 7.
Higher preinduction maternal plasma urocortin 1 levels correlate significantly with a shorter
time to delivery following intravaginal prostaglandin labor induction in post-term pregnancies.
Figure depicts scatterplot of individual observation with fit regression line. Adapted from
[274] with permission.
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Figure 8.
Increased antidepressant-like behavior in female urocortin 2 (Ucn 2) null mutant mice. Panel
A shows that female Ucn 2 null mice did not become increasingly immobile during a modified
forced-swim test, unlike female wildtype (WT) mice. Behavioral analysis indicated that this
resulted mainly from persistent swimming, a behavior linked to serotonergic acting
antidepressants. Panel B shows that female Ucn 2 null mutant mice also were significantly less
immobile in the tail-suspension test. Data reflect M±SEM. *p<0.05 versus WT mice; #p<0.05
versus 1–5 min time bin. Adapted from [58] with permission.
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