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INTRODUCTION
The adherence of  Helicobacter pylori (H pylori) to the 
gastric mucosa is widely assumed to play an important 
role in the initial colonization and long-term persistence 
in the human gastric mucosa. Analysis of  the three 
completed H pylori genomes (strains 26695, J99, and 
HPAG1) has confirmed the presence of  five major outer 
membrane protein (OMPs) families, which comprise 
approximately 4% of  the H pylori genome. Among the 
families, members of  the large Hop (Helicobacter outer 
membrane protein) family were the first characterized 
OMPs in H pylori. Several OMPs in the Hop family have 
been reported to act as adhesion molecules including the 
blood group antigen binding adhesin (BabA), sialic acid 
binding adhesin (SabA), adherence-associated lipoprotein 
(AlpA and AlpB), outer membrane inflammatory protein 
(OipA), and HopZ. Lewis b antigen (Leb) and related 
fucosylated ABO blood group antigens are recognized 
by BabA[1], whereas sialyl-Lewis x and sialyl-Lewis a 
antigens (sLex and sLea) are recognized by SabA[2]. 
The corresponding receptors for AlpAB, OipA, and 
HopZ remain unknown. To date, BabA-Leb is the best-
characterized adhesin-receptor interaction in H pylori. In 
this review, I summarize recent data giving new insight 
into BabA and its role in pathogenesis. 

IDENTIFICATION OF BABA
It is well known that Leb is the dominant antigen in the 
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Abstract
Interactions between BabA and Lewis b (Leb) related 
antigens are the best characterized adhesin-receptor 
interactions in Helicobacter pylori  (H pylori ). Several 
mechanisms for the regulation of BabA expression 
are predicted, including at both transcriptional and 
translational levels. The formation of chimeric proteins 
(babA /B or babB /A  chimeras) seems to play an 
especially important role in translational regulation. 
Chimeric BabB/A protein had the potential to bind 
Leb; however, protein production was subject to phase 
variation through slipped strand mispairing. The babA 
gene was cloned initially from strain CCUG17875, which 
contains a silent babA1  gene and an expressed babA2  
gene. The sequence of these two genes differs only by 
the presence of a 10 bp deletion in the signal peptide 
sequence of babA1  that eliminates its translational 
initiation codon. However, the babA1  type deletion 
was found only in strain CCUG17875. A few studies 
evaluated BabA status by immunoblot and confirmed 
that BabA-positive status in Western strains was closely 
associated with severe clinical outcomes. BabA-positive 
status also was associated with the presence of other 
virulence factors (e.g. cagA -positive status and vacA  
s1 genotype). A small class of strains produced low 
levels of the BabA protein and lacked Leb binding 
activity. These were more likely to be associated with 
increased mucosal inflammation and severe clinical 
outcomes than BabA-positive strains that exhibited Leb 
binding activity. The underlying mechanism is unclear, 
and further studies will be necessary to investigate 
how the complex BabA-receptor network is functionally 
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gastric mucosa of  secretor-positive individuals[3], and the 
negative secretor status is associated with a Lewis a (Lea)-
dominant phenotype in the gastric mucosa (Figure 1).  
In 1993, two studies showed that H pylori can bind to 
fucosylated glycoconjugates containing Leb structures on 
the surface of  gastric epithelial cells within human biopsy 
specimens[4,5]. Studies using transgenic mice expressing 
the human Leb epitope in gastric epithelial cells indicated 
that Leb functions as a receptor for an H pylori-specific 
adhesin and mediates its attachment to the gastric pit and 
surface mucous cells[6]. Further studies using the same 
transgenic mice showed that H pylori was adherent to 
the surface of  gastric epithelial cells, resulting in severe 
chronic gastric inflammation and atrophy; whereas  
H pylori was localized in the mucous layer in non-
transgenic control mice[7]. 

