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Experimental Design: Problems in
Understanding the Dynamical
Behavior—Environment System
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In this paper, I attempt to describe the implications of dynamical approaches to science for research
in the experimental study of behavior. I discuss the differences between classical and dynamical
science, and focus on how dynamical science might see replication differently from classical science.
Focusing on replication specifically, I present some problems that the classical approach has in
dealing with dynamics and multiple causation. I ask about the status and meaning of ‘“‘error”
variance, and whether it may be a potent source of information. I show how a dynamical approach
can handle the sort of control by past events that is hard for classical science to understand. These
concerns require, I believe, an approach to variability that is quite different from the one most
researchers currently employ. I suggest that some of these problems can be overcome by a notion
of ‘“‘behavioral state,” which is a distillation of an organism’s history.
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My purpose in this paper is to try to
understand how the changing concep-
tion of science brought about by recent
developments in the analysis of com-
plex interacting time-based systems—
dynamical systems—may change the
way in which we look at data and do
research in the experimental analysis
of behavior. Because I have more wor-
ries than answers, I hope that this paper
will start a discussion of these points
and others, and help the evolution of a
new viewpoint in the experimental
analysis of behavior. I shall first dis-
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cuss the differences between classical
and dynamical science, and then derive
some implications for our viewpoint.

In his discussion of the classical ap-
proach to science, Ruelle (1993) pre-
sents the following quotation from La-
place (1814):

An intelligence which, at a given instance,
would know all the forces by which Nature is
animated, and the respective situation of all the
elements of which it is composed, if furthermore
it were vast enough to submit all these data to
analysis, would in the same formula encompass
the motions of the largest bodies of the universe,
and those of the most minute atom: nothing for
it would be uncertain, and the future as well as
the past would be present to its eyes. The human
mind, in the perfection that it has been able to
give to astronomy, provides a feeble semblance
of this intelligence. (p. 29)

Laplace here nicely represents the clas-
sical science paradigm. With complete
knowledge of the present and complete
understanding of how the world works,
we would be able to explain the past
and to predict the future perfectly. In
such a mechanistic nirvana, there
would be no probability statements,
and no hedging of bets. Although the
realization of this mechanistic manifes-
to had always clearly been technically
impossible, the goal remained, in clas-
sical science, one to strive for, and in
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small domains scientists worked effec-
tively towards achieving limited goals.
The approach affected psychology in
its early days, too, in the development
of psychophysics and in the experi-
mental analysis of behavior. In the lat-
ter, Sidman’s (1960) Tactics of Scien-
tific Research consisted of the affir-
mation of Laplace’s views within psy-
chology.

Science, though, has changed since
1960. Over the last 35 years, it is al-
most as if a new persona of science has
been developed. Classical science and
its findings have not been overturned,
usually, because these findings well
represent stable-state end points of some
reactions between physical things (be
they chemicals or the behavior of peo-
ple). What has been realized is that
some reactions do not have predict-
able, even stable, end points, and that
sometimes the interaction of complete-
ly determinate systems—ones with no
random elements in them at all-—can
and will produce behavior that appears
to be random and chaotic. Their be-
havior results from dynamic, time-
based interactions between simple sys-
tems. The student affects the rat, and
the rat affects the student. Their inter-
action in a laboratory class may result
in the rat turning on the student to the
experimental analysis of behavior or
turning him or her off. It may result in
the rat being turned on to bar pressing
or turned off. The detailed futures of
the rat and of the student are not pre-
dictable, though their general futures
may be.

Classical science, as defined by La-
place, clearly cannot accommodate
such findings, and the findings were, in
a sense, cast to one side for many years
and placed in the ‘“too hard box,”
with, naturally, an expectation that one
day they would succumb to classical
science. It now appears that they will
not. Although chemistry and physics,
as classically conceived, could find and
investigate large areas of determinism,
or predictability, to mine, it seems that
some more complex sciences like, I
will argue, the science of behavior are

MICHAEL DAVISON

likely to find few areas that are ame-
nable to classical science. Because of
the transactive nature of these more
nonclassical sciences, it is likely that
many of their ‘“‘reactions” will not sta-
bilize in predictable regions, and that
the modern, dynamical, scientific ap-
proach will need to be taken much
more often. Over vast tracts of these
nonclassical sciences, which are clear-
ly more complex and difficult than
physics and chemistry, classical sci-
ence will not work.

I will discuss why this may be, and
try to show some pointers on how we
might reconceive our manifesto in the
experimental analysis of behavior.

The Classical Science Approach

In classical science, noise is a nui-
sance. It subverts the clear demonstra-
tion of the effects of different levels of
independent variables, and of different
independent variables. Classical ap-
proaches to science thus focus on ways
of experimentally or statistically elim-
inating, minimizing, and controlling
noise. Using one or more of these
methods, classical science is able to
display the underlying systematic ef-
fect (it is usually singular) present in
data, and the noise, whatever it was
caused by, is cast on the garbage heap
of science, without any hint of recy-
cling.

The classical science approach usu-
ally assumes a single attractor—a point
of stability—in the sense that the ac-
tion of an independent variable on the
system will lead the system willy-nilly
to the same stable point each time the
independent variable is applied. It as-
sumes that the effects of a particular
independent-variable level will lead
behavior to a definite and predictable
stability point from wherever the sys-
tem is started. For example, take the
chemical model. Silver nitrate plus so-
dium chloride gives silver chloride (a
precipitate) and sodium nitrate: NaCl
+ AgNO, —» AgCl + NaNO,. There is
a stable result for this reaction, and the
amount of silver chloride product de-
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pends on the relative amounts of the
initial reagents and the temperature and
pressure and so on—and maybe in
some reactions, the presence of a cat-
alyst. The results of the reaction, and
the amounts of the product, are pre-
dictable and do not depend on the his-
tory of the reagents, for example, on
how the sodium chloride was pro-
duced. The reagents are historically
pure. The situation in which the ex-
periment is done is also pure, a clean
test tube, and again is historically
clean.

There is, however, a dynamical
transaction between the reagents and
their products. It is not the case that all
silver nitrate is converted to silver
chloride, and the reverse reaction to
produce silver nitrate from sodium ni-
trate plus silver chloride also takes
place: NaCl + AgNO, & AgCl +
NaNO,. The forward and reverse re-
actions, however, are in a dynamic bal-
ance, and the attractor—the stability
point of the system—is unitary, well
defined, and stable. The system at sta-
bility can be dealt with as if it were not
a dynamic transaction for the purposes
of stable-state prediction.

But, in some areas of classical sci-
ence, there are multiple attractors in a
system. This means that there is more
than one stable condition at which the
reaction may end. Thus, if some chem-
icals or mixtures are heated and then
cooled, for instance, the cooling does
not continue in a linear fashion. The
temperature fall ceases or is reversed
at some times as different reactions or
states are reached which themselves
produce heat. The rate of heat loss is
attenuated at these stages, and they are
at least transiently stable. Many chem-
ical mixtures (e.g., glass) exist in a
semistable state (glass is a supercooled
liquid), and states can be changed very
rapidly (by a stone through a wind-
shield).

However, it remains that classical
science as a process requires that the
reagents are historically pure—they
contain no evidence at all (or very
minimal evidence) of where they came
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from—and that the situation in which
the reagents are mixed is historically
clean and contains no, or very mini-
mal, evidence of the history of the sit-
uation or setting.

