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Abstract
Background: Gene set analysis based on Gene Ontology (GO) can be a promising method for
the analysis of differential expression patterns. However, current studies that focus on individual
GO terms have limited analytical power, because the complex structure of GO introduces strong
dependencies among the terms, and some genes that are annotated to a GO term cannot be found
by statistically significant enrichment.

Results: We proposed a method for enriching clustered GO terms based on semantic similarity,
namely cluster enrichment analysis based on GO (CeaGO), to extend the individual term analysis
method. Using an Affymetrix HGU95aV2 chip dataset with simulated gene sets, we illustrated that
CeaGO was sensitive enough to detect moderate expression changes. When compared to parent-
based individual term analysis methods, the results showed that CeaGO may provide more
accurate differentiation of gene expression results. When used with two acute leukemia (ALL and
ALL/AML) microarray expression datasets, CeaGO correctly identified specifically enriched GO
groups that were overlooked by other individual test methods.

Conclusion: By applying CeaGO to both simulated and real microarray data, we showed that this
approach could enhance the interpretation of microarray experiments. CeaGO is currently
available at http://chgc.sh.cn/en/software/CeaGO/.

Background
Identifying differentially expressed genes (DEGs) from
microarray experiments enables researchers to elucidate
related biological processes. In addition to studies focused
on individual genes such as SAM[1], statistical techniques
have been successfully employed to determine whether
predefined groups, for example those in Gene Ontology
(GO) [2], or in a metabolic pathway, are differentially
expressed. There are two main statistical testing
approaches: individual gene analysis (IGA) [3,4] and
Gene Set Analysis (GSA) [5]. IGA is performed in two

steps: first, genes of interest are selected using a cutoff
threshold, and the enriched biological categories are
gained by statistically testing these genes against the back-
ground: typically all genes in the category (e.g., Fisher's
exact test). The major limitation of IGA is that the result is
significantly affected by an arbitrarily chosen cutoff in the
first step. Hence, the GSA approach was developed to
address this issue. GSA methods calculate a score based on
all the genes within the gene set. Since it is free of the
problems of threshold-based methods, GSA should be
more sensitive than IGA, thus identifying gene sets with
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'subtle but coordinated' expression changes that cannot
be detected by IGA. In previous studies, gene sets were for-
matted and pre-defined into groups such as independent
GO terms and reference KEGG [6] pathways. Little atten-
tion was paid to subtle but coordinated expression
changes across gene sets or within gene sets. In other
words, the structure of gene sets was usually ignored.

Some authors have proposed taking into account the
structure of gene sets when testing for gene set enrich-
ment. Draghici et al. [7] developed an impact analysis of a
signaling pathway that incorporates some crucial factors,
such as each gene's position in the given pathway and
their interactions. A few studies reported that through an
intersect operation on gene sets between different catego-
ries, the gene sets could more precisely characterize the
biological themes, and more closely represent the true dif-
ferential expression functions of the data. The SEGS [8]
and ADGO [9] methods attempted to improve gene set
enrichment analysis by intersecting two different GO cat-
egories. Enrichment of GO terms with p-values calculated
by the IGA method based on its neighbourhood using GO
graph topology was also implemented in TopGO [10]. A
few attempts [10,11] have been proposed to address the
redundant enrichment problem caused by overlapping
annotations according to the fact that GO terms within a
Directed Acyclic Graph (DAG) represent an inheritance
relationship. We abstracted the simplest common opin-
ion of these methods, called the parent-based approach
which was implemented in the CeaGO package, was to
join the genes of children to the parent GO term stepwise,
and then tested all the GO terms in the graph topology.
Elim and weight approaches presented in the study of
Alexa et al. [10] and parent-child in Grossmann et al.
[11]are complicated but useful for minimizing false posi-
tives and can enrich GO terms more accurately. Other-
wise, if an insufficient number of genes are annotated to
one GO term, methods may not be sensitive enough to
uncover subtle expression changes, similar to the draw-
backs of significance analysis of individual genes [12].
Thus, our goal was to identify some novel expression
changes by grouping GO terms. Similarity between pairs
of GO terms provided an opportunity to enlarge the GO
groups to better interpret the gene expression data.