In 1998, Ilver et al analyzed the blood group antigen-
binding activity by measuring binding of  H pylori to 
125I-labeled fucosylated blood group antigens[1]. Among 
100 H pylori isolates examined, 66% bound the Leb 
antigen; whereas 95% of  the isolates did not bind 
the related Lea, H-2, Lex, or LeY antigens. The 78 K 
adhesin recognizing the Leb antigen was detected on 
the bacterial cell outer membrane and was isolated 
by a combined ligand identification and purification 
technique and designated as blood group antigen-
binding adhesin (BabA)[1]. Additional analyses revealed 
two sets of  clones that encode two proteins with almost 
identical NH2-terminal domains and completely identical 
COOH-terminal domains, but with divergent central 
domains. The corresponding genes were designated 
babA and babB; BabA but not BabB had Leb antigen-
binding activity. Therefore, the central domain in babA 
is believed to determine the specificity of  receptor 
binding[1, 8-12]; however, the motifs of  the babA gene that 
are involved in binding are still unknown. 

FUNCTION OF BABA 
BabA originally was defined as an adhesin binding to 
the Leb antigen. The H-1 antigen is the carbohydrate 
structure that defines the blood group O phenotype 
in the ABO blood g roup sys tem. Le b, which i s 
difucosylated, is formed by the addition of  a branched 
fucose (Fuc) residue to H-1. The antigens that define 
blood group A and B phenotypes and corresponding 
antigens in the Lewis blood group system are formed by 
terminal N-acetylgalactosamine (GalNAc) or galactose 
(Gal) substitutions of  H-1 and Leb [A-1 and A-Lewis 
b (ALeb), and B-1 and B-Lewis b (BLeb) antigens, 
respectively; Figure 1].

Recently, Aspholm-Hurtig et al investigated the ability 
of  BabA to bind Leb, ALeb and BLeb[8]. Among 265 Leb-
binding H pylori strains from various geographic regions, 
more than 95% of  H pylori strains are “generalists” (able 
to bind ALeb and BLeb in addition to Leb); whereas a 
small subset of  strains bind exclusively to ALeb, and 
are called “specialist” strains. The authors proposed 
that the middle region of  BabA was responsible for 
determining the different binding patterns; however, the 

specific motifs could not be identified[8]. Interestingly, 
“specialist” strains originated predominantly from 
South American individuals (where 60% of  strains were 
classified as “specialist”), who are known to express 
almost entirely the blood group O phenotype. South 
American isolates in their study were from Peruvian 
and Venezuelan Amazon Amerindian populations and 
also from a Colombian mestizo (mixed Amerindian-
European ancestry) population; probably most of  these 
strains came mainly from European strains[13,14]. These 
data suggest that most specialist babA alleles may have 
arisen by mutation and/or recombination within the 
last 500 years. Therefore, the authors propose that such 
rapid evolution of  BabA in response to host mucosal 
glycosylation patterns would enable the pathogen to 
adapt to their individual hosts while avoiding host 
immune responses, and contributes importantly to the 
extraordinary chronicity of  human H pylori infection 
worldwide.

The mucins secreted by gastric mucous cells form 
a mucous gel layer covering the gastric mucosa. This 
gel layer is considered the first line of  gastric mucosal 
defense against luminal noxious agents[15-17], and damage 
to the mucous gel is thought to precede gastric mucosal 
injury. The gastric surface mucous cells and gland 
mucous cells express the secretory mucins MUC5AC 
and MUC6/MUC5B, respectively[18,19]. The majority of   
H pylori reside in the gastric mucus overlying the 
epithelium. It is reported that H pylori could be co-
localized with MUC5AC gastric mucin, but not with 
MUC6-producing cells in the glandular areas, suggesting 
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Figure 1  Biosynthetic pathways of Lewis antigens starting from type 1 lacto 
series core chains. Starting from type 1 core chains, an α1, 2-fucosyltransferase 
(Se) transfers fucose (Fuc) to the terminal galactose (Gal), resulting in the H-1 
antigen (H1). H-1 antigen is a target for GalNAc- or Gal-transferases (in blood 
group A or B individuals) or remains unmodified (in blood group O individuals). 
These intermediates the are modified for the fucosylation step by an α1,3/4-
fucosyltransferase (Le), resulting in the difucosylated histo-blood group 
antigens ALeb, ALeb and Leb. Non-secretors are unable to produce an active Se 
product, and are only targets for the Le gene product Lea.
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that adhesion is predominantly toward MUC5AC-specific 
ligands in gastric mucosa[20]. Subsequently, this binding 
phenotype could be correlated with the expression of  
an active BabA protein in H pylori and the presentation 
of  the Leb antigen in the gastric mucin MUC5AC[21,22]. 
However, since BabA-positive strains also attached to 
Leb-negative MUC5AC of  non-secretors, the involvement 
of  additional epitopes and/or adhesins also must be 
involved[21]. In addition, binding of  H pylori to MUC5B 
had been described[23] and a recent study confirmed that 
the binding was predominantly mediated by BabA and to 
a lesser degree by SabA adhesin[24].