Tactics of Scientific Research (Sid-
man, 1960) in the experimental analy-
sis of behavior was an attempt to pro-
vide purification and cleansing meth-
ods for the study of behavior via the
classical science approach. It accepted
that the raw materials of the science of
behavior were dirty and contaminated,
and that doing classical science with
such reagents in real-life, or wild, sit-
vations was likely to fail. The intro-
duction of the so-called Skinner box
(and of many automated testing situa-
tions in other research areas, such as
activity chambers, the Wisconsin Gen-
eral Test Apparatus, standardized pen-
cil-and-paper tests, etc.) was a rational
and quite successful attempt to make
cleaner the situation in which we could
study behavior. They eliminated the
handling of animals and people that
could affect results. Some eliminated
distracting (thus, uncontrolled) visual
and auditory stimuli, and the behavior
of conspecifics. If, on the other hand,
such stimuli were part of the focus of
the research, then these stimuli could
be better controlled and manipulated in
such environments.

The physical test environment also
promoted the mechanical, and later
electronic, control of stimuli and of the
relations between behavior and its con-
sequences, thus again making the re-
agents more pure. Contingencies con-
trolled by another organism, such as
the human experimenter, are clearly
impure in the sense that their operation
depends on a set of potentially very
dirty and uncontrolled variables that
control the behavior of the experi-
menter.

At one level, these developments in
test apparatuses and experimental con-
trollers provided a environmental sys-
tem for the study of behavior that was
either clean (unlikely) or at least had a
controlled and consistent dirtiness. A
controlled dirtiness is okay for classi-
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cal science if, of course, the dirtiness
does not preferentially react with some
reagents and not with others, or with
some levels of a reagent only. The dirt-
iness just produces error variance.

But one of our reagents—our sub-
jects—were never pure in an historical
sense. The genetic make-up (a long-
term historical effect) and the more
proximate life span history of our sub-
jects differed. When these things were
critical, we instituted techniques of us-
ing littermates and even identical
twins. We also developed the proce-
dure of trying to control proximate his-
tory by providing explicitly equalizing
experiences or, in the study of histori-
cal effects themselves, of providing ex-
plicitly different histories between sub-
jects or conditions (e.g., Wanchisen,
Tatham, & Mooney, 1989; Weiner,
1964). We have even used techniques
in which we have attempted to control
complete life span experiences, such as
bringing up animals under controlled
conditions, as in the procedure known
in ethology as ‘‘the deprivation exper-
iment”’ (Hinde, 1970).

In summary, we are working with
impure reagents in a dirty environment,
both of which we have tried to cleanse
in various ways. Using a classical sci-
ence approach, we assume generally
that any combination of independent
variables that we care to investigate
will produce a single, stable, replicable
result, though it may be muddied by
random error variance.

Replication: Psychology As a
Type I Error

If it was not the case that our inde-
pendent variables produced single, sta-
ble, replicable results, would we ever
have seen this, either empirically or
from the purview of our published sci-
ence?

In the classical science approach of
Tactics of Scientific Research, replica-
tion is the major criterion. In this, Sid-
man (1960) follows both other sciences
and the approaches in other parts of
psychology. A published successful
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replication of a result has a special
place in the classical approach to sci-
ence in validating (direct replication)
and, often, extending (systematic rep-
lication) the applicable domain of an
effect. A failure to replicate also has a
special status, at least in theory. Such
a failure, if and when published,
should imply that the original finding
was not ‘‘real” in some sense, and de-
pended perhaps on special but unspe-
cified conditions of the original exper-
iment. However, as we all know, fail-
ures to replicate are difficult, even im-
possible, to publish. Johnston and
Pennypacker (1993) are quite clear that
the onus of a failure to replicate falls
on those who have failed—it is up to
them to discover the ‘“‘reason” for their
failure. This may not be at all easy to
do.

In my own experience, work in my
laboratory has failed to replicate ac-
cepted results twice. First, Lesle Char-
man (1983) in her PhD dissertation
failed to replicate systematically an ef-
fect that had been both initially report-
ed and subsequently directly replicat-
ed. The effect was the short-component
effect in multiple variable-interval (VI)
VI schedules (Shimp & Wheatley,
1971; Todorov, 1972). These research-
ers found that when multiple-schedule
component durations were short (5 to
10 s), behavior allocation to the com-
ponents became very much more sen-
sitive to the rates of reinforcers in the
components, and that subjects came to
distribute their behavior between com-
ponents with the sort of sensitivity
shown in concurrent schedules. Char-
man commenced her experiment with
one component short and the other
long, and found typical long-compo-
nent multiple-schedule performance.
As a result, she made both components
short, and still failed to find the re-
ported effect. For the next couple of
years, we desperately tried to discover
the reason for this failure. In the end,
she directly replicated the original ex-
periments. The effect, it turned out, de-
pended on keeping the component
schedules constant and changing the
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component durations, whereas we had,
through most of our experiments, kept
the component durations constant and
changed the component schedules. We
were able to publish this very exten-
sive work (Charman & Davison,
1982), albeit with some difficulty and
only marginal effect. The short-com-
ponent effect depended on the sequen-
tial history of the organism in the ex-
periment; if you like, thinking of the
experimental space as a piece of ter-
rain, entering the terrain from one di-
rection leads to a different hill being
climbed compared to entering the ter-
rain from another direction.

My second example is our work on
magnetic discrimination in the pigeon
(Alsop, 1987). Bookman (1977) re-
ported that pigeons could discriminate
the presence from the absence of a
magnetic field when they flew down a
flyway towards their mates. Alsop and
I reasoned that, with our expertise in
signal-detection procedures, we should
be able to obtain the same result in a
yes-no signal-detection procedure in a
standard experimental chamber. How-
ever, the initial replication failed, and
all of the training and testing proce-
dures that we instituted (which work
well with discriminations in other mo-
dalities) also failed. I took these data
with me on a visit to the United States
and presented the results at various
universities. Almost without fail, I
found researchers at each institution
who had tried to replicate the original
result and had failed. None could get
their work published. In the end, Alsop
and 1 approached the journal Animal
Learning & Behavior and appraised
the editor of the situation; to his eternal
credit, he decided that an issue of the
journal should be prepared that docu-
mented all these failures.

Let us first follow the logic of rep-
lication in the statistical model. But as
we do so, we should wonder how
much of the argument also applies to
approaches that try to avoid statistical
analyses.

At any one time, a number of re-
searchers are likely, because of the
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zeitgeist, to be conducting research on
a similar subject. Let’s say we have 20
such researchers. On the average, at the
5% level of significance, one may ob-
tain a positive finding by chance, and
will publish his or her results. The oth-
ers, having no statistically significant
result, cannot publish. (What is, in-
deed, similar research is actually an in-
teresting and nontrivial question, and
the answer to this depends on and con-
volves with systematic replication!
There is a sense in which ‘‘similarity”’
in research cannot be judged until after
the domain, and related domains, have
been thoroughly researched.)

Next, 20 researchers read the initial
result and decide a replication is called
for. Nineteen obtain nonsignificant re-
sults, and one obtains a significant re-
sult. The 19 cannot publish their re-
search, and one publishes a successful
replication. The effect is now discov-
ered and replicated and may even start
to appear in the introductory texts
within 10 years.

In psychology, how many of our
“‘effects” are Type I errors? Without
knowing the number of failures, it is
hard to say. Certainly, some are. With-
out carrying out a signal-detection
analysis of all successes and failures,
we cannot be sure whether an effect
really exists. If we are investigating a
difference in behavioral results be-
tween two levels of an independent
variable, as predicted by a theory, we
may have 20 papers that showed an ef-
fect with Level 1 of the independent
variable (hits, in signal-detection par-
lance) and 20 more that showed no ef-
fect with Level 2 (correct rejections).
If the unpublished misses and false
alarms totaled only two cases, we can
be pretty sure of the effect and maybe
even the theory. If, however, they to-
taled 200, we ought to be pretty damn
sure that the effect is not there, and the
theory is wrong. But, under the current
practices of science, we never know
the number of misses and false alarms.

