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Abstract
Purpose—To evaluate an automatic 3D registration algorithm for serial high-resolution images of
trabecular bone (TB) in studies designed to evaluate the response of the trabecular architecture to
intervention or disease progression.

Materials and Methods—An efficient algorithm for registering high-resolution 3D images of
trabecular bone is presented. The procedure identifies the six parameters of rigid displacement
between two scans performed at different time points. By assuming a relatively small through-plane
rotation, considerable time is saved by combining the results of a collection of regional 2D
registrations throughout the TB region of interest (ROI). The algorithm was applied to 26 pairs of
MR images acquired six months apart. Reproducibility of local TB structural parameters (plate, rod,
and junction density) computed in manually selected regions were compared between baseline and
registered follow-up images.

Results—All 26 registrations were completed successfully in less than 30 seconds per image pair.
The resampled follow-up images agreed with baseline to around one pixel throughout the volume at
137×137×410 µm3 image resolution. Structural parameters in each region correlated well from
baseline to follow-up with intraclass correlation coefficients ranging between 85–97% for TB plate
density. Inter-regional variations in the parameters were large as compared with intra-region
reproducibility.

Conclusion—The proposed algorithm was successful in automatically registering baseline and
follow-up TB images in a translational study, and may be useful in regional analyses in longitudinal
MR studies of TB architecture.

Keywords
Trabecular bone; registration; micro-MRI

Introduction
Trabecular bone (TB) remodels considerably faster than cortical bone. Further, the majority
of osteoporotic fractures occur at locations where TB is dominant, i.e. the vertebrae, distal and
proximal extremities, or ribs. There is now substantial evidence that the strength of bone is a
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function of the bone material composition, volume fraction and distribution, collectively
summarized under the term “bone quality” 1. Further, a number of studies have shown a
structural contribution to fracture risk independent of bone volume fraction or density 2–5.
However, the most widely applied criterion for the assessment of osteoporotic risk remains
apparent density, quantified by either two-dimensional (2D) projection imaging via dual-
energy X-ray absorptiometry (DXA, see, for example, 6) or 3D imaging by quantitative
computed tomography (qCT) 7.

Until recently, the only means for quantifying TB structure has been based on transiliac bone
biopsies, which are analyzed by stereology, or more recently, on the basis of ex vivo 3D micro-
computed tomography 8. Besides being invasive (and therefore rarely indicated clinically)
these methods are ill suited for the assessment of treatment efficacy since the same site can be
biopsied only once. At best, paired biopsies can be taken at the left and right ilium 8. However,
there is no one-to-one correspondence between the measurement sites therefore leading to
substantial sampling errors.

The emergence of high-resolution imaging modalities, key among which are micro-magnetic
resonance imaging (µMRI) 9,10 and, more recently, high-resolution peripheral quantitative CT
(HR-pQCT) 11, now permit in vivo structure analysis. The technology and applications of
µMRI underlying the present work have been reviewed recently 12,13 and the method has
demonstrated its potential in several laboratories for fracture discrimination 10,14–18. There is
further evidence that µMRI can quantify the topological as well as conventional structural
changes occurring in response to intervention in patients with various forms of osteoporosis
19,20.

Since the organization of the TB network is highly heterogeneous it is essential that precisely
the same volume is examined in follow-up studies, which requires that the images be registered
accurately. Both prospective and retrospective registration approaches have been pursued, each
having a unique set of advantages. In prospective registration a localizer image is acquired
prior to the high-resolution scan in the baseline and follow-up imaging session so as to ensure
that the location and orientation of the high-resolution imaging slab matches that obtained at
baseline 21,22. In the more commonly practiced retrospective registration approach no
particular precautions are taken to ensure that the high-resolution scan acquisition volume and
orientation in the follow-up scan precisely match that of the baseline scan, although rough
landmarks are used to prescribe approximately the same volume. Typically, this is achieved
on the basis of longitudinal localizer images (coronal or sagittal) from which the inferior
boundary of the axial high-resolution imaging slab is selected as a fixed distance from the distal
cortical endplate 18. The resulting high-resolution images are then matched to each other after
they were acquired 23,24 . The proposed technique falls into the latter category of methods.

