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Abstract
Imputation of missing data and the use of haplotype-based association tests can improve the power
of genome-wide association studies (GWAS). In this article, I review methods for haplotype
inference and missing data imputation, and discuss their application to GWAS. I discuss common
features of the best algorithms for haplotype phase inference and missing data imputation in large-
scale data sets, as well as some important differences between classes of methods, and highlight the
methods that provide the highest accuracy and fastest computational performance.
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Introduction
Genome-wide association studies (GWAS) scan the entire genome for variants that are
associated with a trait or disease of interest. These studies are proving to be successful in finding
susceptibility loci underlying complex diseases (Altshuler and Daly 2007; Lango and Weedon
2008).

To find disease-associated variants using a case-control genome-wide association design, at
least several thousand cases and several thousand controls are typically needed for adequate
power (Altshuler and Daly 2007; Wang et al. 2005), while several hundred thousand or more
SNPs are needed to cover the human genome adequately (Balding 2006). Thus, GWAS are
considerably larger in scale than candidate gene association studies. Consequently, GWAS
demand new methods of analysis that are computationally efficient and that make good use of
the available data.

One way to improve the power of GWAS is to infer haplotype phase and use a haplotype-based
method for association testing, in addition to applying single-marker association testing
methods (Browning and Browning 2007a). A haplotype is a sequence of alleles that are on the
same physical chromosome (i.e. that are inherited from the same parent). Since the observed
genotypes are unordered pairs of alleles, haplotype phase must be inferred. Statistical methods
estimate haplotype phase using linkage disequilibrium (LD), which is correlation between
neighboring variants. Due to LD, haplotypes can be correlated with other variants within a
region. Thus, testing haplotypes can enable one to detect associations with ungenotyped
variants.
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Another way to improve the power of GWAS is to use missing data imputation to infer
genotypes for known, but ungenotyped, variants. These variants can then be tested for
association with the trait (e.g. Scott et al. 2007; The Wellcome Trust Case Control Consortium
2007). At present the imputed variants are usually SNPs genotyped in the HapMap project
(The International HapMap Consortium 2007). A third approach to improving power is to
combine results across multiple studies, imputing genotypes when SNPs have been genotyped
in some, but not all studies (e.g. Lettre et al. 2008; Zeggini et al. 2008).

I begin this review with an overview of the use of haplotype phase inference and missing data
imputation in GWAS. This overview includes a discussion of the use of the HapMap for
genotype imputation; a discussion of the applications of haplotype phase inference and of
missing data imputation in GWAS; and a discussion of the relative merits of haplotype-based
association testing versus single-marker association testing of imputed markers. I then give
attention to the statistical methodology underlying the major GWAS-applicable methods for
haplotype phase inference and missing data imputation. This includes a brief introduction to
hidden Markov models and the Expectation-Maximization (EM) algorithm, a discussion of
metrics for assessing the quality of results from haplotype inference and imputation methods,
and a brief description of the models and statistical methodology underlying the major methods.
I summarize results from published comparisons of methods, and discuss the relative merits
of the methods.

The HapMap and imputation
A reference panel consists of a number of individuals genotyped at all markers of interest. The
reference genotypes or haplotypes can be used to model patterns of variation, thus aiding the
imputation of missing data (particularly missing genotypes, but also haplotype phase) in the
remaining individuals.

The HapMap data are very well suited for this purpose. Phase II of the HapMap project (The
International HapMap Consortium 2007) includes over 3.1 million single nucleotide
polymorphisms (SNPs) genotyped on four panels of individuals. These panels are: 30 trios
(two parents with one child) of individuals with northern and western European ancestry from
the USA (the CEU panel), 30 trios of Yoruban individuals from Ibadan, Nigeria, 45 unrelated
individuals from Tokyo, Japan and 45 unrelated Han Chinese individuals from Beijing.

