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Use of FTIR Spectroscopic Imaging to Identify Parameters
Associated With Fragility Fracture
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ABSTRACT: BMD does not entirely explain an individual’s risk of fracture. The purpose of this study was to
assess whether specific differences in spatially resolved bone composition also contribute to fracture risk.
These differences were assessed using Fourier transform infrared spectroscopic imaging (FTIRI) and ana-
lyzed through multiple logistic regression. Models were constructed to determine whether FTIRI measured
parameters describing mineral content, mineral crystal size and perfection, and collagen maturity were
associated with fracture. Cortical and cancellous bone were independently evaluated in iliac crest biopsies
from 54 women (32 with fractures, 22 without) who had significantly different spine but not hip BMDs and
ranged in age from 30 to 83 yr. The parameters that were significantly associated with fracture in the model
were cortical and cancellous collagen maturity (increased with increased fracture risk), cortical mineral/
matrix ratio (higher with increased fracture risk), and cancellous crystallinity (increased with increased
fracture risk). As expected, because of its correlation with cortical but not cancellous bone density, hip BMD
was significantly associated with fracture risk in the cortical but not the cancellous model. This research
suggests that additional parameters associated with fracture risk should be targeted for therapies for oste-
oporosis.
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INTRODUCTION

THE WORLD HEALTH Organization Consensus Confer-
ence defines osteoporosis as a condition of bone de-

terioration in which individuals have ‘‘a BMD that lies 2.5
SDs or more below the average value for young healthy
women,’’(1) and the Surgeon General’s report adds to this
definition increased risk of fracture.(2) BMD, whereas as-
sociated with fracture risk, is not fully predictive of who
will experience a low impact (fragility) fracture.(3–5) Large
epidemiological studies have shown that BMD accounts
for only ;60% of the fracture risk(6,7) and suggested that
other ‘‘bone quality’’ parameters may account for why two
individuals with similar lifestyles and equivalent BMDs
may have different fragility fracture histories. Although
measurable decreases in BMD in untreated patients have
been associated with increased risk of fragility fracture,(8)

areal BMD changes account for less than one half of the
improvement in fracture risk seen in osteoporotic patients
treated with antiresorptive and anabolic agents.(9)

The parameters generally considered to be representative
of ‘‘bone quality’’ are geometry (including connectivity),
presence of microcracks, and extent of mineralization.(5,9)

The properties of the bone collagen matrix have been sug-
gested to be equally important based on chemical,(10–14)

spectroscopic,(15–20) and gene association(21,22) studies. The
clinical methods routinely used to identify osteoporosis
and fracture risk measure density, geometry, and mineral
content.(22,23) These methods do not, however, provide
information on the extracellular matrix. Infrared and
Raman spectroscopic imaging have been used to describe
the changes in both cortical and cancellous bone in biopsy
tissues as a function of age, disease, and treatment for os-
teoporosis.(15–20,24–27) In contrast to clinical methodologies,
these spectroscopic methods provide spatially resolved
information (;10 and ;1 mm, respectively) on properties
of both the mineral and the matrix.

Fourier transform infrared microspectroscopy (FTIRM)
and imaging (FTIRI) of bone tissue use spectrometers
coupled with light microscopes to examine nondecalcified
sections of bone at ;25- or ;7-mm spatial resolution, re-
spectively.(26) FTIRI allows changes in the bone mineral
and matrix environment to be examined with morphological
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detail. The validated parameters that can then be calculated
from hyperspectral images (where x and y indicate the lo-
cation in the specimen and z the intensity at a specific
wavenumber or a calculated parameter) include mineral/
matrix ratio, carbonate/phosphate ratio, crystallinity, and
collagen maturity (collagen cross-link ratio, XLR).(27) The
purpose of this study was to test the hypothesis that some
bone mineral and matrix bone properties calculated from
FTIRI would explain some of the fragility fracture risk not
predicted by BMD.