A complication in the registration task is that the periosteal soft tissue is not rigidly connected
to the TB region of interest (ROI) (see Fig. 1a). Thus, a successful technique should isolate
and register only the ROI. Segmentation errors caused by aliasing or other artifacts can make
it difficult to perform automatic registration based on the shape of the ROI and manual
intervention may be required 12,25. The proposed algorithm uses the local trabecular pattern
near 100 randomly selected points in the ROI to register the 3D data sets. The method is thus
fundamentally different from other 3D techniques (for example 26) which typically search the
six directions of rigid body motion. A key assumption in our method is that the through-plane
tilt is relatively small (10° or less), which is reasonable considering that the limb (lower leg or
forearm) is easily positioned approximately parallel to the magnet bore.

The proposed technique has the potential to facilitate the study of the implications of bone
remodeling on topology and scale of the TB network at a finer spatial scale. Rather than using
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bulk parameters over the entire trabecular volume to track changes over time, it enables a
region-by-region or even pixel-by-pixel analysis. This capability is of particular importance
since trabecular bone loss or accrual is well known to be localized.

The registration procedure was applied to a collection of 3D MR scans of the distal tibia
acquired as part of a six month serial pilot study. The advantages of the method were
demonstrated by examining structural parameter reproducibility between time points, as well
as spatial variation of parameters across the ROI.

Materials and Methods
Registration Algorithm

The objective of the registration procedure is to compute the 3D transformation parameters (3
rotations and 3 translations) describing the misalignment between high-resolution baseline and
follow-up images in serial MR studies. These parameters are then used either to resample the
follow-up images to match those obtained at baseline, or to identify a consistent 3D mask used
for the analysis. We focus here on the application of registering axial images of distal tibia,
but the algorithm could also be applied to other anatomical locations and orientations, provided
that (a) the pattern of the trabecular bone is resolved, and (b) only small through-plane rotational
displacement is expected. The registration algorithm comprises four steps.

The first step is to apply an automatic segmentation algorithm 27 to both the baseline and
follow-up images in order to separate the trabecular bone ROI from the surrounding anatomy.
As mentioned above, this is important because the distal tibia is not rigidly connected to the
surrounding fat and muscle. Therefore the registration must be solely based on features of the
trabecular bone network itself. The accuracy of this segmentation step will not significantly
impact subsequent steps, since only a very rough segmentation is required for the algorithm to
succeed. Nevertheless, an accurate ROI determination is also desirable for consistent time point
comparisons of structural parameters (subsequent to the registration step). Therefore, we
provide here the details of this automatic segmentation procedure, keeping in mind that a less
thorough but simpler procedure could also be used if image registration was the only goal.

The segmentation algorithm requires a single, minor user intervention where the operator draws
a rectangle surrounding the region of interest, with the center of the rectangle occurring
approximately at the center of the endosteal cavity, here illustrated for the tibia (Fig. 1a). The
purpose of this operation is to minimize the risk of inadvertently selecting nearby anatomic
feature (such as the fibula or a region of muscle in the case of tibia imaging). Isolation of the
trabecular ROI is equivalent to identifying the surrounding cortical shell, appearing dark in the
MR image. To achieve this, a local threshold is applied to each slice within small 20×20 pixel
neighborhoods (Fig. 1b). In each neighborhood the mean intensity is computed, and pixels
with intensity less than 70% of this mean are initially classified as belonging to the cortex
(appearing white in Fig. 1c). A local (rather than global) threshold is needed here to compensate
for intensity variations due to a spatially variant receive coil sensitivity profile. Fifty percent
overlapping regions are also used throughout the volume (shown in Fig. 1b) to avoid
discontinuities at neighborhood boundaries. In the case where two overlapping regions disagree
with respect to the classification of a single pixel, the pixel is initially classified as belonging
to the cortex.