One limitation of the HapMap (and of other resources, such as data from previous GWAS
studies) is that it only covers a limited number of ethnicities. To date, most GWAS have used
samples from populations with mostly northern and western European ancestry, so that the
HapMap CEU panel is a close match. When a reference panel from one ethnicity is used to
impute variation in a sample taking from another ethnicity the quality of imputation will be
reduced somewhat, although using a pooled reference panel using all available ethnicities can
give acceptable results (Chambers et al. 2008). In a balanced study design, in which missing
data patterns in cases and controls are roughly the same, and in which cases and controls are
drawn from a single population, a mismatch between ethnicities in the reference panel and the
genotyped sample is not likely to result increased rates of false positive results. However in an
unbalanced situation one might expect an increase in false positive results in a similar manner
to that seen in the presence of population stratification (Campbell et al. 2005).

A second limitation of HapMap Phase II data is that the sample size within each ethnicity is
quite low. A collection of 30 trios will provide 120 haplotypes. Thus, ability to estimate the
haplotypic background of low frequency alleles (particularly those with population frequency
< 2%) is extremely limited.
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Applications of haplotype phase inference to GWAS
In the context of GWAS, the main application of haplotype phase inference is to enable the
use of haplotype-based association methods. To reduce the computational burden for GWAS
data, one can base the analysis on a single best estimate of haplotype phase for each individual
(Browning and Browning 2007a; Scheet et al. 2007). It is also possible to obtain posterior
probabilities of multiple possible haplotype configurations, and to sum over these in the
downstream analysis. Haplotypic association analysis of GWAS have been successful in
finding associated loci that are not genome-wide significant using single-marker tests
(Browning and Browning 2008; Raelson et al. 2007).

An additional application of haplotype phase inference is to phase the reference panel. A
number of imputation methods require the reference data to consist of phased haplotypes,
although some will accept unphased genotypes. Reference panels comprised of trios (or other
closely related individuals) have an advantage over unrelated panels of similar size in that
haplotype phase can be inferred much more accurately in trios by using the rules of Mendelian
inheritance at each genetic marker as well as the linkage disequilibrium correlation across
markers (Marchini et al. 2006).

Applications of imputation to GWAS
Missing data imputation has several applications in the GWAS context. Firstly, one can use
imputation to fill in the small proportion of genotypes that fail to pass quality control. Secondly,
one can impute genotypes at markers that have not been typed in the study, by using a reference
panel. Thirdly, one can use imputation to combine results from two or more studies that have
been genotyped on differing sets of markers, again with the help of a reference panel. A fourth
application, which is not considered in detail here, occurs in family-based GWAS, when a
family member is not available for genotyping (Dudbridge 2008). The first three applications
of imputation will be considered in more detail in the following subsections. Table 1 shows an
example of each type of data.

Imputing missing genotypes
Table 1A shows an example of missing genotypes. Standard quality control procedures, applied
before analysis, remove any individual or marker that has a high proportion of missing data.
Thus, each individual and each marker will have a low proportion of missing data. No reference
panel is needed to impute the missing genotypes, as the almost complete data from other
individuals and the high marker density usually provide sufficient information to impute with
high accuracy. Greater than 98% accuracy of imputed genotypes can be achieved in studies
with 3000+ individuals genotyped at the density of the Affymetrix 500K array (Browning and
Browning 2007b).

Early developers of methods for haplotype phase inference recognized the potential application
to filling in missing genotypes (Hawley and Kidd 1995). Thus, this application is not new.
However, in the GWAS context it has increasing importance, for two reasons. Firstly, the
markers in a GWAS are sufficiently dense and the samples sizes are sufficiently large to allow
accurate imputation of missing data. Secondly, due to the high marker density, multilocus
association methods can be quite powerful, and multilocus methods typically require complete
genotype data (and often haplotype phase as well). When applying a multilocus association
method to multiple markers it is very inefficient to discard an individual just because that
individual is missing a genotype at one of the markers. A high proportion of individuals will
have data missing at one or more of the markers, so discarding these individuals will reduce
the sample size substantially. Thus, imputation of missing genotype data is important for
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maintaining power of association studies for single marker methods, and even more so for
many multilocus methods.

Imputing genotypes at ungenotyped markers using a reference panel
Table 1B shows an example of markers that are not genotyped in the sample but that are
genotyped in a reference panel (SNPs 2 and 5). The reference panel is essential if the genotypes
at the ungenotyped markers are to be inferred in the sample. Note that the samples may have
some missing genotypes at genotyped markers, and there may be some missing genotypes in
the reference panel.