LOCATION OF THE BABA GENE IN THE 
H pylori GENOME
H pylori 26695, J99 and HPAG1 each possess one babA 
allele (HP1243/JHP0833/HPAG1_0876) and one 
babB allele (HP0896/JHP1164/HPAG1_0320)[25-27]. 
Interestingly, the genomic locations of  babA and babB 
genes are completely different among three strains 
(Figure 2). In strain J99, babA (JHP0833) is downstream 
of  hypD (JHP0835) with a J99-specific gene (JHP0834) 
intervening, and babB (JHP1164) is downstream of  
s18 (JHP1165). In strain 26 695, the locations of  
babA (HP1243) and babB (HP0317) are reversed. The 
chromosomal locations downstream of  hypD and s18 
are referred to as locus A and locus B, respectively. In 
strain 26695, one gene encoding OMPs homologous to 
babA and babB (HP0317: denoted babC) with unknown 
function have been identified [27-29]. The location is 
referred to as locus C; interestingly, in strain HPAG1, 
the babB gene is located at locus C and babC gene at 
locus B. The bab genes initially were cloned from the 
strain CCUG17875, and this strain has two babA genes 
and one babB gene[1]. Gene inactivation experiments 
identified that only one gene (denoted babA2) had Leb 
antigen-binding activity; whereas another gene (babA1) 
did not; babA1 was located at locus B; however the locus 
of  babA2 was not determined[1]. 

The location of  babA and babB in various clinical iso-
lates of  H pylori recently has been reported[29,30]. Hennig 
et al[30] analyzed a panel of  35 H pylori isolates and found 
that 24 (69%) contained babA sequences. In contrast, the 
babB gene was identified in 34 strains (97%). The babA 
gene was located at locus A for 19 strains (54%), at locus 
B for four strains (11%), and at locus C for three strains 
(9%). Four strains contain two copies of  the babA gene, 
and the babA sequences found at two loci were identi-
cal in three strains and almost identical in one strain (i.e. 
three substitutions near the 5’ ends of  the genes in one 
strain), indicating that the multiple copies of  babA pre-
sumably resulted from gene conversion (intragenomic 
nonreciprocal recombination) events. Importantly, two 
strains possessed the babA gene; however, the locus 
could not be identified, suggesting that there are addi-
tional unidentified chromosomal loci for babA, although 
babA may be found in one of  three chromosomal loci in 
most cases. 

Colbeck et al[29] analyzed a panel of  44 H pylori strains 
and found that 32 (73%) contained babA sequences. 
In contrast, the babB gene was identified in 41 (95%) 
isolates. The babA gene was located at locus A for 25 
strains (57%) and at locus B for 18 strains (41%); locus 
C was not evaluated. Interestingly, although chromo-
somal DNA from low-passage-number, single-colony 
isolates was used, there was a mixed genotype in 30% 
(13/44) of  the isolates, where the population of  cells 
contained both babA and babB at the same locus. As a 
result, 11 strains were found to contain two copies of  
the babA gene including eight with mixed babA and babB 
at locus B. 

Overall, from two detailed studies I conclude that 
the babA gene prefers to be located at locus A, some 
strains do not possess the babA gene, some strains pos-
sess multiple copies of  the babA gene, and most strains 
possess the babB gene. The presence of  babB might con-
fer a stronger selective advantage than the presence of   
babA.

REGULATION OF BABA
Chimera formation between babA and babB 
Several different mechanisms for regulation of  BabA 
expression are predicted, including at the transcriptional 
and translational levels. As for translational regulation, 
the formation of  chimeric proteins seems to play an 
important role. Chimera formation between babA and 
babB initially was reported by Pride and Blaser[11] who 
found that in two of  42 (5%) clinical isolates studied, 
the 5′ regions of  babB were replaced with the first 56 bp 
of  babA (babA/B chimera). In addition, these authors 
showed that gene conversions frequently (10-3) occur 
in H pylori, and the events are recA-dependent and 
DNase-resistant, indicating that they likely result from 
intragenomic recombination. babA/B chimeras also have 
been reported experimentally during H pylori infection in 
Rhesus monkeys[10]. 