Perhaps we could argue that the ex-
perimental analysis of behavior, which
eschews the statistical model, is rela-
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tively immune to such errors? No, it is
not immune. For a start, it is hard to
publish results in which some subjects
did something quite different from oth-
ers (an implicit statistical criterion).
But even without the statistical model,
there is still the inability of researchers
to publish (i.e., of editors to accept)
null or negative results without an in-
credible power in the design, a power
usually much greater than was avail-
able in the original experiment.

I think it could well be argued that,
in our science, a failure to replicate has
an equal status, perhaps even a greater
status, than the original finding. The
failure to replicate provides informa-
tion that is missing in the original find-
ing. It says, clearly, either that (a) the
original finding was a chance finding;
or (b) there are subtle effects of either
history or of current variables that are
active here; or, perhaps, (c) either the
original researcher or the replicator
used poor techniques (though this is
not really discriminable from the sec-
ond point). But the meaning of a null
or negative result in the classical sci-
ence approach is not necessarily the
same as the meaning of the same result
in dynamical science.

The behavioral situation is a swamp.
There are too many things entering and
leaving and interacting for it to be eas-
ily understood. Technically, behavior
“suffers”” from (‘“‘enjoys” might be a
better term!) multiple causation. Even,
I suggest, our most refined situations
(say psychophysics and laboratory re-
search in the experimental analysis of
behavior) are sufficiently swamp-like
to be difficult to comprehend. Other ar-
eas (social psychology, applied behav-
ior analysis) are orders of magnitude
more complex. We are not a classical
science, nor can we ever be, and we
must face that challenge. We have been
led astray, I believe, by our finding
some replicable and quantitative rela-
tions between behavior and environ-
ment, such as the matching law and its
successors. For instance, it seems like-
ly that measures of choice have pros-
pered simply because the measures
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they use are ratios of responses and
time as measures, and as a result much
variation is canceled out. Absolute ap-
proaches to behavior have fared much
less well (e.g., Herrnstein, 1970).
There may be very few other simple,
classical relations like the matching
law.

Multiple causation can be handled
by classical science with no real prob-
lem, save the problems engendered by
the complexity of the systems, as long
as the systems we are investigating
have static single end points. But we
are not dealing with such systems.

More Problems: Dynamic
Transactions

It was Skinner (1950) who pointed
out that the interaction of the organism
and its environment was dynamic. An
animal’s behavior changes the environ-
ment, and the change in the environ-
ment changes the animal’s behavior,
and so on. This is illustrated nicely in
the Columbia Jester cartoon mentioned
by Skinner (1959). In this, one rat in a
Skinner box tells another, “Boy, have
I got this guy conditioned! Every time
I press the bar down he drops in a
piece of food.”” (There was a subse-
quent cartoon in which the second rat
replied ‘“Yeah, but how do we know it
applies to rats?”’) Baum (1973) devel-
oped this general idea, and introduced
the notion of E rules (environment
rules, or how the environment or the
experiment works) and O rules (organ-
ism rules, or how the organism works).
An experiment is a set of E rules de-
signed to elucidate one or more O
rules. This notion is relatively simple
when taken at the level of a single en-
vironmental controlling variable that
affects a single behavior, even though
the application of a single level of an
independent variable may affect be-
havior in such a way as subsequently
to change the level of the independent
variable from its initially applied level
to another level. For instance, the re-
inforcer rates or durations that the ex-
perimenter arranges are unlikely to be
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those that a subject actually receives.
As long as there is a negative feedback
relation in the system, the dependent
variable and independent variable can
come to what is known as a detailed
(or semi) stability—a particular re-
sponse rate and a particular reinforcer
rate that serve as coattractors. If we
measure both the dependent and inde-
pendent variables when the system has
stabilized, we can quantitatively relate
the results of this obtained level of the
independent variable to other measured
independent-variable levels resulting
from other experimenter-applied inde-
pendent-variable levels and gain some
indication of the function or equation
relating dependent-variable level to in-
dependent-variable level. Without the
negative feedback, by the way, all we
may get is the amplification of the de-
pendent and independent variables to
some minimal or maximal end point
under each of the independent-variable
manipulations.

This approach seems relatively
straightforward, apart from the need to
relate dependent variables to measured
independent-variable levels, rather than
to the applied, experimenter-controlled
or initiated independent-variable lev-
els. This is generally not required in
classical science because the indepen-
dent-variable level is not often affected
dynamically by the dependent-variable
level that results from the initial inde-
pendent-variable level. In classical sci-
ences, the feedback of dependent vari-
able to independent variable is broken.
In chemistry, I can weigh out a known
amount of silver nitrate, and add it to
a known amount of sodium chloride,
and predict the result. But if I arrange
a VI 30-s schedule for bar pressing, the
rat will always get fewer than two re-
inforcers a minute in a session, and in-
deed (if it fails to respond) may get
none. I cannot predict what the ob-
tained reinforcer rate will be from the
arranged rate, because this also de-
pends on the response rate.

However, a problem arises because
the stability that is obtained between
response and reinforcer rates on VI
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schedules (for example) is a detailed
stability, which means that the behav-
ior—environment transaction is stable at
only one of many possible stability
points. The attractors in the present sit-
uation may be weak, and there may be
a number of such weak attractors. An-
ger (1956) introduced this notion to the
experimental analysis of behavior in
relation to performance on VI sched-
ules. He suggested that, at stability, the
frequency distribution of interresponse
times matched the frequency distribu-
tion of reinforced interresponse times,
but that this equalization could occur
for many ‘‘semistable” pairs of distri-
butions. Thus, one could obtain a num-
ber of functions relating response rates
to reinforcer rates, including no effect
of reinforcer rate on response rate
(locked rate; Ferster & Skinner, 1957).
We now know from subsequent re-
search (Catania & Reynolds, 1968;
Herrnstein, 1970) that such functions
are probably not as variable as might
have been expected from Anger’s anal-
ysis. However, significant variability
does remain. It may be that the loca-
tion at which stability is achieved is
dependent on the path taken—the his-
tory of behavioral contingencies—pri-
or to the exposure to the condition, as
has been shown quite consistently in
research on behavioral history (see re-
view by Wanchisen, 1990).

Indeed, it has been shown quite
clearly that performance on concurrent
VI VI schedules can be manipulated,
apparently permanently, by historical
exposures to contingencies of rein-
forcement. Davison, Sheldon, and
Lobb (1980) trained pigeons on equal
concurrent VI VI schedules in which,
in occasional discriminated parts of
sessions, an extra contingency was
added to one of the alternatives. This
contingency naturally changed relative
performance during the discriminated
period. However, when the contingen-
cy was removed (i.e., the reinforcer
was delivered noncontingently), the
performance differential was main-
tained over a large number of sessions.
The interesting result here is that the
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performance differential gave the sub-
ject no more reinforcers. In a sense, it
was maintained as a superstition, and
indeed both Type I and Type II super-
stitions (see Herrnstein, 1966) are ex-
amples of detailed, semistable relations
between responding and reinforcement.

Dynamical transactions between be-
havior and environment do not neces-
sarily lead to single stable end points
in the relation between behavior and
environment. There may be many end
points, the end points may be unstable,
and they may consist of a constantly
changing system.

Feedback Functions and Semistability

The ability of a behavior—environ-
ment system to stabilize at more than
one pair of dependent- and indepen-
dent-variable values can occur for ei-
ther of two reasons. First, if there are
multiple attractors, such as two or
more ways in which the subject can
gain reinforcers, different subjects may
behave differently, probably as a result
of differing personal histories. Even if
the two alternative ways of gaining re-
inforcers are not equal, different his-
torical trajectories (technically, ‘“‘world
lines”’) may result in different subjects
climbing different peaks and stabiliz-
ing at different points if there is a
chasm between the peaks.