After initial segmentation via local threshold, the cortical region is dilated by two pixels in all
directions in order to minimize the chance of leakage in areas of thin cortex (Fig. 1d). Next,
the largest connected component in the selected region is isolated (Fig. 1e). At this stage, the
ROI typically contains a number of holes corresponding to dense patches of trabecular bone
misclassified as cortical bone in the threshold step. These erroneous classifications are
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remedied by filling in all holes of diameter less than 30 pixels (this parameter was chosen
empirically). Most slices (>90%) should be properly segmented at this point, but a small
number of slices may have problems due to signal leakage, that is the step of selecting the main
connected component may fail to select only the ROI when there are areas of thin cortical bone.
The dilation step is designed to minimize this risk, but some slices may still be affected. Thus
the final step is to ‘synchronize’ the slices, ensuring spatial consistency between the ROIs in
neighboring slices, which is accomplished by iteratively removing voxels from the ROI that
are not adjacent to ROI voxels in the two neighboring slices.

Following segmentation, the second step of registration is to approximately determine the
longitudinal (slice) shift between baseline and follow-up images. As pointed out in the
introduction, the through-plane rotational misalignment is assumed to be small, so there should
be at least a rough correspondence between baseline and follow-up slices. While this step is
not critical for the success of the overall algorithm, a good estimate of the slice shift can
dramatically improve efficiency because it reduces the slice search radius in subsequent steps.
To estimate this shift, we exploited the significant variation in cross-sectional area of the tibia
along the slice direction within our analysis region (see Fig. 2). The cross-sectional area for
each slice was estimated using pixel counts from the segmented images, and the slice shift was
then approximated by comparing those areas between baseline and follow-up. In the example
of Fig. 2b, the estimated slice shift is the horizontal shift between the two curves.

In the third step, initial estimates of in plane registration parameters (two translations and one
rotation) are obtained. As with the previous step, the purpose of this operation is to improve
the efficiency of the critical fourth step by significantly narrowing the necessary search range.
A pixel p0 is chosen randomly toward the center of the ROI in the central slice of the baseline
image. The 40×40 square region, R0 centered at p0 is matched to a 2D patch of the same size
in the follow-up scan by searching the nearest ±3 slices, stepping through XY rotation angles
ranging from −30 to +30 in increments of 3 degrees, and exhaustively searching for in-plane
translations. The best match is determined by maximizing the cross correlation between rotated
versions of R0 and 2D patches within the follow-up image. Rotations of R0 were implemented
by applying a series of shear transformations. The success of the match is tested by checking
for consistency with the same procedure applied to four adjacent 40×40 regions (Fig. 3). If
these 5 test registrations cannot be fit to within 2 pixels using some 3D rigid transformation,
the registration is labeled as having failed, and this step is repeated up to two more times using
a different randomly selected central pixel.

The full 3D rigid transformation (three translations and three rotations) is obtained in the fourth
and final step. One hundred pixels (p1, p2, …, p100) are randomly chosen throughout all slices
of the baseline ROI. For each pixel pi, the 40×40 region Ri (within a slice) centered at pi is
matched to a 2D region centered at qi in the follow-up image using the same procedure as in
the third step, except with a finer and significantly narrowed search range. As in step 3, each
point is tested for success using adjacent test regions. If the number of successful regional
registrations is less than 50 (i.e. 50%), then the registration is considered to have failed. After
registration of these regions, the pixel pairs pi→qi for the successful registrations are used to
fit the full 3D transformation. Specifically a 3D affine transformation (R,T) is chosen to
minimize the least-squares distance:

(1)

where the sum is over only indices of the successful region registrations. Here, the rotation
matrix and translation vector
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(2)

are obtained by solving

(3)

where

(4)

and

(5)

Only the columns corresponding to successful regional registrations are included in P and Q.
For computational reasons, we do not restrict R to be a rotation matrix, but consider arbitrary
3-dimensional linear transformations. In practice, the resulting transformation is expected to
be very close to a rotation. While we could normalize R to be a true rotation (using singular
value decomposition), such an adjustment may be undesirable if the imaging gradients are
slightly miscalibrated causing the actual voxel dimensions to deviate from the prescribed
resolution. In such a case, fitting a general linear transformation is more accurate.