This type of imputation is closely related to the concept of tagging. In tagging, one chooses a
subset of SNPs (the “tag” SNPs) from a larger set, such that every SNP in the larger set is
highly correlated with one or more tag SNPs (Carlson et al. 2004; Johnson et al. 2001), or with
a haplotype of tag SNPs (Pe'er et al. 2006). Thus testing tag SNPs for association with a trait
should be almost as powerful as testing the larger set of SNPs. When the tagging concept was
in early development, it was realised that tag SNPs could also be used to impute the variants
that the tag SNPs were tagging, for the purposes of “finer mapping” (Chapman et al. 2003).
This idea was extended for application to GWAS by several authors (Marchini et al. 2007;
Nicolae 2006; Servin and Stephens 2007). Prior to the development of the HapMap resource,
one needed to conduct a pilot study of all known polymorphism in a region, from which one
chose tag SNPs. The tag SNPs could then be used as proxies for other known polymorphisms.
One can now use HapMap data to select tag SNPs instead of conducting a pilot study, and once
genotyping has been performed on one's own sample, one can combine the sample data with
HapMap data and impute the remainder of the HapMap SNPs for the sample (The International
HapMap Consortium 2007). As well as gaining statistical power by using imputation, one can
reduce the cost of GWAS by using smaller (less expensive) arrays, such as the Illumina 300K
rather than Illumina 550K array. However, a slightly larger sample size is needed to achieve
comparable power when using a smaller array, as imputation is typically less accurate than
genotyping (Anderson et al. 2008). In addition to imputation of HapMap SNPs, other types of
variation may be imputed, such as the classical HLA alleles (Leslie et al. 2008; Listgarten et
al. 2008).

The strategy of imputing HapMap SNPs has been adopted in several GWAS (e.g. Chambers
et al. 2008; Scott et al. 2007; The Wellcome Trust Case Control Consortium 2007; Willer et
al. 2008; Zeggini et al. 2008). This strategy has been successful in finding associations that
would not have been found using only the original genotypes. For example, Zeggini et al.
imputed 2.20 million HapMap SNPs in three collections of type 2 diabetes cases and controls
(Zeggini et al. 2008). Two of the collections had been genotyped on the Affymetrix 500K
GeneChip, while the third had been genotyped on the Illumina 317K chip. This imputation
resulted in two significant results that would not have been found using only the original
genotypes. One of these was a known association with PPARG, while the second was a novel
association with CDC123-CAMK1D, which has been confirmed through genotyping in
replication samples.

Combining studies from different genotyping platforms
It has become apparent that even large GWAS with several thousand cases and controls are
underpowered to find disease susceptibility variants for many common diseases. Increased
success can come from combining data across multiple studies to increase sample sizes and
thus increase power. A significant challenge in combining results from such studies lies in
combining results across studies that have genotyped different marker sets. One approach, used
by a group of type 2 diabetes studies (Diabetes Genetics Initiative 2007; Scott et al. 2007;
Zeggini et al. 2007), is to simply investigate the top results from each individual study,
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performing additional genotyping in the samples from the other studies to attempt to replicate
these results. A more powerful approach is to combine the data from all studies. This allows
detection of associations that are not among the top hits in any one study, but that show a trend
in each component study. In order to do so, the problem of assessing markers genotyped in
some component studies but not in others must be addressed, which can be achieved through
imputation (Pe'er et al. 2006). Several groups have recently taken this approach, combining
data from studies that used different genotyping platforms by using HapMap-based imputation,
and have found novel associations (Barrett et al. 2008; Lettre et al. 2008; Willer et al. 2008;
Zeggini et al. 2008).

In general, accurate cross-platform imputation requires the use of a reference panel of
individuals who have been genotyped on the majority of markers from both platforms. Table
1C shows two samples genotyped on different genotyping platforms, along with a reference
panel. Some markers (such as SNP 4) may be genotyped on both platforms. The reference
panel is essential unless the degree of overlap between the two genotyping platforms is very
high. The HapMap data can serve as the reference panel, or one can make use of panels of
control individuals who have been genotyped on several different marker sets, such as the 1958
British Birth Cohort (http://www.b58cgene.sgul.ac.uk), which has been genotyped on the
Affymetrix 500K and Illumina 550K platforms.