An example here is the research of
Vaughan (1981). Using concurrent
schedules, Vaughan provided two areas
of performance in which a subject’s
relative time allocation could match
(equal) its received relative reinforcer
frequency. However, between these
two matching areas, there was an area
in which performance, according to
melioration theory, would be direction-
ally pushed. Vaughan reversed this di-
rectional push in a second experimen-
tal condition. All but 1 subject moved
from one matching area to the other.
The 1 that did not move was, presum-
ably, not adequately accessing the di-
rectional-effect area, and it was given
therapy to help it move into this area.

Second, even if there is no chasm
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between the different sides from which
a hill can be climbed, an organism may
stabilize at a suboptimal level if its ho-
rizon in either time or distance is very
limited, or if whatever mechanism is
available for hill climbing is sensitive
only to large absolute gradients or gra-
dient changes. The organism may be
said to satisfice (Simon, 1957; Stad-
don, 1980) rather than to optimize
overall.

An example here is the report by
Azrin and Hake (1969) on positive
conditioned suppression. Azrin and
Hake investigated the effects on VI
performance in rats of a brief signal
that was followed by the delivery of a
reinforcer overlaid on a VI baseline (a
positive conditioned-suppression pro-
cedure). They found that 15 of 18 sub-
jects showed a deceleration of respond-
ing during the signal, and 3 showed ac-
celerated responding. For reasons not
entirely clear to me, the authors decid-
ed to use ‘‘therapy” for 2 rats that
showed conditioned acceleration to
bring their performance into line with
the larger number of subjects. It is
more likely that there existed a rela-
tively flat gradient between these two
nominal performances, and that the
“therapy” simply provided a history
that led the recalcitrant subjects across
this flat to nominal suppression. It is
thus also likely that had the 15 subjects
that showed suppression been provided
with other ‘‘therapy,”’ their perfor-
mances could have been changed to
acceleration. In either case, a bald
statement that the positive conditioned
suppression procedure produces decel-
eration (or, for that matter, accelera-
tion) seems untenable.

The peaks and chasms, and the gra-
dients between them, in the terrain de-
scribing behavior—environment rela-
tions are described by feedback func-
tions (Baum, 1973, 1992; Nevin &
Baum, 1980) as well as by the O rules.
A feedback function is a description of
how the environment works, such as
how high is a reinforcer rate, or how
large are reinforcers, or how delayed
are reinforcers, and so forth, as a func-
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Figure 1. Feedback functions for various FR
schedules (upper panel) and VI schedules (lower
panel) showing reinforcer rates obtained as a
function of response rates emitted.

tion of some aspect of the performance
of the subject. They are, in Baum’s
terms, E rules. Feedback functions can
sometimes be calculated for schedules
of reinforcement. For instance, the
feedback function of reinforcer rate for
response rate for a fixed-ratio (FR)
schedule requiring N responses per re-
inforcer is simply R = B/N, where R is
the reinforcer rate obtained and B is the
overall response rate emitted. This
equation is graphed in the lower panel
of Figure 1. All this graph and equa-
tion show is that obtained reinforcer
rate is proportional to the subject’s re-
sponse rate (and the proportionality is
the ratio requirement). The faster the
subject responds, the higher its ob-
tained reinforcer rate. Exactly the same
feedback-function equation is true for
variable-ratio (VR) N. However, as we
well know, performance on FR sched-
ules is quite different from perfor-
mance on VR schedules, in terms of
both overall response rates and the
temporal distribution of responding, so
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there must be other controlling vari-
ables affecting detailed performance.
Feedback functions could be written
for these other controlling variables
and aspects of performance also. Re-
member always, though, that feedback
functions have no implication about
the control of behavior by an indepen-
dent variable—even a steep feedback
function for a variable that is irrelevant
to behavior does not imply control by
that environmental independent vari-
able. All that a feedback function says
is that behavior will affect that aspect
of the environment. An appropriate ex-
ample here is Davison and Kerr’s
(1989) experiment in which they asked
whether concurrent-schedule perfor-
mance was controlled by the overall
rate of obtained reinforcers. They did
this by arranging that the degree of
choice on concurrent VI VI schedules
changed the overall rate of reinforce-
ment available. They arranged a series
of conditions in which more extreme
preference increased reinforcer rates
and another series of conditions in
which more extreme preference de-
creased reinforcer rates. Their results
showed absolutely no control over
preference by absolute reinforcer rate.
The feedback function existed, both
theoretically and in fact, but it did not
control behavior.

Reinforcer-rate feedback functions
for schedules other than FR schedules
are more difficult to calculate. An ex-
ample is those for VI schedules (Baum,
1973, 1992; Nevin & Baum, 1980).
Detailed aspects of the subject’s per-
formance, such as the pattern of bursts
and breaks in responding and the in-
terresponse time distribution generally,
will affect the output of reinforcers by
the environment. An approximation to
a VI feedback function is shown in the
upper panel of Figure 1. The shape is
an increasing hyperbola, in which re-
sponse- rate changes at low response
rates affect reinforcer rates substantial-
ly (because the schedule will act more
like an FR 1 schedule at these points).
But when response rates are high,
changes in response rates have hardly
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any effect on reinforcer rates. The
feedback function at higher rates of re-
inforcement is flat.

Flat areas of feedback functions for
variables that do control behavior are
areas in which differential control is
weak. Let us assume that overall rein-
forcer rate does control response rate on
VI schedules. For the VI feedback func-
tions in the lower panel of Figure 1 at
high response rates, changes in high re-
sponse rates produce vanishingly small
changes in reinforcer rates. With a
wide, flat attractor of this sort, the lo-
cation of the behavior of a subject with-
in this area would be weakly specified,
and subjects’ performances may differ
in their locations in such areas because
of inherent subject differences (e.g., the
weight of a pigeon’s head could partly
determine the response rate via inter-
peck times). The differing impure his-
tories of the different subjects may also
determine location on the feedback
function. For instance, response rate on
VI 60 s might be lower after exposure
to VI 180 s than after exposure to VI
10 s. Finally, within subjects, different
local histories (say, previous exposure
to differential-reinforcement-of-low-
rate [DRL] or FR schedules) may well
determine location. It is no accident that
the study of historical schedule effects
on current behavior (Wanchisen, 1990;
Weiner, 1964) has used, as its assess-
ment device, FI schedule performances
that have much the same feedback
function as VI schedules, with a long
flat portion to the feedback function.
What is being used here as an assess-
ment device for historical effects is
what Davison et al. (1980) termed weak
contingencies—contingencies of rein-
forcement that do not strongly push be-
havior in any direction. For their history
conditions, such studies use strong con-
tingencies such as FR or DRL sched-
ules, in which the reinforcer rate (the
imputed controlling variable) is strong-
ly and steeply related to response rate.

Overall, the point being made here is
that if a controlling variable has a flat,
or relatively flat, feedback-function re-
lation with the behavior it controls, then
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the point at which the dependent and
independent variables come to semi-
stability may be quite unpredictable on
the basis of knowledge of the current
value of the controlling variable. Rath-
er, the point at which the system
achieves semistability may be depen-
dent on historical factors such as the di-
rection (e.g., from a low response rate
or from a high response rate) from
which the new values were approached.
Such flat feedback systems are, as Dav-
ison et al. (1980) argued, very appro-
priate for assessing historical influences
and are quite inappropriate for assessing
proximate influences. An example they
gave was behavior on personality tests.
Given that there are no differential re-
inforcers (apart from those arising from
the test instructions, or demand char-
acteristics of the situation) for differ-
ential behavior, instruments such as per-
sonality tests are likely to be good at
measuring historical effects, but they
may be poor, still, in helping to predict
behavior under strong proximate con-
ditions in which history is over-
whelmed by current contingencies. It
seems doubtful, for example, that the
results of personality tests would be
helpful in predicting behavior-analytic
interventions in which, usually, strong
proximate controlling variables are ap-
plied. On the other hand, everyday life
seems to consist largely of relatively
weak proximate controlling variables
with rather flat feedback functions, and
in such conditions historical variables
probably have a rather large effect on
current behavior.