Resampling Procedure
Once the 3D rotation and translation parameters have been obtained, there are at least two
approaches for using these parameters for purposes of a consistent analysis. One approach is
simply to resample the follow-up image to match the reconstruction grid of the baseline scan.
In this case, care must be taken to avoid bias in the follow-up scan due to resampling effects.
For example, linear interpolation in the context of a half-pixel shift is known to cause a decrease
in resolution. But even when a sinc kernel (ideal for MRI) is used for resampling, subtle
problems arise whenever there is non-zero through-plane rotation. This is a consequence of
anisotropic resolution as it is commonly practiced in trabecular bone imaging, with lower
resolution along the preferential direction of the trabeculae 28. Typically, the slice resolution
is about a factor of three lower than that in the transverse plane, and therefore any small through-
plane rotation in resampling will cause a slight decrease in transverse resolution. Although
difficult to perceive in the image, this effect can bias the derived structural parameters.

An alternative is to resample the analysis mask rather than the image. That is, keep the follow-
up image on its original reconstruction grid, but ensure that exactly the same 3D volume is
analyzed by rotating and translating the baseline ROI mask obtained in the first step of the
registration procedure, and intersecting it with the follow-up mask. For consistency, the follow-
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up mask must also be transformed and intersected with the baseline mask to yield a new baseline
mask. In this study, both of the above mentioned resampling techniques were applied.

In Vivo Study
The registration algorithm was applied to data collected in a translational pilot study, in which
29 subjects were scanned at two time points, separated by six months. Three subjects were
excluded due to unusable portions of the trabecular region. Although a significant portion of
these images would be amenable to data analysis, these scans were excluded for the present
study since we desired to evaluate five regions throughout the bone (see Fig. 4). The pilot study
involved control and treatment groups, both of which were expected to experience some
changes from baseline to follow-up. However, it is beyond the scope of this paper to investigate
statistically significant changes between the two groups or between the two time points.
Therefore, the results describing the effect of intervention on trabecular bone architecture will
be reported elsewhere. It suffices to note that subjects were renal dialysis patients, half having
been treated with low-frequency mechanical stimulation, a non-pharmacological intervention
that may be anabolic to bone 29, the other half being subjected to placebo. Here we are solely
interested in parameter reproducibility as well as correlations between various parameters. We
point out that changes over time due to the intervention or due to the underlying renal
osteodystrophy can only lower the measured reproducibility. We can therefore expect the
reproducibility results to be at least as good as indicated here.

The algorithm was programmed in C++ and run on a personal workstation (2.8 GHz Centrino
Duo processor). As described above, two different strategies were used to apply the resulting
3D transformation parameters: (i) resampling of the follow-up image, and (ii) resampling of
the ROI masks. In both cases, the images were processed using the Virtual Bone Biopsy 28,
and the structural parameters derived.

All image data were acquired on a 1.5T Siemens Sonata scanner using a modified version 30

of the navigator-assisted 3D FLASE pulse sequence, 3D FLASE pulse sequence 31 with scan
parameters TE/TR = 10/80ms, sampling frequency bandwidth = 17 kHz, field of view =
70×63×13 mm3 and image matrix size = 512×460×32, providing a voxel size of 137×137×l410
µm3 and scan time of 16 minutes.

To demonstrate the method’s potential for regional analysis (since in general the response to
treatment may be anatomic location dependent), five ellipsoidal regions were manually
selected in the baseline image, one toward the middle, and four toward the edges of the ROI
(Fig. 4). These five regions were also copied to the resampled follow-up, and transformed
(using the registration parameters) to the non-resampled follow-up. In addition to bulk
parameters, selected topological parameters characterizing the trabecular network 32 were
computed for each region. These include the topological surface, curve and junction densities.
In digital topological analysis images of the trabecular structure are skeletonized thereby
converting trabecular plates to surfaces and trabecular rods to curves 32 28 yielding the volume
densities of these topological types, expressed in percent. The densities of junction-type voxels
were also evaluated. These parameters are of particular interest since plates and rods and their
mutual junctions are the basic building elements of the trabecular network and have been shown
to be biomechanically relevant 33 34.