In this article, we present an effective method, cluster
enrichment analysis based on GO (CeaGO), to extend
enrichment analysis of individual GO terms and discover
significantly clustered GO classes from expression data. A
sufficiently rigorous standard could not be found to eval-
uate the algorithm; instead, a simulation study was per-
formed to assess the statistical properties of this method.
Finally, we applied this method to the gene expression
profiles of ALL [13] and ALL/AML datasets [14]. The
results from both simulated and real data showed that

CeaGO is sensitive enough to identify significant expres-
sion changes overlooked by individual term tests.

Methods
Figure 1 illustrates the overall procedure of CeaGO.

Semantic similarity calculation
Using groups of genes from microarray experiments, we
assigned each gene to the GO terms. For the induced GO
graph, we measured the relationship of two GO terms. A
variety of algorithms can compute semantic similarity
between terms [15-18]. We used the simple but effective
measure developed by Resnik [17]. GO allows two terms
to share parents. Given all parents (denoted S(t1, t2)) of
two query terms t1 and t2, Resnik defined semantic simi-

An overview of the CeaGO methodFigure 1
An overview of the CeaGO method. The upper panel 
shows the expression of genes in two classes, for example, 
gene expression in control versus treatment. After genes are 
annotated to the GO DAG, a dendrogram is generated using 
a hierarchical clustering method based on semantic similarity. 
For such a dendrogram, many classes (C1, ..., CN) are obtained 
when the tree meets a user-defined cutoff (lower left panel). 
The p-values are computed according to the gene set enrich-
ment analysis for every subset of each class. The lower right 
panel shows those p-values in a histogram against each subset 
of the class. The minimum (red arrow) is found and is used 
to determine the subset (grey green ellipse) of the given 
class. Such subsets would be assigned as "most likely to be 
differentially expressed" in the microarray data.
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larity between two GO terms as the information content
of the term with minimum probability (denoted p(t))
among the common ancestors.

The GO similarity score can be transformed into a GO dis-
tance d(t1, t2):

Note that S(t) in this definition is the set of all terms in
one ontology.

Hierarchical clustering

Hierarchical clustering is a multiple step, agglomerative
method that sequentially merges samples based on the
pair-wise similarity of a given measurement, forming
common partitions until all samples are contained in a
single group. At each particular stage, the method joins
together the two previous clusters that are closest together
(most similar). A dendrogram is built by using the seman-
tic similarity metric described above. N classes are
obtained when the tree meets a user-defined similarity
distance threshold (in this study taken as d < 2). The

model of each class can be described as a vector  = (G1,

G2, ..., Gn), where Gi represents the genes annotated to GO

terms obtained at the ith step in the clustering process.
When such a class is formed, various statistical tests can be
used to determine whether the genes within the Gi showed

coordinated expression.

Gene set enrichment analysis
To detect possibly moderate but coordinated expression
changes within a gene set, we employed a simple but
robust Z-statistic method named PAGE [19] from several
available GSA algorithms [12,20-23]. The Z-score is calcu-
lated according to the following equation:

Where  is the mean of total fold change [24] values and 
is the standard deviation of total fold change values of a
given microarray data set, x is the mean of the fold change
values and n is the total number of genes in the gene set.
Fold changes are calculated for all genes between two
experimental groups (e.g. control versus treatment). P-val-
ues inferred from Z-scores against standard normal distri-
bution are calculated. According to PAGE, 10 samples
should be sufficiently close to normal distribution and
provide a fairly good statistical test. Therefore, gene sets

larger than 10 were used to test the differential gene
expression changes.

Next, a vector of significant p-values, which was described

as  = (p1, p2, ..., pn), associated with  was computed for

each GO class. If the p-values were less than a pre-defined
value (e.g. < 0.05), those gene sets were considered as sig-
nificantly differentially expressed. When such gene sets
were found, the gene sets were reduced by retaining the
GO subsets with the smallest p-values. At this point, the
biologically meaningful sets were identified by the tally of
GO subsets selected during this step.