Haplotypic tests versus testing imputed markers
Multilocus association tests, including haplotype-based association tests, seek to detect
association between disease status and variants that have not been directly genotyped. While
imputation seeks to test association between known, but ungenotyped, variants and disease
status, haplotypic tests seek to test association between observed haplotypic backgrounds and
disease status. Every genetic variant originally occurs on a particular haplotypic background,
which is modified over time through recombination and mutation. Thus, the observed current
haplotypic backgrounds can serve as proxies for such known or unknown genetic variation,
particularly for low frequency (i.e. recent) variants. Haplotypic tests may be able to detect
association with variants that are not included in any suitable reference panel, which increases
their relative usefulness. Also, haplotypic tests may be able to find sets of cis interacting
variants on the same haplotype background within a gene which will not be found using single
marker tests of genotyped or imputed variants (Schaid 2004).

On the other hand, multilocus tests need to be applied very carefully. If haplotypes are tested
indiscriminately, there will be a large increase in the amount of variation that is tested, with
the need for correspondingly large multiple-testing correction, which reduces power. Sliding
window approaches that test every haplotype of a fixed number of markers are particularly
poor in this respect. If the window size is too high, too many tests will be applied and any
association will be split over multiple haplotypes and will be undetectable. If the window size
is too small, information is lost, reducing power. The optimal window size varies from one
region to another, and even with optimal window size, it may be possible to cluster the
haplotypes further to improve power.

The localized haplotype clustering testing method (Browning and Browning 2007a; Browning
2006) is quite parsimonious in selecting clusters of haplotypes to test for association, avoiding
the problems inherent in sliding window approaches. The method was able to identify four
novel associations in the Wellcome Trust data set, three of which have strong support from
independent studies (Browning and Browning 2008; Zeggini et al. 2008). In contrast,
imputation of HapMap SNPs did not result in novel findings in these data. It is worth noting
that application of Beagle involved approximately 1.5 million haplotypic tests per disease,
which is fewer than the number of tests applied when imputing HapMap variation. Thus, this
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result suggests that at present haplotypic analysis can have an edge over analysis of imputed
markers.

With the development of reference panels that cover a greater proportion of actual variation,
the balance is likely to shift towards imputation. The 1000 Genomes Project
(http://www.1000genomes.org/) will sequence the genomes of at least 1000 individuals from
around the world, providing a publicly available reference panel that catalogues almost all
SNPs and structural variants that have frequencies of 1% and higher.

Overview of methods for imputation and haplotype phase inference
Most methods for haplotype phase inference can also be used to perform imputation. In
addition, there are imputation methods that are independent of haplotype phase inference.
Although there are a very large number of methods for haplotype phase inference and/or
missing data imputation, most of these are too computationally intensive for application to
GWAS data. The focus here is on those methods that are most applicable to GWAS analysis.
Before describing the methods themselves, some background information on Hidden Markov
Models and the Expectation-Maximization (EM) algorithm, which are used by most of the
methods, are presented and metrics for assessing accuracy of haplotype phase inference and
imputation are discussed.

Hidden Markov models and the EM algorithm
Hidden Markov models (HMMs) are a natural choice of approach for inference of haplotype
phase and missing genotypes. In an HMM, an underlying hidden (i.e. unobserved) state
generates the observed data (see Rabiner 1989). In the context of haplotype phase and missing
genotype inference, the observed data are the observed unphased genotypes (which may
include errors and missing data), while the hidden state represents the haplotype phase and the
true genotypes.

A Markov model is applied to the hidden states along the chromosome. Markov models have
a very simple probabilistic structure that results in a relatively parsimonious model and
facilitates computation. The observed data at a marker depend only on the hidden state at that
marker (the hidden state is said to “emit” the observed data).