MATERIALS AND METHODS

All of the clinician co-authors (R.R.R., A.H., D.D., E.S.,
J.C.) provided biopsies for this study. Under an IRB-ap-
proved protocol, 54 iliac crest biopsies were obtained from
women by these collaborating investigators. IRB approval
was obtained at the individual research centers. Patients
suffering low-trauma fractures who had not been treated
for their osteoporosis before the time of biopsy or those
who received only hormone replacement therapy (n = 8)
were included. Patients with other conditions that would
impact fracture risk (e.g., osteogenesis imperfecta, skeletal
dysplasias) were excluded. The inclusion and exclusion
criteria for each of the studies from which biopsies were
provided are listed in Table 1. The following information

was provided for each patient: code number, age at biopsy,
hormonal replacement therapy (HRT; yes/no = 1/0), spine
and hip BMD (Hologistic; if Lunar, the following equation
was used to convert to Hologistic values: Hologic = 0.863 3

Lunar 2 0.048), T-score, and presence (1) or absence (0) of
fractures at the time of biopsy. Patients who received PTH
or antiresorptive therapies other than estrogen were ex-
cluded from this study. The biopsies were processed for
FTIRI in a blinded fashion and the codes not broken until
the time of statistical analysis.

Biopsies used in this study all had been previously fixed
with alcohol and embedded in polymethyl methacrylate
(PMMA). The embedded tissues were cut at 2–3 mm
thickness and mounted on barium fluoride infrared win-
dows (SpectraTech, Hopewell Junction, NY, USA). Three
sections from each biopsy were examined using a Perkin
Elmer Spotlight 300 Infrared Imaging system (Perkin
Elmer Instruments, Waltham, MA, USA) at a spectral
resolution of 4 cm21. Images from cortical and cancellous
regions of the biopsy were analyzed separately. Back-
ground (BaF2 window only) and PMMA spectra were
collected for each section analyzed, and these spectra were
used for correction of the sample spectral data. Spectra
were baseline corrected, and the PMMA spectral contri-
bution was subtracted using ISYS software (Spectral Di-
mensions, Olney, MD, USA). The mean and SDs from
three to six cortical or cancellous regions per patient for

TABLE 1. Inclusion and Exclusion Criteria

Study N Inclusion Exclusion

AH/DD 14 From among 17 postmenopausal women referred with

symptomatic vertebral fractures in 1986, with radiological

evidence of osteopenia.
d BMD T-scores < 22.5
d No prior antiresorptive treatment, including estrogen
d Signed informed consent to enter a small clinical trial

exploring cyclical treatment with PTH(1-38) with/without

sequential calcitonin, using pretreatment and post-treatment

(200 days) bone biopsies as part of the primary outcomes

ES 5 From among patients with low BMD (T-score < 22.5 at

any site) and/or one or more fragility fractures (excluding

digits, skull)

Any secondary cause of osteoporosis, including
d Estrogen deficiency
d Steroid excess

d Ages 20–48 d Antiepileptic drugs
d Normal menses throughout d Celiac disease

JC 8 Part of an opportunistic study in which a group of

postmenopausal women treated long term with high-dose

estradiol therapy
d These women did not have osteoporosis, their BMD

was on the high side
d The dose of estradiol, given as an implant, was 50–100 mg

approximately every 6 months

RRR 27 Part of a study of growth hormone releasing hormone More than 15% below or 30% above ideal

body weight as defined in the 1983

Metropolitan Life tables.

d Age 45–80 yr, postmenopausal for at least 5 yr,

who had at least one low-trauma fracture or

who had very low spinal BMD by DXA.
d In good general health based on medical history,

physical and screening laboratory examination.

or part of a study of menopause effects on bone
d Healthy with normal premenopausal E2 and FSH levels

At least 46 yr of age, having regular menses
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all FTIRI parameters were calculated and saved in a da-
tabase.

The following FTIRI parameters, reviewed in detail
elsewhere,(26) were calculated using ISYS software. Min-
eral/matrix ratio, which measures bone mineral (correlated
to ash weight) is calculated by integrated area of phosphate
(916–1180 cm21)/amide I (1592–1712 cm21). Carbonate/
mineral ratio (C/P), which reflects the level of carbonate
substitution in the hydroxyapatite (HA) crystal, is calcu-
lated through the integrated area of the n2 carbonate peak
(840–892 cm21) and that of the phosphate. Crystallinity
(XST), which is related to mineral crystal size and perfec-
tion as determined by X-ray diffraction, is calculated as the
1030/1020 cm21 peak intensity ratio. The collagen maturity
(XLR) was estimated as the intensity ratio of amide I sub-
bands at 1660 and 1690 cm21

The FTIRI data were dichotomized based on the pres-
ence (1) or absence (0) of a fracture. Multiple logistic re-
gressions using the equation:

