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Abstract
Background—There is rising interest in eliciting health state valuations using rankings. Due to
their relative simplicity, ordinal measurement methods may offer an attractive practical alternative
to cardinal methods, such as time trade-off (TTO) and visual analog scale (VAS). In this paper, we
explore alternative models for estimating cardinal health state values from rank responses in a unique
multi-country database. We highlight an estimation challenge pertaining to health states just below
perfect health (the ‘non-optimal gap’) and propose an analytic solution to ameliorate this problem.

Methods—Using rank, a standardized protocol developed by the EuroQol Group, TTO and VAS
responses were collected for 43 health states in eight countries: Slovenia, Argentina, Denmark, Japan,
Netherlands, Spain, United Kingdom, and United States, yielding a sample of 179,431 state responses
from 11,483 subjects. States were described using the EQ-5D system, which allows for three different
possible levels on five different dimensions of health. We estimated conditional logit and probit
regression models for rank responses. The regressions included 17 health-state attribute variables
reflecting specific levels on each dimension and counts of different levels across dimensions. This
flexible specification accommodates previously published valuation models, such as models applied
in the United Kingdom and United States. In addition to fitting standard conditional logit and probit
models, which assume equal variance across health states (homoskedasticity), we examined a
heteroskedastic probit model that assumes no variance for the two points anchoring the scale
(“optimal health” and “dead”) and relaxes the equal-variance assumption for all other states. Rank-
based predictions for the 243 unique states defined by the EQ-5D system were compared to
predictions from conventional linear models fitted to TTO and VAS responses.

Results—By construction, the TTO and VAS models assume no variance around the anchoring
states of “optimal health” and “dead.” Mimicking this assumption in the probit rank models helps
dissolve the ‘non-optimal gap.’ For all other states, variances in TTO and VAS were negatively
associated with mean values, which contradict the assumption of homoskedasticity. Estimated health
state values from the heteroskedastic probit model for the ranking data were highly correlated with
predictions from both TTO and VAS models for the 243 EQ-5D states. Between VAS and rank-
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based estimates, Lin’s rho, a measure of agreement, was over 0.98 with a mean absolute difference
of 0.028. Corresponding measures of agreement between TTO and rank estimates were 0.96 and
0.12, which is similar to the agreement between VAS and TTO.

Conclusions—Rank-based valuation techniques, which offer advantages of flexibility,
generalizability, and ease of administration, may be attractive substitutes for TTO and VAS in the
measurement of societal values for health outcomes.
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INTRODUCTION
The use of ranking methods in eliciting values for health states (1-4) may facilitate data
collection where cardinal methods such as time trade-off (TTO) and visual analogue scale
(VAS) are not feasible, for example, in populations with limited literacy and numeracy (5).
Even in highly-educated populations, the relative flexibility and ease of administration of
ranking methods may make this approach an attractive alternative to standard utility
measurement techniques. For instance, the EuroQol group is currently exploring the possibility
of using ranking to estimate health-state values in a new 5-level version of the widely used
EQ-5D classification system (6-8). Unlike standard gamble and time tradeoff techniques, the
use of ranking responses has not been formalized within a decision theoretic framework for
constructing quality-adjusted life years (QALYs). However, if rank-based estimates are similar
to those from common cardinal methods, ranking and other ordinal measurement approaches
may offer useful alternatives for deriving weights for QALYs.

A key challenge in estimating health-state values from ranking data is locating the values on
the 0 to 1 scale needed for QALYs. The distance between the top anchor for the scale and the
next best health state—the ‘non-optimal gap’—presents three methodological problems (3).
First, in most measurement protocols, state of “perfect health” or “optimal health” marks the
upper bound of a segmented scale, while random utility models—which underlie strategies for
analyzing ordinal health-state comparisons—assume a continuous and unbounded scale.
Because ranks are not scale-based, they are not subject to the compression of values in cardinal
measures caused by proximity to the upper bound. Second, optimal health is logically dominant
over all other states, and this dominance is evidently clear to most respondents. Few subjects
report ties or rank optimal health below any other health states. This pattern complicates the
estimation of values for states near optimal health since models for ranked data rely on
differences in orderings to infer distances in cardinal values. Finally, standard models for
analyzing ranking data, as the conditional logit regression model, typically assume that
variance in health-state values is constant across states, including the states that anchor the
scale (“optimal health” and “dead”). If this assumption is violated—for example, because
values for mild states vary less than those for severe states—then distances between mild states
will be overestimated in models that assume constant variance. Furthermore, allowing variance
around anchor state values is inconsistent with TTO and VAS approaches, which take these
values to be fixed.