In addition to babA/B chimeras, babB/A chimeras 
have been observed [9]. A babA2 mutant from strain 
CCUG17875, defective in Leb-binding, regained its 
activity by homologous recombination of  a silent babA1 
gene into the babB locus, resulting in a chimeric babB/A 
gene. A silent wild-type babA1 gene still was present. 

Figure 2  Genomic location of the babA, babB, and babC genes in strains J99, 
26695, and HPAG1. CT: CT dinucleotide repeats.
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The frequency of  the babA mutant with Leb-binding was 
approximately 10-5. Detailed analyses of  the chimeric 
babB/babA gene showed that the first 47 bp were babB-
specific, the following 66 bp were shared between both 
babA and babB, and the remaining sequence was babA-
specific. The second crossover event likely occurred 
within a region where the sequences of  the babA1 and 
the babB locus were identical. The chimeric BabB/A 
protein has the potential to bind Leb; however, protein 
production was subject to phase variation through slipped-
strand mispairing based on the number of  Cysteine-
Threonine (CT) dinucleotide repeats in the 5’ region of  
the babB gene (switch “on” = functional and switch “off ” 
= non-functional). 

Initially, only five genes encoding the OMPs in  
H pylori (oipA, sabA, sabB, babB and hopZ) were reported 
to undergo phase variations in the 5’ region such that 
not all strains produce functional proteins[25,27]. However, 
recent studies confirmed that phase variation is a method 
of  regulating BabA production in some strains[10,29,30]. CT 
repeats were observed in 13 of  43 (30%) strains[29] and 
4 of  22 (18%) strains[30]. Importantly, detailed analyses 
of  the babA gene with CT repeats showed that the 
signal peptides are closely related to signal peptides of  
paralogous BabB proteins, whereas sequences further 
downstream were typical BabA sequences[30]. Taken 
together, these data suggest that the babA gene with 
the CT repeat might be the result of  the translocation 
of  babA into babB thereby generating a chimeric babB/
babA gene. Interestingly, the babC gene in strain HPAG1 
possessed CT repeats in the 5’ coding region, whereas 
the babC gene in strain 26695 did not. These data 
suggest that babB/C chimera also might have occurred 
in some strains.

As described above, Colbeck et al found that there 
were cases with mixed babA and babB genes, especially 
at locus B[29]. The frequency of  babA translocated at 
the babB locus was between 10-3 and 10-4, which is in 
agreement with the frequency in strain CCUG17875[9]. 
Detailed investigation of  10 strains showed that the 
recombination event was identified from approximately 
50 to 200 bp downstream of  the ATG in five strains (all 
recombination occurred at locus B) and upstream of  
the ATG in the other five strains[29]. In the former case, 
the resulting gene forms the babB/A chimera, whereas 
complete recombination occurred in the latter case. 

Overall, frequent translocation between babA and 
babB genes appears to be the main mechanism of  
regulating BabA expression. Therefore, H pylori uses 
both antigenic variation and phase variation to regulate 
babA expression. 

Genomic mutations in the coding region of the babA 
gene
The babA gene init ia l ly was cloned from strain 
CCUG17875, which contains a silent babA1 gene and 
an expressed babA2 gene[1]. The sequence of  these two 
genes differed only by the presence of  a 10 bp deletion 
in the signal peptide sequence of  babA1 that eliminates 
its translational initiation codon. However, my group re-

cently found that all 80 strains from a panel of  Western 
and East Asian isolates contained an intact ATG start 
codon in the babA gene[31], and another group also re-
ported the absence of  the babA1 type deletion[11,12,29,30,32]. 
Overall, the absence of  a translation initiation codon, 
as described for babA1 from CCUG17875, should be 
rare. Point mutations leading to stop codon, deletion and 
insertion in other parts of  the babA gene also are not 
common; Hennig et al found one of  24 babA-positive 
strains (4%) contained a frameshift mutation that pre-
vented expression of  a full-length BabA protein (amino 
acid position at 55)[30].