The example, par excellence, of the
flat feedback-function situation is the
superstition experiment, in which there
are no contingencies at all between the
presence or absence of a response and
the delivery of reinforcers, nor be-
tween rate of any response and rate of
reinforcers (apart from the need to be
in an appropriate spatial position to re-
ceive the reinforcer) (see Herrnstein,
1966, for a review). Historical contin-
gencies come to the fore in this situa-
tion. If there is no explicit prior train-
ing, the behaviors that develop in pi-
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geons are the sorts of behaviors that
genetics (i.e., long-term history) define
(Skinner, 1948; Staddon & Simmelhag,
1971; Wagner & Morris, 1987). If
there is a clear set of historical contin-
gencies (e.g., Herrnstein’s, 1966, prior
training to peck a key), then this his-
tory will be evident under adventitious
reinforcement. In what is probably a
more transient effect, and thus proba-
bly not a flat feedback-function situa-
tion, the relative amount of training for
pecking versus eating freely available
food determines the preference be-
tween these alternative responses in
choice tests (Mitchell & White, 1977,
White & Mitchell, 1977).

History and Flat Feedback Functions

Flat feedback-function situations,
then, can generate performance that is
inexplicable in terms of proximate
causes and current independent vari-
ables, but is explicable in terms of his-
torical causes. The problem, of course,
is that we often do not know, and can-
not guess at, the historically inacces-
sible previous training (though, as
above, various tests may be available
to help to summarize history). Further,
we simply cannot scientifically allow
guessing at the relevant history, be-
cause such ‘‘explanations’ are too
cheap and easy to provide. Moreover,
for rather obvious reasons related to
the drive to publish and maintain sci-
entific output, long-term experiments
that manipulate history have been gen-
erally eschewed by scientists. The re-
sult of these processes has had an in-
teresting, and I might argue disastrous,
result. In behavior analysis, we have
been led to focus our basic research
and, more important, our technology
on very strong proximate contingen-
cies: Major reinforcers that are highly
differential (i.e., have a steep feedback
function) are consistently used. There
is nothing subtle at all about our tech-
nology. Now, this is fine in terms of
the strength of our technology and the
ease with which we can produce an ef-
fect and replicate it: The strength of the
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contingencies we use does not allow,
most often, a failure of replication. We
can account for 95% of the variance in
our data. However, we may have over-
determined the system.

I guess we could argue that this is
fine for the technology of our science.
We need to be able to cause strong ef-
fects, and large changes in behavior, if
we are to have this technology accept-
ed. On the other hand, we could argue
that such techniques were rather akin
to the use of chemical or physical con-
straints on people who are sick, and
that because the contingencies are so
much stronger than those existing in
everyday life, they do not fit our clients
particularly well for a return to every-
day life. We might also argue, on the
contrary, that sustained exposure to
such strong contingencies would con-
stitute some serious historical contin-
gencies for the future life of the client
and thus be particularly helpful in the
face of subsequent weak contingencies.
Any conclusion here depends on ques-
tions about the degree of stimulus con-
trol by therapeutic interventions versus
historical contingencies and the differ-
ential reinforcement that has been pro-
vided in each. It is well known that in-
tervention within the problem setting is
much more effective than intervention
in discriminably different settings (see,
e.g., Cooper, Heron, & Heward, 1987,
Part 10).

It is interesting to ask whether the
effects of an historical contingency are
ever eliminated by current contingen-
cies, or whether they are just made rel-
atively small in current effect by the
current contingencies themselves. This
is a question of stimulus control. Pre-
sumably, in stimulus terms, if the cur-
rent situation is identical to the previ-
ous situation, we are likely to see be-
havior similar to the historical behavior
initially, and it may be maintained in
the longer term if current contingencies
are weak. (I am assuming no interven-
ing strong-contingency training in the
identical or a similar environment.) In
this case, historical contingencies are
not affected, remain active, and will
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control present behavior. However, if
present contingencies are strong and
differ from the historical contingen-
cies, and the present situation or setting
is similar or identical to that in which
the training originally occurred, history
will be rewritten to an extent that de-
pends on the duration and strength of
the new contingencies. History thus
may be rewritten under some circum-
stances, and not under others. Of
course, if current contingencies are the
same as historical contingencies in the
same stimulus situation, history can be
reinforced. The suggestion here is that
history is rewritten (or reinforced) only
if both (a) strong-contingency training
in (b) similar stimulus conditions sub-
sequently occurs. Otherwise, it remains
intact. In this way, even very distant
historical contingencies can have major
present effects in identical current sit-
uations with weak and nondirective or
nondifferential contingencies.

In behavioral research, I guess that
by the time research commences, we
have hoped to have overwritten histor-
ical differences to a large extent, al-
though we all know, having seen con-
tinuing problems in animal and human
training that extend into the experiment
proper, that we have not, in fact, re-
written history. Maybe we have done
it sufficiently? Well, that will depend,
as argued above, on the strength of the
contingencies applied. If they are
weak, we may never manage to elim-
inate historical effects (as in Skinner,
1950). If current contingencies are
strong (as in the ‘‘therapy’’ part of the
conditioned suppression experiment by
Azrin & Hake, 1969, and by Vaughan,
1981), we may succeed. However, we
cannot approach these questions in a
categorical way, and there is no abso-
lute criterion of success or failure in
our attempts to rewrite history. We
may succeed in relation to some con-
ditions of the experiment and fail in
relation to others, potentially con-
founding results considerably. In
Herrnstein’s (1966) experiment, he re-
wrote the dominant response in the sit-
uation and made it “‘pecking the key.”
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But superstition is subject to drift, and
had he continued his fixed-time 11-s
conditions longer, it is likely that peck-
ing would have ceased, and the pigeon-
like behaviors noted by Skinner (1948)
would have been reinstated as histori-
cally (genetically) the stronger influ-
ence.

In summary, two points have been
made: First, in the presence of weak
proximate contingencies, present be-
havior can be strongly influenced by
behavioral history; and second, to
avoid this, the experimental analysis of
behavior tends to use, especially in its
technology, strong proximate contin-
gencies. Thus under some conditions,
principally those providing weak dif-
ferential reinforcement, current behav-
ior can be strongly influenced by his-
torical training. This effect can also
lead to failures of replication, and such
results may be difficult to discriminate
from failures caused by dynamical be-
havior—environment interactions.

The Quantitative Removal of
Variability and
the Concept of State

Sidman (1960) spent some time dis-
cussing how variability in behavioral
baselines could and should be mini-
mized so that the effects of relevant in-
dependent variables could be clearly
and unambiguously seen. I believe this
now requires further consideration.

Variability in baselines can arise
from both dynamical interactions caus-
ing chaotic behavior and by the oper-
ation of uncontrolled and, by defini-
tion, effective independent variables.
Some of the latter may be inherent to
the organism in some sense (e.g., di-
urnal rhythms, age changes, etc.), and
they may be only marginally control-
lable by the external reengineering of
the experimental situation. Some may
be genuine external environmental
controlling variables, such as handling
and deprivation levels, and so on. These
perhaps may be controllable. Given that
these uncontrolled variables do affect
behavior, they are obviously pertinent
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to the control of the behavior in ques-
tion.