To address these problems, we consider alternatives to the conditional logit regression model
in analyses of health-state rankings in a large, multi-country dataset. In addition to comparing
alternative model specifications for ranking data, we also compare rank-based predictions with
predictions from VAS and TTO responses for the 243 unique states defined by the EQ-5D
system.
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THEORY
Random utility models (RUMs) provide a theoretical framework for health state valuation
studies. The utility of a health state, j, for an individual, i, is represented by:

(1)

where the state-specific component, μj, depends only on state attributes, and the error term,
εij, represents randomness in health-related utility, either due to fundamental variability (i.e.
variation in utility of a given state across individuals) or stochastic error (i.e., variation in an
individual’s report on utility). This RUM implies that the probability a particular state has
higher utility than another for a specific individual is given by:

(2)

Because the probability that state j is preferred to state k depends on the difference in error
terms, additive individual fixed effects are not identifiable. An individual’s rankings would be
identical if a constant were added to all of her state-specific utilities. On the other hand, whereas
additive individual effects “cancel out” in comparisons of two health states, multiplicative
effects may not. Some individuals may respond with greater error than others; at the limit, an
individual’s orderings may be virtually uncorrelated with the ordering of the means. In this
study, we assume homogeneity in individual-specific multiplicative effects.

In previous research, we built on McFadden’s seminal work on discrete choice (9), and assumed
that the randomness term, εij, comes from a type 1 extreme value distribution (EV-1), Pr(ε ≤
t) = exp(-exp(-t)). Under this specification, the probability of a particular pairwise ordering
depends solely on the two relevant state-specific components, μj and μk.

(3)

or, equivalently,

(3a)

The difference between two independent EV-1 errors is logistically distributed, which offers
advantages of computational simplicity, parsimony, and robustness of logit estimation (10,
11). Equation 3a shows that the difference between two state-specific components equals the
log-odds of choosing one over the other.

Two disadvantages of this formulation include the assumption of constant variance across
health states (homoskedasticity) and the slight asymmetry of the EV distribution. Alternative
distributions may well provide better characterizations of the variance around health-state
values. For example, the randomness term, εij, may be normally distributed (i.e., following a
symmetric bell-curve). A symmetric distribution allows the model to produce equivalent results
under a complete reversal of order (“palindromic invariance”). This is intuitively appealing
since inferences from a particular rank ordering should not vary depending on whether numbers
were assigned to ranks from lowest to highest or highest to lowest. Furthermore, the normal
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specification implies the familiar probit model (12), which lends itself more easily to a
heteroskedastic formulation:

(4)

or, equivalently,

(4a)

where  represent the jth state’s variance. We compare this heteroskedastic probit model to
the standard conditional logit model.

METHODS
Data

In this study, we pool several country-specific data sets provided by members of the EuroQol
Group. All studies presented in this secondary analysis (Table 1) are based on the MVH-study
protocol. This protocol, first developed and applied in the United Kingdom, has been described
in detail elsewhere (13-15). Details about the small differences in the national replication
studies that followed the original UK study are also available (3). As we want to focus on the
comparison of ordinal and cardinal measures, we only included studies of the EuroQol Group
that had both rank and TTO responses based on the original MVH protocol.

In all of the country studies, health states are characterized using the EQ-5D system, which
comprises a set of scores on five dimensions (mobility, self-care, usual activities, pain/
discomfort, and anxiety/depression) with three possible levels on each. A vector of these five
scores may be used as shorthand in identifying specific health states. For instance, the
abbreviation 21122 represents a health state with some problems in walking, no problems with
self-care, no problems with performing usual activities, moderate pain, and moderate anxiety.