The algorithms were implemented in the R programming
language http://www.r-project.org. The results were
obtained using R version 2.7.1 and the libraries provided
by the Bioconductor project http://www.bioconduc
tor.org, version 2.2.

Results
Validation of CeaGO on simulated data
The evaluation of enrichment measurement methods is a
challenging task, because biologically meaningful gene
sets usually are not known for real datasets. In this study,
we introduced an evaluation framework similar to one
described previously [10] to address this issue. To imitate
real data as closely possible, an artificial data set derived
from a HGU95aV2 chip with all 10,503 probes represent-
ing genes annotated by terms from the GO biological
process subontology was used, and the resulting graph
with 4,913 nodes was used as the underlying dataset.
Here, we presumed that the expression values of the con-
trol and the treatment groups obeyed a standard normal
distribution N(0, 1). After clustering the GO terms, 188
classes, annotated with more than 10 genes each, were
obtained by cutting the dendrogram (d < 2). We selected
25 "truly enriched" GO classes at random from the 188
classes. One set was chosen randomly from the subsets in
each GO class and denoted as the "truly" differentially
expressed gene set. Given those gene sets, N(0,1) distrib-
uted genes in the treatment groups were replaced by
N( ,1) distributed genes, with the genes in the control
groups remaining as N(0,1). The test of dynamic change
of  was not performed in this study because Z-statistic
methods are not sensitive enough to detect changes of
sample standard deviation  (see Eq. (3)).

Instead of focusing on a list of differentially expressed
groups arbitrarily determined by a pre-defined threshold,
we were interested in the groups at the top of the list.
Therefore, after enrichment of the GO sets, the enriched
groups were sorted in ascending order of their p-values.
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Assuming St denotes the set of "truly enriched" GO sets,
and Et denotes the set of top-scoring GO groups enriched
by CeaGO of the same size as St, an "Exact match" score
was used to evaluate the performance of CeaGO:

The score is the number of pre-selected GO sets found
among the top k enriched sets. It lies in the interval [0, k],
where k is the perfect prediction by this method.

Another score was also implemented for evaluating the
detecting power of the "Possible match" members. Such
members represent the fraction of perfect matchings of
the pre-selected "truly enriched" GO sets, and the "in but
wrong" members that failed, but were still detected as the
same class of the "truly enriched" GO sets.

The effect of changing  of genes in the treatment groups
over the 100 permutations is shown in Figure 2. We
observed that detection of both "Possible match" and
"Exact match" gene sets exhibited a trend in which larger
 had the higher scores. This increasing trend tended to be
unclear when the  value was above 0.4. The "Possible
match" scores indicated that the PAGE algorithm was sen-
sitive enough to detect differentially expressed groups.
The results obtained by this approach showed that most

of the "Exact match" gene sets were detectable (about
70%) at a high  (>0.4). About 20% of the "in but wrong"
gene sets failed to match the correct GO sets precisely.
However, the observed classes might still be helpful in
explaining the differentially expressed groups. The "Par-
ent match" scores were calculated to describe the efficacy
of CeaGO against the parent-based enrichment methods.
Only about 15% of GO terms appeared in the pool of
most recent parent nodes in 25 pre-selected classes (Figure
2). We have performed the same analysis for one of the
parent-based methods Elim [10]. The results we obtained
were similar to those described above. For example, the
detecting power of "Parent match" was about 40% above
a certain value of  (about 0.6) [see Additional file 1].
These results indicated that the proposed procedure was
able to enrich for the correct, differentially expressed gene
sets.