Indeed, one might argue this way: If
your baseline variability is so large as
to hide the effect you are investigating,
you should never reengineer the situa-
tion to eliminate the variability. Such a
result simply says to the researcher that
other independent variables in the en-
vironment have relatively more mas-
sive effects on the behavior in question
than does the manipulation; hence, the
effective control of the behavior re-
quires the experimenter to investigate
these other sources of control. If we
reengineer the situation to decrease the
baseline variability, we are simply
blinkering ourselves to these other po-
tent controlling variables and focusing
on an independent variable that is both
minor and footling. You might argue
that following up the disruptive effects
of the jackhammer on the adjoining
building might be equally footling.
However, the fact that extraneous stim-
uli do disrupt some performances and
not others may be an important finding.

Let us now have a more technical
look at variability from a quantitative
standpoint. The reference experiment
here was published by Hunter and
Davison (1985) (see also Schofield &
Davison, 1997), but the analysis we
shall follow here is a simplified anal-
ysis. The essence of Hunter and Davi-
son’s experiment was to arrange con-
current schedules that were either con-
current VI 60 s VI 240 s or concurrent
VI 240 s VI 60 s. Which of these was
presented in a session varied pseudo-
randomly, with nothing, except the
schedules themselves, to indicate
which was in effect. Naturally, this
procedure produces very considerable
session-to-session variability in mea-
sures of choice between the alterna-
tives, and if you did not know the pro-
cedure, you would say that the data
were a terrible mess. They look like
those that we would get with inade-
quate control of extraneous controlling
variables.

We will take this as an exercise in
identifying and removing variability,
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but we will do this mathematically
rather than experimentally.

Theory—the generalized matching
law—says that stable-state choice be-
tween concurrent-schedule alternatives
is controlled by the relative frequency
of reinforcers obtained at the two al-
ternatives. The generalized matching
law is written:

B R
logB—; =a logi + log c.

Assuming that this theory is correct,
we can take out the effects of reinforc-
ers and be left with pure error variance.
To do this, we linearly regress the log
response ratio in a single session
against the log reinforcer ratio in that
session (Figure 2). We obtain quite a
poor fit (31% variance accounted for:
Figure 2), and find that after taking out
the systematic variance there remains a
considerable amount of ‘“‘error’” vari-
ance, the residuals of the fit. Is this re-
ally uncontrolled error variance? Not
necessarily. Hunter and I wondered
whether any of this residual ‘‘error”
variance could be accounted for by
what had happened the session before
today, so we then regressed all of to-
day’s residual performances (i.e., after
taking out the predicted effect of to-
day’s reinforcers) against yesterday’s
obtained log reinforcer ratios. As Fig-
ure 2 shows, we again account for
some (64%) of what had appeared to
be error variance but is now shown to
be systematic variance. In Figures 2
and 3, we continue this process, pro-
gressively using the log reinforcer ratio
inputs in sessions more distant from
the current session, and progressively
accounting for less of the remaining er-
ror variance.

As we progressively fit the linear
model between today’s data and the re-
inforcer inputs from previous days,
several effects occur: First, generally,
the value of a (the sensitivity parame-
ter, the slope between the log reinforcer
ratio and log response ratio for a par-
ticular previous session) decreases.
Second, the variance accounted for first
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Figure 2. The original log response ratio and reinforcer ratio data for Bird 24 from Hunter and
Davison (1985) (top panel). In subsequent panels are shown the results of regressions between
today’s log reinforcer ratio and today’s log response ratio, and between yesterday’s log reinforcer

ratio and today’s log response ratio.

rises and then falls; indeed, of the re-
sidual data, more variance is accounted
for by yesterday’s and the day-before-
yesterday’s reinforcer inputs than by
today’s inputs. Third, the overall vari-
ation in the data (residuals) falls. And
fourth, the mean-square deviation be-
tween the predictions and the data falls
to very low levels. In this way, because
the generalized matching law is a rea-
sonable model of performance in
choice situations (Baum, 1974; Davi-
son & McCarthy, 1988), we can extract
almost all of the variation in the data
by looking at historically distant envi-
ronmental inputs.

The same process of extracting the
environmental causes of current behav-
ior is at least theoretically possible in
any area of behavioral research, and
can be carried out with independent
variables on differing dimensions.
However, a number of factors militate
against the use of this procedure. First
there is the need to insure that all in-
fluences occur randomly with respect
to time (including the major influence
being investigated). In applied re-
search, it may not be acceptable to pro-
vide treatment and control conditions
randomly with respect to sessions, but
multiple baseline designs come close



PROBLEMS IN EXPERIMENTAL DESIGN

0.75 -
0.50 -
0.25

233

LAG 2: a=0.118, VAC = 59%, MSD = 0.011

°
O'OO_M.WV
° % o %o

-0.25
-0.50
-0.75 : :

® Residual data
— Prediction

075 -
0.50 -
0.25 -
0.00
-0.25 -
-0.50 |
-0.75 , -

LOG RATIO MEASURE

LAG 3: a=0.051, VAC = 27%, MSD = 0.004

0.75
0.50 ~
0.25 -

[ )
0.00 - .‘.—m.—‘—'“—..—i—.—.i..-i-..————..,

-0.25
-0.50
-0.75

0 5 10

T
15 20 25 30

SESSIONS

Figure 3. A continuation of Figure 2, showing the results of regressing today’s log response ratio
against the log reinforcer ratios obtained in more and more temporally distant sessions.

to doing this. Also, these influences
must not be in phase with each other,
otherwise ‘‘aliasing” will occur, in
which it will appear that either one of
two independent variables can each de-
scribe the data. Second, an adequate
(perhaps not perfect) model of perfor-
mance as influenced by these variables
has to be available. We, above, were
able to use a linear model of the sort
Y = mX. If we had the wrong model,
we could actually create variance in an
initial regression that would then, nat-
urally, have to be accounted for by fur-
ther regressions! Third, if we are deal-
ing with a set of different independent
variables acting concurrently, we would

need to be able to assess the current
(and possibly past) status of each of
these each time data are taken.

There is, however, an interesting
way out of the necessity of looking at
(and knowing, in a sense) the values of
past conditions. Again taking the
above example, it is evident that per-
formance in a particular session is the
product of the log reinforcer ratios in
that session and in about three or four
previous sessions. Thus, a particular
session’s performance contains within
it historical information about previous
independent-variable effects, about
what happened in this and previous
sessions. Thus, the reinforcer history
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that modulates the next session’s rein-
forcer input is embodied in the previ-
ous session’s performance (see Davi-
son & Hunter, 1979). We can thus ef-
fectively predict current-session perfor-
mance from just the current session’s
reinforcer inputs and the previous ses-
sion’s performance. In equation form,

a log&(—o—’ + b log
R2(0)

Bl(—l)
’
BZ(—l)

Bio -

log
B 2(0)

where the subscripts 1 and 2 refer to
the response alternatives, and the num-
bers in parentheses refer to the session-
al lag (0 being the current session). B
is the number of responses and R is the
number of reinforcers. The parameter
a is sensitivity to the current-session
reinforcer ratio, and b is the sensitivity
to the previous session’s behavior ra-
tio. The larger that b is relative to a,
the greater the contribution of history
to this session’s performance. Such an
equation described Davison and Hun-
ter’s (1979) data well. In this case, of
course, yesterday’s behavior is not
what we would call an independent
variable; it is, after all, the animal’s be-
havior. However, because of its sum-
marizing properties, in many ways it
does act as an independent variable for
performance on the next day, and we
can indeed control its value, at least in
an historical sense. Yesterday’s behav-
ior summarizes the subject’s reinforce-
ment history. In a sense, yesterday’s
behavior is equivalent to some sort of
psychological test.