The Measurement and Valuation of Health (MVH) Protocol
The original MVH-protocol describes a face-to-face interview with several sections. First,
respondents are asked to describe their health using the EQ-5D system. Next, respondents order
15 or more cards each describing a health state, including the anchoring states of 11111 and
“immediate death”. Respondents are instructed to assume each health state persists for 10 years,
followed by death. Following the ranking exercise, the subjects are asked to place each card
on the EQ-VAS.

In the TTO exercise that follows, respondents decide whether ten years in the health state is
preferred to ‘immediate death.’ If so, a series of trade-offs are presented to determine the
number of years in optimal health, x, that is equivalent to 10 years in the state presented. If the
respondent prefers `immediate death,’ the interviewer presents an alternative series of trade-
offs to determine the period (<10 years) in the health state, y, followed by the time in optimal
health, (10-y), that together are equivalent to `immediate death.’ Thus, the TTO exercise
produces either an x or y response for each health state depending on whether the state is
regarded as better or worse than death.
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Exclusion of Respondents
In our pooled dataset, respondent data were excluded for a particular method based on any of
the following four criteria: (1) only one or two states were valued (other than 11111,
“immediate death”, and “unconscious”); (2) all states were given the same value; (3) all states
were valued worse than “immediate death”; or (4) the VAS response of “immediate death”
was higher than the response for optimal health. In addition, respondents were excluded from
the rank sample if they ranked death equivalent to optimal health (1.5%) and from the VAS
sample if they reported a difference of less than 3 points on a 101-point interval scale (1.3%).
These five criteria resulted in exclusion of 3.7% of the respondents from the rank sample
(N=414), 4.5% from the VAS sample (N=470), and 1.5% from the TTO sample (N=173). No
further logical consistency criteria were applied.

Pre-Estimation Rescaling of VAS and TTO Responses
For use in QALYs, VAS responses are rescaled using anchor state responses.

(5)

where VASi,j is the raw VAS valuation by respondent i for state j, VASi,Optimal is the valuation
of the best possible EQ-5D state (11111), and VASi,Dead is the valuation of “immediate death.”

For TTO responses, different transformations are required for states rated as either better than
or worse than being dead. For better-than-dead states the transformation is:

(6)

where xi.j is the (better-than-dead) TTO response for state j by respondent i.

For worse-than-dead states, various transformations are possible. The alternative that is
theoretically consistent with the TTO question transforms responses as follows:

(7)

where yi.j is the (worse-than-dead) TTO response for state j by respondent i.

Based on Equation (7), negative TTO values can be large compared to positive values for
better-than-dead states. In the case of the MVH-protocol, the largest negative value is -19 or
-39, depending on whether tradeoffs are recorded in six-month or three-month units (16, 17).
When calculating mean values, large negative values could easily dominate the much smaller
positive values. Some researchers have suggested that negative values be transformed into the
negative one to zero scale. Dolan (13) used the following transformation:

(8)

while Shaw and colleagues (18) divided the negative values obtained by applying Equation (7)
by a constant representing the largest possible negative value allowed by that study’s protocol:
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(9)

While both Dolan and Shaw transformations contradict theory, we transformed all worse-than-
dead TTO values in this study using Dolan’s method with the interest of comparability to the
prevailing practice in previous work.

VAS and TTO approaches assume the anchor values do not vary. On the other hand, rank-
based models based on homoskedastic specifications (e.g. conditional logit) assume the same
nonzero variance for these anchor states as for all other states. As a result, the latter models
should produce higher values for optimal health and lower values for “immediate death”
compared to TTO and VAS models. This difference may explain the presence of the non-
optimal gap found by Craig, Busschbach and Salomon (3). On the other hand, heteroskedastic
models can restrict the variability of anchor state values, and produce results more similar to
TTO and VAS-based estimations.

Linear Regression for VAS and TTO Values
We estimate values from VAS and TTO using ordinary least squares regression. Because the
purpose of this paper is prediction and not proof of statistical significance, the inclusion of
random effects—which would produce more conservative standard errors around estimated
coefficients—is not necessary.