Fracture ¼ f ðb0 þ b1BMDþ b2M=M þ b3XST

þ b4XLRþ b5C=Pþ b6ageþ b7RXÞ

were calculated from the indicated parameters sepa-

rately in the cortical and cancellous bone. In this equa-

tion, BMD is hip BMD as spine BMD was not available

for all patients, M/M is mineral/matrix ratio, XST is

crystallinity, XLR is collagen maturity, C/P is carbonate

to phosphate ratio (also not available for all patients),

and RX is estrogen treatment (Y/N= 1/0). Logistic re-

gression analyses were calculated with JMP 4.0 (Statis-

tics Discovery Software; SAS Institute, Cary, NC,

USA). Infrared parameters, age, and BMD were used as

continuous variables, and fracture and estrogen treat-

ment were used as nominal values. All parameters in-

cluding age, BMD (hip and spine), and the FTIRI pa-

rameters were entered into the database, and bivariate

(pairwise) analyses were run to estimate the significance

of individual factors. The full model was run to see

which individual effects remained significant, and the

parameters with the highest p values were sequentially

removed and the model rerun. Additional comparisons

were based on two-sided t-tests.

RESULTS

Evaluation of the patient demographics showed there
were no differences in age between the fracture and non-
fracture group (Table 2). The fracture group had signifi-
cantly lower spine but not hip BMD, and this was reflected
in their calculated T-scores.

Typical FTIRI images are shown in Figs. 1A–1C with
data for a T-score–matched pair (T = –1.3), one of whom
sustained a fracture and one who did not. As can be seen,
the fracture case looks different in terms of the means for
the FTIR parameters, and the actual measured values for
the images shown are different. When the mean values
for all fracture cases were compared with the nonfracture
cases (Fig. 2), statistically significant differences (p < 0.05)
were observed in cortical and cancellous bone for the col-
lagen maturity (XLR) and in cortical bone for carbonate/
mineral ratio. The number of biopsies for which carbonate/
phosphate ratios were available was smaller than that for
the other parameters because of a change in the detector,
which enabled us to directly acquire carbonate content
information.

FIG. 1. Typical infrared images for the
FTIR parameters recorded in trabecular bone
from two patients, one with fractures and
one without, who had comparable BMD T-
scores of 21.3. Patient A had no fractures (t =
21.32) and was 50 yr old at time of biopsy.
Patient B had a fracture history (T = 21.25)
and was 58 yr old at time of biopsy. Numerical
values below the images are the means ± SD
for that parameter in the figure and indicate
the range of data for the pixels shown. Note in
these figures, 1 pixel = 6.25 mm.

TABLE 2. Patient Characteristics

Fracture
(N = 32)

Nonfracture
(N = 22) p

Age at biopsy (yr) 59 ± 17 56 ± 5 0.31

BMD spine (g/cm2) 0.74 + 0.2 0.99 ± 0.16 <0.005

BMD T-score spine 22.7 ± 1 0.12 ± 2 <0.005

BMD hip (g/cm2) 0.70 ± 0.06 0.83 ± 0.26 0.15

BMD T-score hip 22.5 ± 0.6 21.0 + 2 0.16
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A model based on multiple logistic regression indicated
that increasing crystallinity and collagen maturity were
significantly associated with fracture in cancellous bone,
whereas hip BMD, mineral/matrix ratio, and collagen
maturity were significantly associated with fracture in
cortical bone (Table 3). The cortical bone model converged
with p < 0.0001, R2 = 0.58 and the cancellous bone model
with p = 0.0009, R2 = 0.66. The data in Table 3 summarize
the intercepts (bo) and b parameters for each of the vari-
ables and their significance levels. Decreased carbonate/
mineral was significant and accounted for 44% of the var-
iation noted in the 22 samples for which this parameter
could be measured in the single logistic regression (Table
4). However, it dropped out of the multiple logistic re-
gression model (with 54 samples) without a change in R for
the model, indicating that either its effects were accounted
for by some other factor (presumably crystallinity or min-
eral/matrix ratio) or that we had insufficient samples to
determine its full effect.