Results
The 3D registration parameters were computed for each baseline/follow-up pair in an average
of 27 seconds per pair. After applying the estimate for in-plane translation and rotation from
step 3, it was only necessary to search ±10 pixels for in-plane translation, ±3 slices, and ±3
degrees (in increments of 1 degree).
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According to visual inspection, all 26 registrations were successful and accurate to around one
pixel throughout the volume. This level of accuracy was confirmed in the 3D transformation
fits, as the fitted transformations agreed with more than 90% of the baseline/follow-up point
pairs within ±1 pixel in each direction.

Fig. 5 shows the distribution of translation and rotation parameters in the registrations, as well
as the success rate in the registration of the 100 randomly selected 2D regions for each baseline/
follow-up pair. Despite efforts by the operator to choose consistent scan volumes, translational
displacements between baseline and follow-up ranged between ±60 pixels (±8 mm) in the
transverse plane and ±10 slices (±4 mm) in the longitudinal direction. In-plane rotation varied
between ±10 degrees, whereas most through-plane rotational misalignments were less than 4
degrees. For all baseline/follow-up pairs, the algorithm used a minimum of 70% of the 2D
regional registrations (recall that only successful registrations were used).

Fig. 6 shows the results of a single registration, illustrating the importance of correcting for
through-plane tilt. The magnifications show good visual agreement in trabecular pattern
between baseline and follow-up in one region of the bone, whereas the other region only agrees
after 3D resampling. This is due to through-plane tilt (around 3 degrees in this case).

The two methods mentioned above for follow-up analysis (i.e. resampling the image and
resampling the mask) produced comparable results in terms of parameter correlations and
distributions, although there were differences in individual parameter values. For simplicity,
we present only the results for resampling of the follow-up mask, which we believe to be a
more accurate technique, considering possible 3D resampling bias (which is of particular
concern due to the anisotropic resolution in the case of through-plane tilt).

Table 1 shows the extent of baseline to follow-up reproducibility in terms of three structural
parameters, as well as the variance in these parameters across the five regions. The average
trabecular plate density (for all subjects) varied between 2.69% in Region 3 and 3.70% in
Region 4, whereas there was comparatively little variation in this parameter from baseline to
follow-up (less than 2% relative change for regions 1, 2, 3, and 5). Similarly, while there was
significant regional variation in rod-density and junction density, the agreement between
baseline and follow-up values for these parameters was on the order of 2–5% relative change
for most regions.

Reproducibility in mean parameters (averaged over all 26 subjects) was as expected better than
baseline/follow-up reproducibility for individual subjects. Nevertheless, Fig. 7 shows the three
topological parameters to be highly correlated between baseline and follow-up scans. Further,
the slopes of the trend lines are close to unity, with moderate to high R-squared values,
especially for plate and junction density. The regression lines were constrained to pass through
the origin because all plotted parameters are densities, with absolute zero representing absence
of the structure. Table 2 shows the intraclass correlation coefficient (ICC) 35 (a measure of
reliability) for each parameter and analysis region. Table 3 shows the ICC for plate density
between pairs of regions. The high values on the diagonal and comparatively low off-diagonal
reflect the high degree of spatial variation in bone density, and demonstrate that the method
can reproducibly distinguish between the varying levels of plate density.

Correlations between pairs of VBB parameters (e.g. rod versus plate density) at baseline are
shown in Fig. 8. While there is clear correlation between junctions and plates, there is no
obvious relationship between rods and plates, or junctions and rods, indicating that these
parameters carry independent information about the underlying bone structure.