Computation on HMMs is achieved using numerical tricks that exploit the conditional
independence structure of the model, and computation times generally increase linearly with
the number of markers, and quadratically (or less) with the number of states at each marker.
The specialized algorithms that are used are the Viterbi algorithm to find the most likely hidden
state paths (i.e. phased haplotypes), the Baum forward-backward algorithm to compute
posterior probabilities of hidden states (i.e. probabilities of haplotypes given the genotype
data), and the Baum-Welch algorithm to fit model parameters by maximizing the likelihood.
Details of these algorithms are given in a tutorial by Rabiner (1989).

The Baum-Welch algorithm is an EM algorithm (Rabiner 1989). EM algorithms iteratively
update model parameters to maximize the model likelihood. In the context of haplotype phase
and missing data imputation, the iteration usually proceeds as follows. First, one takes an
estimate of haplotype phase and missing data values, which can be an arbitrary guess at the
first iteration. Using the estimated full data (with haplotype phase and all genotypes), one
estimates the other parameters of the model, such as recombination fractions. Then, using the
fitted model and original observed genotype data, one re-estimates the haplotype phase and
missing data values. These new estimates of haplotype phase and missing data values become
the estimates used to initiate the next iteration of the algorithm. Typically, convergence (of
measures of accuracy such as switch error or imputation error rates, described below) is
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achieved in 10-100 iterations of the algorithm (e.g. Browning and Browning 2007b; Hawley
and Kidd 1995; Scheet and Stephens 2006). An EM algorithm can get caught in a local
maximum of the likelihood surface. A workaround to the problem of local maxima is to run
the algorithm multiple times and use the solution with the highest final likelihood value;
however, this does increase computation time.

EM algorithms are used in a frequentist framework, while Bayesian models are typically fit
using Markov chain Monte Carlo (MCMC) algorithms. MCMC algorithms attempt to explore
the entire model space, rather than simply find a maximum, and generally require tens of
thousands of iterations. Thus, they are very computationally intensive, and are not suitable for
routine analysis of large genome-wide data sets.

Metrics for assessing results
Two primary metrics are used for assessing accuracy of haplotype phase inference and
imputation for large-scale data sets. The switch error rate (Lin et al. 2002; Stephens and
Donnelly 2003) is the proportion of successive pairs of heterozygote markers in an individual
that are phased incorrectly with respect to each other. This error rate can only be assessed when
the true haplotypes are known, for example in simulated data, or when nuclear family data are
available. The imputation error rate is the proportion of missing data genotypes that are
correctly imputed. This error rate can be assessed in real data by masking (setting to missing)
a small proportion of the genotypes, and attempting to impute them. Methods for haplotype
phasing that achieve low switch error rates also tend to achieve low imputation error rates,
because low switch error rates indicate accurate haplotype phasing, which in turn leads to high-
quality imputation.

It is possible to tune the output from haplotype phasing and imputation methods to attempt to
minimize these two measures of accuracy. While it is natural to use the “best” haplotypes as
output – that is, the haplotypes with the highest likelihood values, which are the output of the
Viterbi algorithm (see section on HMMs above) – these are not necessarily the haplotypes that
will minimize switch and imputation error. For example, fastPHASE (Scheet and Stephens
2006) attempts to minimize switch error by moving through the heterozygous sites in an
individual's genotypes, phasing each heterozygous site relative to the previous one according
to the most frequent phasing seen in the sampled haplotype pairs. Imputation error can be
minimized by setting the imputed genotype to be the one that maximizes the genotype posterior
probability (this is not necessarily the same as maximizing the posterior probability for the
entire haplotype pair).

In real data, for which the correct phase and missing genotype values are unknown, one can
assess the imputation or phase accuracy by using the variability of the sampled haplotypes or
genotypes. These samples can be obtained either from multiple iterations of a single long EM
run (Li et al. 2007) or from the final iterations of multiple EM runs (Scheet and Stephens
2006). If the imputed genotypes or phases of successive heterozygote genotypes are almost
identical over multiple samples, one can have high confidence in the quality of the imputation
or phasing, whereas if the variability is high, the accuracy is likely to be low.