DISCUSSION

This study showed a significant association between
FTIRI parameters related to mineral content, mineral
composition (crystallinity and carbonate/phosphate ratio),
and collagen maturity with bone fracture. These findings
agree in part with previous reports that found elevated
collagen cross-link ratio (collagen maturity) in cortical and
cancellous bone of young women with unexpected fragility
fractures(27) and with our earlier reports of increased cry-
stallinity in bone that was histologically osteopenic.(16)

Multiple logistic regression is the most efficient way of
examining the effects of various independent variables on
a dichotomous dependent variable. Although it does as-
sume that the independent variables, in this case, BMD,
crystallinity, mineral/matrix ratio, and collagen cross-link
ratio, are linearly related to the dependent variable, frac-
ture, on a log scale, that assumption seems justified by the
relatively high R2 values of the fit. The multiple logistic
regression models explain 58% and 66% of the difference
between fracture and nonfracture patients in cortical and

cancellous bone, respectively. Given that a great deal of
fracture risk has to do with chance, we believe that this was
a strong confirmation of the appropriateness of our ana-
lytical method.

The finding of an association between increased crys-
tallinity (and altered crystal composition—i.e., decreased
carbonate/mineral ratio) and fracture risk is also in
agreement with several other studies. Increased particle
sizes (larger clumps of crystals) were visible optically in
thin sections obtained from biopsies of patients that had
fractured femoral necks as contrasted with controls.(28)

Larger crystal particles were also associated with aging,
and the presence of larger crystals suggested to be related
to bone fragility.(29) Our initial studies of biopsies from
patients with osteoporosis also found increased crystal sizes
in their biopsies as contrasted with control tissues,(16,30) as
did a recent Raman study.(31) In the Raman study,(31) in-
creasing tissue level strength and stiffness was reported to
increase parallel to the crystallinity, whereas ductility de-
creased. Using Raman spectroscopy, McCreadie et al.(32)

found elevated carbonate/phosphate levels in fracture ca-
ses, as we saw with FTIRI in both high and low turnover
osteoporosis.(16)

There are several possible reasons for the association
between crystal size and fracture risk. First, the larger more
perfect bone mineral crystals may represent those that
remain when bone is remodeled, and hence may reflect
increased tissue turnover and the loss of younger, newly

FIG. 2. Summary of measured FTIRI parameters for all cases;
mean ± SD. *p < 0.05 vs. nonfracture controls; **p < 0.01 vs.
nonfracture controls.

TABLE 3. Multiple Logistic Regression Results for Dependent
Variables of Fracture

Independent
variables

Cortical Cancellous

b-coefficient p b-coefficient p

Intercept 19.51 0.03 14.76 0.04

BMD (hip) 10.9 0.009

Crystallinity NS 25.24 0.03

XLR 23.56 0.012 22.38 0.002

Mineral/matrix 23.37 0.04 NS

C/P NS NS

p < 0.001 for both whole model tests, R2 = 0.58 (cortical); 0.66 (cancel-

lous). A negative number for the coefficient indicates that a higher value is

associated with the risk of fracture.

NS, not significant.

TABLE 4. Single Logistic Regression

Variable Estimate R2 p

Age 20.0063 0.001 0.81

RX (n = 8) 11.6 0.21 0.90

BMD (hip) 4.0 0.08 0.22

Cortical Cancellous

Estimate R2 p Estimate R2 p

Crystallinity 22.22 0.017 0.69 29.26 0.09 0.04

XLR 21.37 0.08 0.046 20.511 0.17 0.30

Mineral/Matrix 20.92 0.0007 0.83 20.37 0.06 0.56

C/P(3100)(n = 22) 10.5 0.43 0.008 10.19 0.49 0.009

RX, estrogen treatment.
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formed bone. The smaller crystals are generally more sol-
uble and are dissolved first. Smaller crystals also reflect
newly formed bone; hence, a loss of smaller crystals means
less formation and/or more resorption. Second, from
physicochemical principles, larger particles in general tend
to be more brittle and weaker, because when a force is
applied, the atoms generally try to move in relation to the
adjacent layer of atoms. In metals, for example, making
the particles (grains) smaller generally strengthens the
materials. Broadening the size distribution also strengths
the material.(33) Finally, larger crystals may not be able to
align as well with the collagen matrix, weakening the
crystal–mineral interactions, and making the composite
weaker.