This is what Staddon (1993a, 1993b,
1993c) was talking about when he re-
introduced the concept of state. As he
says, the implied terms of physiologi-
cal state or mental state have various
problems, not the least of them being
the shock and disbelief engendered in
the behavioral community. However, if
we were to use the term behavioral
state, we may be able to circumvent
most of the unhappiness. Staddon
avoids this rather trite (but useful)
avoidance response, and says (1993c,
p. 248) that ‘“The behaviorist answer is
state as equivalent history.”” State is a
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*““class of histories that are sufficient to
produce the measured differences in
response”’ (1993c, p. 248). Thus, in or-
der to understand and predict behavior,
we can have recourse to two differing
sources of data: First, we could know
history, or sufficient history, to make
the explanation; second, we could
know the state of the organism, which
is a summary of its history. Behavior-
ists are oddly blinkered about state ex-
planations. On the one hand, they es-
chew them, and on the other, they will
accept them if they are mechanistic
enough. One example that readily
springs to mind is Nevin, Mandell, and
Atak’s (1983) measurement of the
strength of response via a challenge to
behavior of particular types. Strength
of response is clearly a state variable
and was postulated as such prior to the
considerable amount of work that Nev-
in and others have done to discover
what historical variables affect this
state.

In summary, then, previous behavior
can be used to summarize previous re-
inforcer conditions, and to construct a
state variable. In many areas of psy-
chology (but generally not in the ex-
perimental analysis of behavior), this
seems to be dimly recognized and, for
example, pencil-and-paper tests of in-
telligence and personality and suchlike
are used in this way as an aid to pre-
dicting future performance. Baseline
variability is, in a sense, an engineering
problem, but it is probably more valu-
able to the progress of a dynamical sci-
ence of behavior to see it not as the
random demon that wrecks experi-
ments but as nature whispering, talk-
ing, or screaming to us about other
controlling variables.

Thus, random behavior may not al-
ways be the result of chaotic behavior—
environment interactions. Rather, it
may be systematic behavior that is un-
der the control of independent vari-
ables that are occurring randomly with
respect to the experimental manipula-
tions the experimenter is undertaking.
If it is, then it can be analyzed and ex-
tracted.
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More on the Scientific Value of
Variance

It is completely accepted in science
that systematic variance away from a
known result or a theory must lead to
further research. The real question is:
What is systematic variance?

In the Hunter and Davison (1985)
result, the remaining variance after the
“main effect” (today’s input of rein-
forcers) is removed does not, in any
way, appear systematic. It looks, even
to the trained eye of the researcher, like
a jumble of uncontrolled influences.
However, this apparently random vari-
ance was shown to have systematic
components when analyzed according
to a particular type of model (we will
not say, ‘“‘the correct model’’), one in
which previous inputs were investigat-
ed as potential independent variables.
Thus, it is not just systematic variance
away from a model (although that is
most important in guiding research), it
is also apparently random variance
that contains information. In a sense,
here, we are taking the strong behav-
iorist classical science Laplacian posi-
tion that it is possible, in principle, to
explain all behavior completely (al-
though it is an impossible job to do so
in actuality). And we are saying: The
more variance, of any sort, in the data,
the more interesting those data poten-
tially are.

The prime example, here, is the
now-common demonstration of chaos.
A completely deterministic set of equa-
tions with particular starting points can
rapidly and predictably (in the sense of
knowing this will happen) produce a
totally unpredictable and random se-
quence of outputs (in the sense of not
knowing which output will occur
when). The smallest change in the
starting points, down to vanishingly
small decimal numbers, will produce
quite different output sequences after a
while, and may even produce funda-
mentally different stable data. The data
are random. The way in which the data
are produced—the equations—have no
random elements and are often very
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simple and straightforward equations.
Are the data really unpredictable, then?
No, in the sense that if we could start
the equations at exactly the same point,
the same results would ensue.

Ruelle (1993) has an excellent ex-
ample concerning billiard balls, one
real cue ball and one imaginary. We
compare the trajectory of the real and
the imaginary balls which are hit at a
very slightly different angle. As these
two balls hit the convex sides of other
balls on the tables, their trajectories are
very soon completely different from
each other. It is the convexity of the
balls that is important here: A slightly
different point of contact between two
balls changes the angle of incidence
very considerably, and the difference
between the trajectories grows expo-
nentially in time. The effect of very
slightly different starting angles is
called sensitivity to initial conditions.
Ruelle points out that if the distance
between the real and imaginary balls
doubles every 1 s, and starts at 1 mi-
cron, then after 10 s the distance will
be 1,024 microns (1.024 mm), and af-
ter 30 s the distance would be greater
than 1 kilometer. It is evident that over
a relatively short transaction of this
sort, ‘‘behavior” can vary immensely
from one start of the system to the
next.

The behavior—environment transac-
tion is just like this, though potentially
much more complicated. Not only is
the cue ball hit at a slightly different
angle on each strike (start of the ex-
periment), but also the other balls on
the table are at subtly different posi-
tions—maybe not greatly different for
a laboratory experiment, but maybe
very greatly different if part of the en-
vironment consists of moving rather
than static balls (to translate, for in-
stance, other behaving animals). But
even in the laboratory, the placing of
the balls will never be accurate enough
to produce the same long-term result
twice. The motion of balls on a billiard
table is completely deterministic (or so
I am assured), but predicting the future
of the system has inherent limitations,
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and prediction will always get expo-
nentially worse with time since the
start of the system. In behavior, we
have E rules and O rules that transact
dynamically over time. Although these
may be relatively simple (though I
doubt it), the sheer number of them
(multiple causation for both the envi-
ronment and behavior) means that it is
highly likely that we shall always have
complex dynamical systems that, even
if they do not lead to chaotic behavior,
will lead to fundamental unpredictabil-
ity. However, if we know the E rules
and the O rules, we can at least simu-
late the processes and discover pre-
dicted attractors, areas in which the
transaction can stabilize. Clearly, with
such systems, replication in the usual
sense may be unlikely or even impos-
sible.

In terms of behavior, it is quite evi-
dent that in processes like this, one
could quite quickly find oneself in a
seriously different environment from
that predicted, and his or her behavior
will then be under the control of com-
pletely different contingencies, includ-
ing different organisms. Predictability
of behavior may only, at best, be ac-
curate in the very short term. In phys-
ics, the two-body problem (predicting
the interaction of two celestial bodies,
for instance) can be solved. The three-
body (or more) problems cannot. Ap-
proaching behavior in the same terms,
I suspect even the two-body problem
will be beyond us.

Not all dynamical systems (systems
that have a time evolution) are unpre-
dictable. Some, like wine in a wine
glass, always return to the same ar-
rangement as long as the wine remains
in the glass. Turn the wine glass upside
down, however, and the predictability
of the wine’s behavior is lost.

In another sense, though, the behav-
ior of a billiard ball now does contain
within it at least a partial representation
of its history, at least in the short term.
The fact that it is here now, and that it
arrived here from this angle at this
speed after x s since the blow that start-
ed the system, is informative. The fact
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that the results are different on a rep-
lication is also informative. Moreover,
were we to measure the behaviors of
the other balls on the table, then it
might be possible, I believe, to recreate
most of the trajectory or world line of
the cue ball. There is a fascinating im-
plication that comes from these consid-
erations: If we were to wait until sta-
bility, when all the balls have ceased
moving, it surely would be impossible
to recreate much of the world line:
There would be only location data, and
a time from the initial blow, and no
directional or speed information. There
would be myriad ways of getting to
this stable point. This may indicate that
the study of transitions will provide
more and more useful information than
can the study of stable end points to
behavioral manipulations. But bear in
mind one inescapable fact: Animal
subjects bring to the billiard table their
own personal histories, which may
have large effects on the behavior of
the cue and the other balls. And unlike
billiard balls, animals are nonspherical,
unequally weighted, and of varying
hardness!