Application of CeaGO to ALL data sets
CeaGO was first applied to the well-known expression
dataset Acute Lymphocytic Leukemia (ALL) developed by
Chiaretti et al. [13]. These data were collected to character-
ize the relationship between gene expression signatures in
ALL-associated cells and genotypic abnormalities in adult
patients and the dataset is available from Bioconductor
[25]. One use of the dataset has been to examine B-cell
lines with this disease and find differential gene expres-
sion between the BCR/ABL samples that have rearrange-
ments in the BCR/ABL genes, and NEG samples, which
have no evidence of major molecular rearrangements.
There are 37 samples for the BCR/ABL group and 42 for
the NEG group, each of which has been hybridized to an
Affymetrix HGU95Av2 chip containing 12,625 gene-asso-
ciated probes. We began by normalizing the dataset using
the variance stabilizing method VSN [26]. Subsequently,
10,503 genes were successful mapped to GO terms from
the BP ontology yielding a list of genes with a GO graph
of 3,066 terms.

CeaGO identified five GO clusters with significant p-val-
ues (<0.05). The raw p-values were adjusted using the false
discovery rate (FDR) method from Benjamini and Yeku-
tieli [27]. Table 1 presents some novel significant groups
that were discarded by individual GO term analysis. For
example, genes categorized by S phase of mitotic cell cycle:
0000084&& regulation of transcription during S-phase of
mitotic cell cycle: 0000115 was significantly differentially
expressed in the list scored by CeaGO (p-value = 2.9e-5).
According to an earlier report [28], the BCR/ABL protein
translocates to the nucleus and disrupts an ATR-depend-
ent intra-S phase checkpoint. We observed that genes cat-
egorized by activation of JUN kinase activity: 0007257&&
positive regulation of JUN kinase activity: 0043507 were sig-
nificantly induced, but neither exhibited significant differ-
ential expression using individual GO term analysis. This
is consistent with the report that BCR/ABL leukemia onco-

Score count E St t= ( )∩ (4)

Effect of changing  on simulated dataFigure 2
Effect of changing  on simulated data. This figure illus-
trates how results change when the  is changed. "Exact 
match" represents the percentage of GO groups enriched by 
the CeaGO exact match to the pre-selected "truly enriched" 
gene sets. The "Possible match" groups are those that occur 
in the pre-selected GO classes. The "Parent match" indicates 
the percentage of top nodes enriched by the parent-based 
enrichment method found among the most recent parent 
nodes of the pre-selected "truly enriched" GO sets.
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gene activates Jun kinase and requires Jun for transforma-
tion [29]. The accuracy of the enriched GO cluster method
for interleukin-6 was also supported by previous research
[30].

The disadvantage with parent-based enrichment studies is
that they use only the most recent parent node to calculate
the significance of gene sets. Therefore, we grouped the
GO terms into a cluster, which was a feasible solution for
improving the sensitivity of our programme. For example,
Figure 3 shows a subgraph induced by S phase of mitotic cell
cycle: 0000084&& regulation of transcription during S-phase
of mitotic cell cycle: 0000115 that exhibited significant dif-
ferential expression by CeaGO. In this subgraph, the Ben-
jamini and Yekutieli adjusted p-value of PAGE analysis of
S phase of mitotic cell cycle: 0000084 using all genes with
GO terms was only 0.025 (p-value = 0.0068 in elim),
which was much less significant than the result of CeaGO
analysis (p-value = 2.9e-5). Some groups returned similar
results to the parent-based method, however. For example,
activation of JUN kinase activity: 0007257&& positive regula-
tion of JUN kinase activity: 0043507 had an adjusted p-
value of 0.045, while the parent node positive regulation of
JUN kinase activity: 0043507 had an adjusted p-value of
0.038. In these cases, cluster members identified by
CeaGO were almost the same as the offspring of the GO
term enriched by parent-based analysis, which lead to iden-
tical significant score. These results indicate that the
CeaGO method is more sensitive at detecting certain
novel expression changes than parent-based enrichment
methods, while some coordinated changes were pre-
served.

Application of CeaGO to the ALL/AML dataset
The purpose of the present study was to examine the
applicability of the CeaGO algorithm. In addition, we
tested the algorithm with a published dataset called gol-
ubEsets [14], which is also available from Bioconductor.
It consists of 7,129 genes from 47 samples of acute lym-
phoblastic leukemia (ALL), and 25 samples of acute mye-
loblastic leukemia (AML). Normalization on these
samples was also carried out using VSN. This pre-process-
ing resulted in 6,372 genes annotated to GO terms from
BP ontology. The induced GO graph contains 2,766 GO
terms.