Transcriptional regulation of BabA
Transcriptional regulation of  BabA also has been 
reported. Backstrom et al found that only babA2, but not 
babA1 was transcribed in strain CCUG17875[9]. Their 
analyses showed that babA transcription seemed to be 
regulated by the number of  adenine [poly(A)] nucleotides 
within the -10 to -35 region of  the babA promoter. The 
-10 and -35 region of  the babA2 sequences are highly 
homologous to the consensus for E.coli σ70 promoter 
sequences. This region was stable when the number 
of  adenines was 10 (babA2) but would become non-
functional when the number was 14 (babA1). The 
authors hypothesized that the poly(A) sequences between 
the -10 and the -35 sites could be prone to slippage 
mutations that allow changes in the level of  transcription 
of  downstream genes. However, other studies could not 
confirm that the -10 to -35 spacing played an important 
role in regulating babA expression[30,31]. Further studies 
will be necessary to fully interrogate the roles of  
transcriptional regulation of  BabA.

Overall, there are several predicted mechanisms that 
may control BabA expression in some strains; however, 
there are many cases that remain unexplained. H pylori 
strains that do not produce BabA can be divided into 
five types, as shown in Table 1.

RELATIONSHIP BETWEEN BABA AND LEB 
BINDING ACTIVITY
My group recently examined BabA protein and Leb 
binding activity for 80 strains (40 from Japan and 
40 from Colombia)[31]. BabA protein was measured 
by immunoblot analyses using anti-BabA antiserum 
(AK277), and Leb binding activity was measured by 
binding of  H pylori to 125I-labeled fucosylated blood 
group antigens. H pylori strains were divided into two 
major groups: BabA-positive (76 strains) or BabA-
negative (four strains). Semi-quantitative analyses of  the 
BabA-positive strains allowed the BabA-positive strains 
to be classified into two distinct groups: those with high 
levels of  BabA expression (68 strains) or those with low 
levels of  BabA expression (eight strains). All of  the 68 
strains that exhibited Leb binding activity produced high 
levels of  BabA. The low and non-producer strains did 
not exhibit Leb binding activity. Based on this finding, 
my group classified the strains into three distinct groups 
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based on their expression levels of  BabA: (1) BabA-
high producers (BabA-H), which produce BabA protein 
at high enough levels to mediate Leb binding, (2) BabA-
low producers (BabA-L), which produce a small amount 
of  BabA but not enough to mediate Leb binding, and (3) 
BabA-negative strains, which do not produce any BabA 
protein. 

BABA, LEB BINDING ACTIVITY AND 
CLINICAL OUTCOMES
There currently are only a few studies that correlate 
the importance of  BabA with clinical outcomes using 
immunoblot analyses[31,33,34]. My group recently performed 
large scale studies of  520 geographically diverse patients 
presenting with different clinical symptoms to evaluate 
BabA status by immunoblot analysis[31]. A total of  
250 isolates from Western countries (150 strains from 
Colombia, 100 from the U.S.) and 270 isolates from 
East Asia (150 from Korea and 120 from Japan) were 
studied. All strains from East Asia expressed BabA 
protein. Twenty-four (9.8%) of  Western strains were 
BabA-negative and were associated with milder gastric 
injury and lower H pylori density than BabA-positive 
status. BabA-negative status was inversely correlated with 
cagA status or vacA s1 genotype (i.e. only one (4.2%) and 
none (0%) of  these BabA-negative strains were cagA- or 
vacA s1-positive, respectively). This is in agreement with 
previous studies that the cagA status was related to the 
presence of  Leb binding activity[1] and the presence of  the 
babA gene[30]. 

Importantly, a small class of  strains were BabA-
positive but produced low levels of  the BabA protein 
and lacked Leb binding activity (BabA-L)[31]. Although 
these strains were functionally BabA-negative and 
were typically CagA-positive, they were more likely to 
be associated with duodenal ulcer, gastric cancer, and 
increased mucosal inflammation and atrophy than BabA-
positive strains that exhibited in vitro Leb binding activity 
(BabA-H strains) and BabA-negative strains. This 
finding suggests that either in vitro Leb binding activity 
does not accurately reflect the severity of  mucosal 
damage or that the clinical outcome or in vitro binding 
activity does not accurately reflect in vivo conditions. The 
underlying reason why strains with BabA-L status were 
more highly correlated with severe diseases than strains 
with BabA-H status is unknown, and it remains unclear 
whether expressing low levels of  BabA have a direct 
role in the pathogenesis of  gastroduodenal diseases. It 
is possible that BabA expression is influenced by the 