Conditional Logit Regression for Rankings
Under the EV-1 error distribution assumption and no ties in rank, the likelihood for an observed
set of rank responses is:

(10)

where j does not equal k and sijk is an indicator of the jth state’s dominance over the kth state
for the ith individual.

For identification, the model requires one state-specific component, μc, be constrained to zero.
This constraint is equivalent to dividing the numerator and denominator by exp(μc) and allows
for identification of the remaining difference parameters. A convenient choice for rescaling
purposes is to use optimal health (11111) as the zero anchor. A practical consequence of this
choice is that the conditional logit model is specified on a “disutility” scale, such that higher
numbers map to worse health-state values.

As for the other QALY scale anchor, the coefficient for immediate death has an important role
but an ungainly premise. If the coefficient is unity, disutility is EV-1 distributed on an inverted
QALY scale. Otherwise, disutility is distributed in proportion to EV-1 on the inverted scale.
In theory, the coefficient represents log odds that “immediate death” has greater disutility than
optimal health. Intuitively, this log odd should equal infinity; however, such an infinite
proportionality would violate the QALY scale. In practice, the coefficient on immediate death
is identified primarily by the proportions of respondents rating relatively severe states as being
worse than dead, rather than by direct comparisons between optimal health and death. For this
reason, previous analyses using conditional logit models for empirical ranking datasets have
estimated finite coefficients for immediate death and transformed all model coefficients so the
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estimated coefficient for death equals 1 on the disutility scale (2-4). We adopt this same
approach in the present study.

Exploded Probit Regression for Rankings
In contrast to the conditional logit, the exploded probit estimation expands ranks into a series
of pair wise comparisons. Attributes for states j and k are included in the likelihood of each
pair:

(11)

where sijk is an indicator of the jth state’s dominance over the kth state for the ith individual,

and  is the jth state’s variance. We may further define  in order to constrain
the estimated variances to be positive. Because optimal health and “immediate death” anchor
the scale, their components are constrained to be one and zero, respectively.

Three probit specifications are examined. In the first specification, all state-specific variances
are assumed equal, including anchor variances. This homoskedastic specification is similar to
the conditional logit model, which has the same number of parameters. In the second
specification, we constrained the variances of the QALY scale anchors to be zero. As a result,
all pairwise comparisons between optimal health and “immediate death” are logically ranked,
contributing no information to the estimation. Aside from anchor-specific heteroskedasticity,
we constrained the non-anchor variances to be equal. The third specification relaxes the
assumption of equal variances in non-anchor states. Likelihood ratio tests are used to compare
these three alternative specifications. We also compare results from the second and third probit
models to TTO and VAS predictions, because they share a common scale with fixed anchors.

Ties in Rank
The probit and logit likelihood functions in Equations (10) and (11) were shown in the absence
of ties in rank. To handle ties, we adopt the approach suggested by Efron (19), which replaces
each observed tie with two synthetic observations reflecting two possible unambiguous
orderings of the given pair of states, each assigned 50% weight in the likelihood.

State-specific Component Variables
In all of the regression models for VAS, TTO, and ranking data described above, the state-
specific component, μ, is modeled as a function of 18 indicator variables: two level indicators
for each of the five dimensions, six indicators for the seven possible combinations of any 1s,
2s, or 3s, a count of 2s squared, and a count of 3s squared. In addition to these variables, the
rank-based regressions include an indicator for “immediate death,” so predicted values can be
anchored on the QALY scale after estimation. An indicator for optimal health is included in
the rank-based models, but its coefficient is constrained (as described in the above sections).
Both the United States and United Kingdom models published previously are nested within
this specification (13,18).

Comment on Software
All database work was conducted on SAS 9.1. All regressions were conducted using Stata 10
(20,21). The rologit command was used for the conditional logit estimation. The exploded

Craig et al. Page 7

Med Care. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



probit estimations required tailored code that incorporated ties in rank using Efron’s method
(19).