Magland et al. Page 7

J Magn Reson Imaging. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Discussion
The proposed 3D registration algorithm designed for time-course studies of trabecular bone
architecture has several advantages over conventional 3D retrospective registration algorithms
that search all six parameters of rigid motion for the best fit to the entire MR image. First,
because only the local trabecular pattern within the bone of interest is used, the method is
unaffected by changes in relative locations of soft-tissue structures surrounding the bone. The
method is also largely immune to spatial variations in the received signal (which is a hallmark
of most surface coils), since each registration involves only small patches in the baseline and
follow-up images (see Appendix for details of the 2D regional correlation algorithm). Another
advantage relates to computational efficiency. Since through-plane rotations are ignored in
individual registrations of the 2D patches, only four (rather than six) degrees of displacement
need to be searched at once (three translations and one in-plane rotation). Avoiding through-
plane rotation in the 2D patches also obviates the need for resampling in three dimensions. As
mentioned above, by combining the results of dozens of 2D registrations, we were able to
indirectly obtain accurate measures of all six displacement parameters.

Due to small instrumental imperfections such as nonlinearities in the imaging gradients or small
errors in the effective gradient amplitudes (not usually considered a problem), the true
relationship between baseline and follow-up images may not exactly match a 3D rigid
transformation. For example, a 5% inconsistency between readout and phase-encode resolution
will not result in visible image distortion, but will cause problems when fitting a rigid
transformation in the case of significant rotational displacement. An advantage of the present
method is that we are able to detect and account for such inconsistencies. This is because the
3D transformation is fit as a general linear transformation rather than as a rigid rotation (there
is no computational penalty for this since we have ample data, 100 pairs of points, to fit in 3D).
In general we have found the resulting linear transformations to deviate slightly from rigid
rotations, indicating slight errors in the imaging gradients.

Even in cases where prospective registration is used, retrospective techniques can be important
for fine-tuning the registration. The prospective approach requires a pre-scan localizer, and
there is a trade-off between registration accuracy and duration of the pre-scan. In 21, for
example, pre-scan time is on the order of 2 minutes, with an accuracy of around 1 mm
(corresponding to around 7 pixels in our case). Thus our retrospective correction (with accuracy
to within 1 pixel) complements prospective registration techniques such as those described in
22 21. Conversely, even with a good retrospective registration algorithm, prospective
registration is important to ensure maximal overlap between imaging slabs in the two scans.

Besides spatial variations in structure, the inter-regional differences in the measured structural
parameters (see Table 1) may in small part be due to variations in signal-to-noise ratio (SNR).
For example, region 3 is located in the area of highest SNR, close to the surface coil, whereas
region 5 is in an area of lowest SNR. Interestingly, these two regions are toward opposite ends
of the parameter spectrum in Table 1. Part of the difference could be due differences in SNR,
although it is not possible to use this data to determine the extent of the effect. For serial studies
examining small changes in parameter values over time, this type of effect could be a source
of error if baseline and follow-up scans do not have the same spatial SNR distribution 24. Under
these circumstances a bulk correction for SNR differences would not be sufficient. In these
situations our registration technique will facilitate the use of spatially localized adjustments to
compensate for parameter dependence on SNR, and thereby improving parameter
reproducibility. Other potential sources of error may result from subject motion. Although the
images were corrected for translational displacements during the scan via navigators, it has
previously been shown that rotations of less than one degree can cause significant errors on
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the derived structural parameters 36 which can be corrected using retrospective motion
correction techniques correcting for both translational and rotational motion 37.

Lastly, the method hinges on the veracity of the assumption that the rate of bone remodeling
over the course of which structural measurements are conducted, does not alter the structure
to an extent that spatial correlation between the two time points is significantly impaired. The
remodeling rate in peri- and postmenopausal women, for example, is on the order of 0.13–0.24/
year 38. There are virtually no data available in the literature whereby the same anatomic
location was examined at two or more time points other than our own longitudinal studies in
hypogonadal men and postmenopausal women 18,19, both suggesting the above conditions to
be met. Nevertheless, it is possible that the actual performance of the algorithm is better than
suggested by the data since the subjects on whom the study was conducted are not skeletally
homeostatic (which could only be expected in young adults at peak bone mass). Thus, a portion
of the error, defined as 1-rICC, where rICCis the intra-class correlation coefficient, could be
ascribed to actual remodeling changes.