intragastric environment and that the phenotype of  
the BabA-L strains is an epiphenomenon rather than a 
cause of  disease. It is possible that strong Leb binding 
activity is associated with an inappropriate immune 
response resulting in severely inflamed mucosa. If  
so, the ability to change the BabA status from a high 
producer to low producer (i.e. Leb binding to Leb non-
binding) would be advantageous for the organism, and 
a low producer might reflect an adaptation of  H pylori 
that enhances survival in inflamed gastric mucosa. It 
also is possible that BabA expression down-regulates 
the proinflammatory effects of  other putative virulence 
factors, such as the cag PAI and OipA. 

DETECTION OF FUNCTIONAL BABA GENE
Most previous studies evaluating BabA (babA) status 
have used PCR techniques based on detection of  the 10 
bp deletion to distinguish between the babA2 and babA1 
genes (Table 2)[35-53]. However, as described above, strains 
carrying the prototypical silent babA1 gene are very rare, 
and in addition, the BabA protein levels often do not 
match the presence of  the babA (babA2) gene[31]. Current 
terminology for babA1 and babA2 in the literature is 
confusing, and many researchers mistakenly understand 
that H pylori strains that do not produce BabA are either 
babA gene-negative or babA1-positive (= babA gene 
lacking a translation initiation codon). However, only 
one case with babA1 has been reported, and BabA non-
producing strains also usually possess non-functional 
silent babA gene sequences (i.e. 2, 4, and 5 in Table 2).  
Unfortunately, current PCR methods regard non-
functional babA status as babA2-positive. In addition, 
a recent study confirmed that the PCR method used 
to detect babA2 with only one primer pair previously 
designed yielded many false-negative results, probably 
due to sequence variation among strains[31]. 

Only a few studies have used a forward primer that 
is within the promoter region of  the babA gene, a region 
that is identical to the sequence of  babA2 but different 
from that of  babA1 in strain CCUG17875[32,54,55]; 
however, recent analyses showed that the primers 
could also detect babB gene[31]. Overall, the information 
gained from currently used PCR-based methods must 
be interpreted with caution. In addition, I propose that 
researchers should not use current PCR-based methods 
in future studies.

Nonetheless, approximately half  of  the studies 
have suggested a correlation between babA2-positive 
H pylori in Western countries and increased risk of  

Table 1  Five major types of H pylori  strains that do not produce BabA

babA gene	   Status

Negative	     Include babA/B chimeras
Present	     Regulated by slipped strand repairing and the status is “off” (probably equal to babB/A chimeras)
Present	     Lack a translation initiation codon (single case of babA1 in strain CCUG17875)
Present	     Have a frameshift mutation(s) causing non-productive translation
Present	     Without apparent mutations and without a hypothesis for the lack of expression
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developing significant clinical outcomes[38,44-46,52] and are 
in agreement with protein data as described above[31,33,34]. 
The prevalence of  clinical isolates with a non-functional 
babA2 gene without production of  BabA protein may be 
low and negligible in some studies. 

CONCLUSION
Several different mechanisms for regulat ion of  
BabA expression are predicted, including at both the 
transcriptional and translational levels. The formation of  
chimeric proteins seems to play an especially important 
role in translational regulation. The chimeric BabB/A 
protein has the potential to bind Leb; however, the 
production was subject to phase variation through 
slipped-strand mispairing. Currently used PCR-based 
methods to evaluate BabA status do not take this 
mechanism of  regulation into account, and information 
gained from currently used PCR-based methods must 
be interpreted with caution. I strongly recommend that 
researchers should not use PCR-based methods in their 
future studies. Recent studies evaluating BabA status 
by immunoblot confirmed that BabA-positive status in 
Western strains was closely associated with severe gastric 
injury, high H pylori density, and severe clinical outcomes. 
A small class of  strains produced low levels of  the BabA 
protein and lacked Leb binding activity. Surprisingly, they 
were more likely to be associated with increased mucosal 
inflammation, atrophy, and severe clinical outcomes than 
BabA-positive strains that exhibit Leb binding activity. 

The underlying reason is unclear, and further studies 
will be necessary to investigate how the complex BabA-
receptor network is functionally coordinated during the 
interaction of  H pylori with the gastric mucosa.
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