RESULTS
Distributional Assumptions

First, we examined variance specifications from the conditional logit and exploded probit
models. If health-state values were distributed EV-1, the estimated coefficient for “immediate
death” should be 1; however, the estimated coefficient is 10.28 (95% CI 10.17, 10.39), which
clearly rejects the hypothesis that (dis)utility on the QALY scale is distributed EV-1. Using
the probit specification, we considered whether utility is distributed standard normal (i.e.,
whether the variance equals 1). In our first probit model, estimated variance is 0.0161 (95%
CI 0.0160, 0.0163), clear evidence against standard normality. These findings confirm that
health state values on the QALY scale have smaller variances than those described by EV-1
and standard normal distributions.

Comparing the first two probit specifications (i.e., variable anchors and constant anchors), use
of constant anchors increased the maximum predicted value (0.687 to 0.750) and reduced the
minimum predicted value (-0.054 to -0.083) compared to variable anchors. The revised scale
with constant anchors is comparable to those used by the cardinal measures. For example, the
gap between optimal health and the mild health states, found in previous work (3), is likely
attributable, in part, to the choice of a scale with variable anchors (i.e., conditional logit). In
addition to anchor states having no variance, non-anchor states may have different variances.
These findings on anchor-related compression argue against using the conditional logit model
with rescaling based directly on observed rankings of optimal health and death, and in favor
of the more flexible exploded probit.

Comparing the second and third probit specifications, a likelihood ratio test rejects
homoskedasticity in non-anchor states at a significance level of 0.05 (4046.75 χ2(49); p-
value<0.001). While we can statistically reject homoskedasticity in non-anchor states, the
difference in predicted values between the second and third specifications is small (i.e., mean
absolute difference = 0.004). Only the predicted value of ‘pits’ (33333) changes by more than
0.01, and its value decreases from -0.083 to -0.119.

To better understand state-specific heteroskedasticity, we estimated the state-specific means
and variances of the adjusted TTO and VAS responses for the 49 non-anchor states represented
in the dataset for comparison to the heteroskedastic probit estimates (Figure 1). The patterns
from cardinal measures suggest boundary effects in mild states, as exhibited in the negative
correlation between means and standard deviations. The estimates from the heteroskedastic
probit do not indicate such a relationship. There may be little predictive advantage from
allowing state-specific variances in the probit model.

Ordinal and Cardinal Values for the 243 EQ-5D states
Table 2 describes the coefficients of the linear TTO and VAS models as well as the coefficients
from the second and third probit models. Table 3 lists correlations and measures of agreement
between ordinal and cardinal values. Using the coefficients from the heteroskedastic probit,
Figure 2 further illustrates these relationships.

All predicted values are highly correlated, with Pearson’s rho and Spearman’s rho well above
0.95. The correlation between the rank and VAS predictions is around 0.99. Drawing a 45
degree line (0,0) to (1,1) in Figure 2, we observe VAS values and rank-based values strongly
agree. Lin’s rho, a measure of precision and accuracy, is over 0.98 (Table 3). The mean
difference between TTO and all other predictions is substantial, over 0.11 on the QALY scale;
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however, the mean absolute difference between VAS and rank-based predictions is small,
around 0.028. The difference between TTO and other predictions is greatest in poorer health
states (Figure 2).

DISCUSSION
This paper introduces a novel method for analyzing health state ranking data and produces an
international value set based on eight countries, including five in Europe, one in Asia, one in
South America, and one in North America. Key questions for future research concern sample
sizes and design components needed for rank-based valuation of health states. The demand for
such methodological work is increasing, because of the recognition that TTO exercises may
be impractical for developing countries and arbitrary rescaling of TTO negative responses
needs to be addressed. Furthermore, new descriptive systems (e.g., a 5-level EQ-5D) are being
developed that require valuation studies to inform country-specific health policy making.
Cardinal valuation techniques are limited to trade offs in thermometer units (VAS) or in
intervals of time (TTO) or risk (standard gamble). Rank based techniques are more flexible
and can incorporate a nearly limitless range of tradeoffs.