The enriched GO clusters scored by CeaGO are summa-
rized in Table 2. Four clusters had differential gene expres-
sion levels in ALL versus AML at the significance level of
0.05. P-values were adjusted with the FDR procedure
(Benjamini and Yekutieli [27]). CeaGO analysis reported
"chemokine" as highly significant from a statistical per-
spective (p-value = 9e-09 for cluster NO. 1, and 3.4e-06 for
cluster NO. 2). This is consistent with previous research
showing that chemokines affect the proliferation of AML
cells and that primary AML cells constitutively release
chemokine [31]. Moreover, differences in chemokine
responsiveness, as well as chemokine release, are reported
to contribute to patient heterogeneity in AML [32]. The
second cluster as ranked by the CeaGO analysis concerned
"tumor necrosis factor" (FDR corrected p-value = 0.0014).
The importance of this cluster is well-supported. For
example, tumor necrosis factor alpha (TNFα) can increase
the proliferation of AML cells [33].

Table 1: Top significant GO groups identified between BCR/ABL and NEG phenotypes for the ALL dataset.

No GO ID Term Ranka p-value

1 GO:0043122 regulation of I-kappaB kinase/NF-kappaB ... 3 3.7e-06
GO:0043123 positive regulation of I-kappaB kinase/N... -
GO:0043124 negative regulation of I-kappaB kinase/N... -

2 GO:0000084 S phase of mitotic cell cycle - 2.9e-05
GO:0000115 S-phase-specific transcription in mitoti... -

3 GO:0032715 negative regulation of interleukin-6 pro... - 0.012
GO:0032755 positive regulation of interleukin-6 pro... -
GO:0042226 interleukin-6 biosynthetic process -
GO:0045408 regulation of interleukin-6 biosynthetic... -
GO:0045410 positive regulation of interleukin-6 bio... -

4 GO:0032088 inhibition of NF-kappaB transcription fa... - 0.027
GO:0043392 negative regulation of DNA binding -
GO:0043433 negative regulation of transcription fac... -

5 GO:0007257 activation of JNK activity - 0.045
GO:0043507 positive regulation of JNK activity -

a Refers to the rank on the list of top GO terms enriched by individual GO term analysis for FDR controlled at 5%. The dash (-) indicates that this 
GO term was not found on the list generated by individual GO term analysis.
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Subgraph for GO term S phase of mitotic cell cycle: 0000084Figure 3
Subgraph for GO term S phase of mitotic cell cycle: 0000084. Orange circles represent significant clusters enriched by 
CeaGO, green ellipses stand for the annotated GO terms in ALL data but not enriched by CeaGO, and grey ellipse represents 
ALL genes not mapped to GO terms. Black arrows indicate is-a relationships and red arrow indicates part-of relationship.
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Table 2: Top significant GO groups identified between AML and ALL for the ALL/AML dataset.

No GO ID Term Ranka p-value

1 GO:0042033 chemokine biosynthetic process - 9e-09
GO:0045079 negative regulation of chemokine biosynt... -
GO:0045080 positive regulation of chemokine biosynt... -
GO:0050754 positive regulation of fractalkine biosy... -

2 GO:0050927 positive regulation of positive chemotax... - 3.4e-06
GO:0050930 induction of positive chemotaxis -

3 GO:0032720 negative regulation of tumor necrosis fa... - 0.0014
GO:0032760 positive regulation of tumor necrosis fa... -
GO:0042535 positive regulation of tumor necrosis fa... -
GO:0042536 negative regulation of tumor necrosis fa... -

4 GO:0045807 positive regulation of endocytosis - 0.0058
GO:0048260 positive regulation of receptor-mediated... -
GO:0050766 positive regulation of phagocytosis -

a Refers to the rank on the list of the top GO terms enriched by individual GO term analysis for FDR controlled at 5%. The dash (-) indicates that 
the GO term was not found on the list generated by individual GO term analysis.
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Discussion
Traditional strategies for gene expression analysis have
focused on identifying individual genes or pre-defined
groups such as those in KEGG pathways and Gene Ontol-
ogy, which exhibit differences between two states of inter-
est. In this article, we extended expression analysis from
prior defined gene sets to a gene set analysis framework
that makes use of the structure of GO.