Cortical and cancellous bone showed a significant asso-
ciation between increasing collagen maturity and fracture
risk. This is mostly likely because of the more stable nature
of the older bone and may represent an effect rather than a
cause. Similar to the crystallinity measurements, alterations
in collagen maturity and collagen composition have also
been previously associated with whole bone mechanical
properties and fracture risk. For example, alterations in
collagen cross-linking, based on Raman analyses, were as-
sociated with mechanical changes in human cortical bones
of different ages.(15) A study of intracapsular hip fracture
cases as contrasted with age-matched postmortem controls
also found reduced collagen enzymatic cross-links in high-
density bone and increased pentosidine in both low- and
high-density bone and higher plasma homocysteine and
lower pyridoxal levels than in controls.(13) The collagen
cross-linking structure was also altered in microdamaged
areas of dog bone,(12) consistent with ruptured cross-links
and reduced fracture resistance. Fracture cases also showed
increased lysyl hydroxylation.(14) Based on chemical analysis
of secreted markers of bone turnover, bone collagen matu-
ration varied with different antiresorptive treatments.(34)

This has potential implications for treatment.
It is also possible that the altered collagen maturity

predisposes the bone to fracture. Proper collagen content,
structure, and maturity are all important for mechanical
integrity; this can be seen from analyses of the brittle bone
found in children and subclinical models of osteogenesis
imperfecta, as reviewed elsewhere.(35,36) Studies of young
women with unexplained fractures have also found in-
creased XLR values in their bones.(27)

The proper collagen matrix is important for regulation
of mineral deposition and is a major contributor to the
strength of the composite tissue.(37) Increased collagen
cross-linking has been correlated with resistance to frac-
ture in chickens,(37) and defects in collagen organization
are associated with decreased mechanical strength, al-
though in the study in question, alterations in cross-links
were not reported.(38) Increased collagen cross-linking may
reflect the older nature of the matrix associated with de-
creased new bone formation and/or increased loss of youn-
ger bone. However, even in young individuals, impaired
collagen production and maturation is known to lead to
brittle bone disease.(33)

This study thus showed that mineral crystal size and
composition and matrix maturity are associated with

fracture risk. This association is independent of age and,
for cancellous bone, of BMD. In cortical bone, BMD and
mineral/matrix ratio were also independent predictors,
an unexpected finding that may reflect the use of a global
hip BMD to compare with iliac crest mineral content.
The FTIRI parameters most likely come into play, after
microarchitecture and the presence of microcracks, have
been taken into consideration, but this preliminary study
did not have sufficient samples to investigate those other
markers of bone quality. We can speculate, however, that if
architecture and the presence of microcracks were com-
parable in two samples, the one where the crystals were
larger (leading to increased brittleness) or the collagen
excessively cross-linked (decreasing its resilience), would
be more likely to fracture.

One advantage of our study is that we had untreated
patients with a wide range of BMDs both in the fracture
and control groups. Earlier studies using other techniques
such as MRI(39) had only patients with low BMD, a limited
number of subjects, or lacked sufficient untreated controls.

Despite the fact that we had 54 patient biopsies, our
study had several limitations. First, the biopsies were
obtained retrospectively from other investigators. This
means both the fracture and the control data might be bi-
ased by the subjects’ willingness to participate in the study
at the various collaborating institutions. Second, because of
the small sample size, it was difficult to tell if the reason
that many FTIRI parameters dropped out of the model was
because of lack of variability or because of interdepen-
dence. Those parameters included age, spine BMD, and
carbonate/mineral ratio. We did not have data on the ob-
served heterogeneity(19) of each of the variables for the
majority of these samples, although we know that the
heterogeneity does vary with treatment. Future studies
with larger sample numbers will address these additional
parameters. The third limitation was that we did not know
whether a patient with a fracture had a single, or more than
one, fracture. It is well established that patients with os-
teoporosis have an increased risk of sustaining a second
fracture after the first.(40,41) Fourth, the biopsies used in
this study were not pre- and postfracture tissues from the
same person. Ideally prefracture tissue from fracture prone
patients would be compared with tissue from controls. Fi-
nally, the iliac crest biopsies are not taken from a clinically
relevant site, nor are they taken from the site at which the
individuals in the sample differed in BMD or in fracture
status. However the fact that we can detect differences
in patients with and without osteoporosis and with and
without treatment for osteoporosis using FTIRI analyses
of iliac crest biopsies(16,18,19,27,30) implies that this is not a
major limitation of the study. However, to address this
concern, we are currently performing a necropsy study to
determine the site to site variation in FTIRI properties in
individuals with no evidence of bone disease, and have data
in baboon osteons that show consistency in the tissue age–
dependent variation in FTIRI parameters.(42)

In conclusion, based on this first analysis, we suggest that
collagen maturity and crystallinity contribute to bone
weakening and hence fracture. Furthermore, we suggest
that analyses of these parameters in therapy trials could be
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used provide greater insight into treatment efficacy than
clinical measures alone.
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