The strength of agreement between VAS and probit predictions ameliorates a major
shortcoming of previous rank-based techniques, relating to the location of estimates on the 0
to 1 QALY scale, and the large gap that can arise between optimal health and the next best
state when relying on rankings of these states to estimate distance. The use of constant anchors
in the probit model brings the analysis of ranking data in line with approaches for analyzing
VAS or TTO data, and shrinks the “non-optimal gap” considerably. We acknowledge,
however, that some concerns persist about relying solely on ranking data to define distance
between the best and second-best states. Inferences about this distance—whether modeling
rankings with constant anchors or not—relies on either inversions or ties in the ordering of the
two best states, yet optimal health logically dominates all other states. For distances between
pairs of non-anchor states, inversions or ties can result from three different phenomena:
heterogeneity across individuals in values for the two states, differences between the two states
that fall below a minimal threshold for detection, or errors. For pairs of states that only include
the top anchor, the latter two apply. Thus, treating the two types of orderings as if they arise
from the same measurement process may not be appropriate. Some component of the non-
optimal gap may remain even when using constant anchors. Nevertheless, the empirical finding
in this paper that the use of constant anchors produces a close alignment between rank-based
and VAS-based estimates indicates that this modeling strategy, in the absence of exogenous
information to help define the scale, marks a clear advance over previous methods.

Sources of Randomness
The heteroskedastic probit estimation provides evidence that statistically rejects the
assumption of state-specific homoskedasticity; however, the relationship between mean and
variance among the health state distributions is not clearly defined. It is important to recognize
that the basic structure of estimation models for ranking data makes it difficult to identify the
systematic relationship between means and variances of health states that appears in TTO and
VAS responses (Figure 1). This is because the ranking of health states will be relatively
insensitive to many types of monotonic transformation of the underlying scale. As a simple
illustration, imagine marking points along an elastic band representing cardinal valuations for
a series of states. Pulling on one end of the band will expand the distances between states near
this end, without changing the overall ranking of states. Similarly, compression or expansion
of variances in health states that relate systematically to their locations on the scale will largely
preserve rank orderings in population-level datasets, which means simultaneous identification
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of distances on a latent cardinal scale and variances in distributions of individual values on this
scale are difficult.

A larger issue is the randomness in rankings that may result from experimental design factors,
societal heterogeneity, or individual-specific randomness in addition to inter-state covariance.
For example, some respondents may answer with greater measurement error than others due
to illiteracy, numeracy, or poor salience. Previous work on logical inconsistencies shows that
exclusion of individuals who did not adequately complete a measurement task can significantly
change estimates (22). Furthermore, some subjects may better understand a given descriptive
system with the evaluation of each state or get bored as the exercise progresses, producing
order-dependent variance. Either through practice, education or interest, measurement-related
error can cause states to appear more similar, resulting in compression of health state values.
By controlling for logical consistency and order of evaluation directly within the estimator,
future estimators may reduce compression bias.

In addition to measurement error, some subjects may be more consistent in their preferences
than others. Individual-specific heteroskedasticity may be incorporated in rank models, but
would likely be difficult to distinguish from measurement error; one possible remedy would
be to include individual covariates reflecting cognitive function in the variance regression.
Besides individual-specific randomness, levels of agreement about the values of particular
health states may vary across different groups of people. While mean differences across
countries in TTO and VAS responses have been considered previously (5,23), we are not aware
of studies that have considered cross-national differences in variance. The heteroskedastic
probit described here could easily accommodate such analysis..

Summary
TTO has been the dominant choice-based method for health state valuation and the only
valuation technique that accounts for variation in time. It has been criticized because of its
greater cognitive burden, its constant proportionality assumption (24), and its rescaling of
“worse than dead” responses to a unit interval (16). Previous research has also shown that
subjects provide more logically inconsistent responses using TTO than rank, likely due to its
complexity (22). Our results support the use of a simpler valuation exercise. We provide a
novel estimation technique built from empirically tested assumptions and a strong theoretical
foundation in random utility. The prediction results strongly agree with those of VAS and are
representative of an international sample of eight countries. More research is needed to design
valuation studies that best utilize these rank-based innovations.
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Figure 1.
The Relationship between Predicted Value and Standard Deviation for 49 Hypothetical EQ-5D
States
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Figure 2.
Relationship between Cardinal and Ordinal Predicted Values for 243 EQ-5D States
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