GO has a hierarchical structure that forms a DAG. CeaGO
uses the clustering method to combine similar GO terms,
rather than using the parent terms, and successfully
detected several novel, meaningful categories. One objec-
tive of these methods is to enlarge the gene sets to enable
identification of new, differentially expressed groups.
Methods derived from a parent term with all the genes of
its children may introduce unnecessary noise, and fail to
detect significant changes. The superior performance of
CeaGO than parent-based method using PAGE gene set
enrichment algorithm is supported by the results pre-
sented here on simulated and ALL data. Similar scenarios
were observed with the ALL/AML dataset. However, the
number of GO groups enriched by the CeaGO method is
related to the cutoff of semantic distances. If the threshold
was set to the maximum distance of two GO terms of the
ontology, CeaGO gave just one cluster, which is too bio-
logically general. If the threshold was set to 0, all GO
terms were independent, which is the same as the individ-
ual GO term analysis. Fortunately, we found that CeaGO
is not sensitive to this parameter, and an arbitrary 20% of
the maximum semantic distance was chosen to balance
biological meaning and cluster numbers.

The application of CeaGO relies on the accuracy of the
gene set test methods. Fortunately, the proposed method
operates within a well-defined statistical framework, so
that other statistical tests for assessing the significance of
GO sets can be used with CeaGO, for example GSEA [12]
or GlobalANCOVA [21]. The Z-statistic algorithm was
employed in this article because of its fast computation
advantage over the permutation-based methods. For
example, PAGE reduces computation time at least 5,000-
fold when performing 5,000 dataset permutations to get a
background distribution. However, it suffers from limita-
tions on the normal distribution hypothesis and the min-
imal size of gene sets. As the accuracy of statistical test
methods increases, the performance of CeaGO should
improve, as applied to experimental datasets.

In many, if not all cases, analysis with individual GO
terms may not be sufficient to reveal changes in specific
expression patterns. For example, not all the genes anno-
tated to a "Biological Process" term may exhibit as differ-
entially expressed, but only those with a particular
localization such as "membrane" might alter their expres-
sion. Through intersection of gene sets between different

categories, gene sets can be separated more specifically,
facilitating a much more detailed analysis of expression
patterns [8,9]. In future studies, we will introduce a com-
prehensive algorithm to investigate genes within a single
GO term or a clustered GO class, with the goal of uncov-
ering the truly differential expression functions in expres-
sion data.

Conclusion
Gene set analysis based on GO is a popular and useful
approach to extract biological information from expres-
sion data. However, this is limited from showing its full
analytical power when only pre-defined GO terms are
used, because an insufficient number of genes annotated
to one GO term may not be sensitive enough to detect
subtle expression changes. Therefore, we developed a
novel method to extend the traditional individual GO
term analysis. This method dynamically enriches clus-
tered GO terms to identify groups that are significantly
differentially expressed in microarray data. Compared to
individual GO term analysis (including parent-based
enrichment methods), the results obtained from both
simulated and real microarray data sets showed that the
proposed approach is very promising. Furthermore, the
CeaGO model can easily be extended to other gene set
analysis methods.
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Additional file 1
Effect of changing μ on simulated data. This figure illustrates how 
results change when the μ is changed. "Exact match" represents the per-
centage of GO groups enriched by the CeaGO exact match to the pre-
selected "truly enriched" gene sets. The "Possible match" groups are those 
that occur in the pre-selected GO classes. The "Parent match" indicates 
the percentage of top nodes enriched by the elim enrichment method 
found among the most recent parent nodes of the pre-selected "truly 
enriched" GO sets.
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