In conclusion, the proposed algorithm has been used to efficiently register baseline/follow-up
pairs in a translational MR study of trabecular bone with good accuracy (on the order of 1
pixel), and a high rate of success. Because TB density and structure are heterogeneous, such
registration is valuable for studying spatially localized changes in TB architecture over time.

Appendix

Appendix A
Here we provide some implementation details for the basic registration step. The efficiency of
the overall algorithm depends on the step of searching for a match of a small grayscale 2D
patch, A, within a larger grayscale 2D array, B, by choosing the best XY-translation. Indeed,
this critical procedure is repeated for every point pi and for each trial rotation angle and each
trial slice offset. The translational offset (Δx,Δy) is chosen to maximize the cross-correlation
between A and the corresponding 2D sub-array of B. If A and B were the same size (and
wrapping was allowed), then this could be achieved efficiently by implementing a 2D
convolution via FFT. However, in our situation, A is generally much smaller than B. One
approach to remedy this would be to simply pad B with zeros to match the size of A. However,
this is not adequate when there are variations in signal level across B since the procedure will
tend to select offsets that would place A over the region of highest intensity of B. Thus we
need a normalizing factor in the denominator. Fortunately, this normalizing factor can be
achieved by implementing a single additional discrete convolution. For simplicity, we give the
details for one dimension, as the method can easily be extended to two dimensions.

Let a0, a1, …, aM-1 and b0, b1, …, bN-1 be two arrays with M<N. We want to find a translation
Δx (integer) that maximizes the normalized correlation:

(6)

Here, we consider b to be a periodic array. The sum in the numerator can easily be written as
a discrete convolution:
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(7)

where we simply extend ai to be zero for i≥M. The sum in the denominator can also be written
as a discrete convolution:

(8)

where  and

(9)

.
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Fig 1.
Automatic trabecular bone ROI segmentation procedure illustrated for the distal tibia. (a)
Manually selected rectangular region centered on the ROI; (b) Overlapping grid pattern for
applying local threshold; (c) Initial local threshold mask, roughly identifying cortical shell; (d)
Dilation of mask in (c) to avoid leakage; (e) Selection of main connected component; (f) Final
ROI after filling small holes.
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Fig 2.
a) Sagittal localizer of the distal tibia with high-resolution imaging slab indicated; b) results
of step 2 of the registration procedure showing cross-sectional area versus slice number in
baseline and follow-up scan.
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Fig 3.
Baseline (left) and follow-up (right) images of the distal tibia. In steps 3 and 4 of the registration
algorithm, two-dimensional rectangular regions in the baseline image are matched to patches
in the follow-up image using the pattern of the trabecular bone network. Four adjacent patches
are used to verify the success of the registration.
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Fig 4.
Five regions manually selected in the baseline scan (a). Those regions were transformed to the
non-resampled follow-up (b) and copied to the resampled follow-up (c).
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Fig 5.
Distributions of 3D registration parameters for 26 subjects scanned at two time points, and
distribution of the number of successes per 100 regional registration trials.
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Fig 6.
Single slice at baseline (a), follow-up (b), and resampled follow-up (c). The left magnification
shows a region that has matching trabecular pattern in all three images, whereas the right
magnification shows a region where the trabecular network matches in the baseline and
resampled follow-up, but not in the non-resampled follow-up. This behavior reflects the
through-plane tilt (~3 degrees in this case).

Magland et al. Page 18

J Magn Reson Imaging. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 7.
Follow-up vs. baseline correlation plots of plate, rod, and junction densities within each region.
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Fig 8.
Pairwise comparison plots between plate, rod, and junction densities (baseline data only) for
each region.
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