Our ability to describe apparently
random variation using real, controlla-
ble, potentially independent variables
is limited not only by our creativity
and our technology, but also by our
theoretical position on what needs to
be done with and about ‘‘random”
variance. If it is cast as having serious-
ly negative value, as a major threat to
our main effects, and we follow the ap-
propriate technology, we will amplify
our main effects and squash all other
effects. If we cast it as potentially pos-
itive, our main effects may account for
less variance, but the whole experiment
will be potentially much richer. The
experimental analysis of behavior has
always been considerably better at rec-
ognizing the value of variance, as ev-
idenced by Skinner (1959). The ques-
tion is whether the experimental anal-
ysis of behavior has yet shown enough
recognition of the value of variance.

In concert with the casting of ran-
dom variance as demon, the experi-
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mental analysis of behavior has always
been very clear on not publishing un-
warranted speculation after the experi-
mental event. It is true, and I accept
the view, that in the past some such
speculations, usually about the pur-
ported mechanisms of the main effects,
have gotten into the literature as fact
and have had an unfortunate influence
on subsequent work. But along with
this, ‘“‘unwarranted” speculation about
sources of error variance and about
failures to replicate either within or
across experiments has also been
struck out. I question this. Is not the
experimenter’s opinion (he or she is, of
course, closest to the data) a rich
source of ideas and knowledge? Could
these not better guide subsequent re-
search? Are we doing the best for sci-
ence if we eliminate such admittedly
informal opinion? Such opinions have
no scientific status, but they certainly
have a status in the psychology and so-
ciology of science. If this were not so,
why would researchers gain so much
from attending conferences and dis-
cussing wild ideas informally with oth-
ers late into the night?

Given multiple causation, the com-
plexity of the behavior—environment
system, and the dynamical nature of
the behavior—environment transaction,
both the longer term prediction of be-
havior and experimental replication
may well be either difficult or impos-
sible.

Single-Subject Experimental Design

The effectiveness of a single-sub-
ject, or subjects-as-their-own-controls,
experimental design in terms of con-
vincing scientists of a real effect of an
independent variable (or, for that mat-
ter, of the noneffect of a variable) is
completely predicated on one or more
assumptions: (a) There is no effect of
historical manipulations on present be-
havior. (b) Minor fluctuations in the
levels of putatively extraneous inde-
pendent variables will have no cata-
strophic effects on the behavior of
some or all subjects. (c) The baseline
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measurement will not, itself, either
sensitize or desensitize the system to
particular levels of independent vari-
ables or to the introduction of an in-
dependent variable. (d) Alternatively,
the strength of the contingencies ap-
plied will overcome the effect of the
above.

These assumptions apply to any ex-
perimental design in which the subject
is exposed successively to different ex-
perimental and baseline conditions
(ABAB designs, multiple baseline de-
signs, changing criterion designs, etc.).
Oddly enough, in discovering major
effects, designs that use control groups
may be less affected by historical dif-
ferences because the histories will be
more diverse. However, I would not ar-
gue for the use of control groups when
the interesting information (at least ac-
cording to my view) is in discovering
the historical contingencies that mod-
ulate the effects of current independent
variables, which often seem to have an
import equal to the effects of the cur-
rently applied variables.

Can we make the above assump-
tions? I argue that they are dangerous
to make, as are all assumptions. In the
applied literature, we all know of ex-
periments in which baselines could not
be recovered, often for clear reasons.
Indeed, an effective therapeutic inter-
vention (as distinct from a scientific
experiment) rests more on the possi-
bility of trapping a behavior change,
and therefore leaving the therapist in a
position to cease intervention in the
knowledge that the effected behavior
change will be maintained, than on the
demonstration of a recovered baseline.
In order to control splay feet, we can
continue to reinforce the maintenance
of an appropriate angle between the
feet and punish an inappropriate angle,
without making any long-term change
if the natural proximate and historical
contingencies do not support the be-
havior change. We need to understand
such ‘“‘extraneous’ contingencies (oth-
er E rules in the environment) if we are
to be able to provide an adequate tech-
nology, and we also need to understand
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them if we are to provide an adequate
science.

Conclusion

Error variance in behavior is simply
the control of behavior by variables we
do not understand or have not identi-
fied, the interaction of behavior and en-
vironmental systems that we do not un-
derstand or have not identified, or both.
In the former case, by better experi-
mental control, or by statistics, we can
attempt to highlight the main effect. In
the latter case, we will have to accept
multiple causation and massive dy-
namical transactions between behavior
and environment. We will have to look
for the equations that describe the com-
ponents of the transaction, and try to
recreate the major features of the in-
teraction; the appropriate data here
may be data variance and periodicities
in the data. Whichever science we do,
it seems to me that more sensitivity to-
wards variance is required. One aspect
of this sensitivity is the need to know
the number of failures of replication as
well as the number of successful rep-
lications, which requires some changes
to the sociology of our science.

If there is a dynamical transaction
between behavior and its environment,
we must also confront the very real
possibility that systems may be able to
stabilize at more than a single point,
and that replication, both direct and
systematic, may be considerably less
important than we had previously
thought. Indeed, a demonstration that a
system can stabilize at a number of dif-
ferent points (failing to replicate, neg-
ative results) is most important for our
understanding of behavior. We should
cherish such findings rather than push
them under the carpet.

Finally, we must understand that be-
havioral history can have large current
effects under certain circumstances,
principally those in which current stim-
ulus situations are similar to previous
situations, and in which differential re-
inforcement is weak: flat feedback-
function situations. Indeed, flat feed-
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back functions provide data that not
only may not be predictable from cur-
rent contingencies but also are more
predictable from recent training. But
flat feedback functions are the method
of choice for assessing behavioral his-
tory. The notion of behavioral state
may help us to understand current be-
havior and predict future behavior in
these situations and many others.

I fully agree with Sidman (1960, p.
142), who wrote,

Most psychologists accept the premise that the
subject matter itself is intrinsically variable over
and above experimental error. As a direct con-
sequence of this presupposition, confidence-lev-
el statistics have been substituted for replication
as a means of evaluating data. ... Because the
doctrine of natural behavioral variability ap-
peared to be sound, until recently the data upon
which most current systematic interest is cen-
tered have been produced by experimenters op-
erating within this doctrine. . . . Meanwhile, the
premature acceptance of intrinsic variability as
a basic property of behavior has led to the adop-
tion of experimental designs whose nature ef-
fectively prevents further investigation of the
problem.

I would reinterpret his last point, how-
ever, which is absolutely true from the
viewpoint of classical science. From
the dynamical science viewpoint, we
would accept that variability, in some
sense intrinsic, will be a basic property
of some behavior—environment sys-
tems. The answer is not statistics, but
rather it is the understanding of the in-
teraction of the environmental and be-
havioral systems. Engineering out the
variability may lead us into the same
problem as statistics; in both, the sys-
tem is simplified sufficiently for clas-
sical science. We must be very careful
in doing this.

As Sidman says, ‘“Variability may
be measured, and even used as a da-
tum” (1960, p. 142). I would venture
that variability should be measured,
and should be used as a datum, be-
cause it contains within it important
clues to the properties of the system
that we study. We need to explain and
predict variability. Finally, Sidman
states “‘In order to treat any instance of
variability as a manifestation of an or-
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derly process, we must not only iden-
tify the source of the variability but
also control it”’ (1960, p. 143). Yes, in-
deed, we should certainly identify it,
and then derive the equations that pro-
duce the variability. But we should al-
ways remember that controlling an
‘“‘extraneous’” source of variance may
seriously and fundamentally change
the operation of the system in which
we are interested, and may lead us to-
wards an incomplete and rather sterile
understanding of behavior.
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