Methods for haplotype phase inference
In this section, I describe the methods for haplotype phase inference that are applicable to
GWAS, and the statistical models on which many such methods are based.
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Methods based on the Li and Stephens framework
A number of methods suitable for haplotype phase inference on large-scale data sets are based
on variants of the “product of approximate conditionals” (PAC) models described in Li and
Stephens (2003). I will refer to this family of models as the Li and Stephens framework. In
these models, a subset of haplotypes is selected as a reference set, and each reference haplotype
represents a (hidden) state of the HMM at each marker. The true haplotypes underlying the
observed genotype data are assumed to be imperfect mosaics of the reference haplotypes. Points
of change from one reference haplotype to another allow for historical recombination. The
observed alleles may differ from the alleles on the underlying true haplotypes to allow for
historical mutation and genotype error. As part of the model fitting process, parameters such
as historical recombination rates between adjacent markers, and mutation rates may be
estimated.

FastPHASE (Scheet and Stephens 2006) uses the Li and Stephens framework, with a fixed
number of haplotype clusters in place of reference haplotypes. I will refer to this model as the
Scheet and Stephens model. The model parameters, including definitions of the haplotype
clusters and recombination and mutation rates are fit using an EM algorithm. By default,
fastPHASE v1.2 chooses the optimal number of clusters from the range 5, 10 and 15 using
cross-validation. For data sets with large numbers of individuals, the use of a larger number of
haplotype clusters (e.g. 20 or 30 clusters rather than the default 5-15) improves imputation and
phasing accuracy (Eronen et al. 2006). However, computation time increases quadratically
with the number of haplotype clusters used.

Mach (Li et al. 2006; Li et al. 2007) is also based on the Li and Stephens framework. During
each EM iteration of the model fitting, the current estimates of haplotype phase are used as the
reference haplotypes. One at a time, an individual is removed from the set of reference
haplotypes and is updated. The updated pair of haplotypes for the individual is sampled from
the posterior probability distribution which is based on the current reference haplotypes. The
recombination and mutation rates are estimated at the end of each iteration. In order to reduce
the computational burden, one can restrict the number of states. In this case, a random subset
of estimated haplotypes is used as the reference pool for each update of an individual. As the
computational burden increases quadratically with the number of reference haplotypes, the
ability to limit the number of states in this way is essential for data sets with large numbers of
individuals. Impute (Marchini et al. 2007) is also based on the Li and Stephens framework,
however Impute does not infer haplotype phase, so it is considered later, under methods for
missing data imputation.

PHASE (Stephens and Scheet 2005; Stephens et al. 2001) has been considered a gold-standard
in the field of haplotype phase inference, as it has achieved excellent results on small data sets
(Marchini et al. 2006). PHASE version 2 (Stephens and Scheet 2005) takes a Bayesian
approach and uses MCMC to fit parameters of a model based on the Li and Stephen framework.
Because it uses MCMC, it involves long computation times. In addition, the current
implementation of PHASE (v 2.1) cannot handle more than approximately 100 markers at
once, so it must be applied to sliding windows of markers for larger data sets.

Beagle
Beagle (Browning and Browning 2007b) is based on a model that locally clusters haplotypes
(Browning 2006). I will refer to this model as the Browning model in this review. In the
Browning model, the observed haplotypes are grouped into clusters at each marker position,
based on similarity of the haplotypes at markers in the local vicinity. As one moves along the
model from one marker to the next, cluster membership tends to stay stable, with some changes
due to historical recombination or mutation events.
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The Browning model is an HMM, and EM-style updating is used to fit the model in Beagle.
There are no explicit parameters such as recombination fractions in the Browning model.
Instead, the model is represented by the clusters and by the possible transitions between them,
along with the observed frequencies of those transitions. Important differences between the
Browning model and the Li and Stephens framework (as implemented in Mach and Impute)
are highlighted in Figure 1. Firstly, the number of states at each marker can vary. This allows
Beagle to model differing levels of complexity at differing locations, while minimizing the
computational burden. Secondly, in the Browning model a hidden state (the localized haplotype
cluster) only emits a single type of allele (i.e. haplotypes with different observed alleles at a
position cannot be in the same localized haplotype cluster). Thus, mutation is not explicitly
modelled, although the states of the model will include any observed mutations. In addition,
each state at one marker can transition to at most k states at the next marker, where k is the
number of observed alleles for the marker (e.g. k = 2 for SNPs). These differences reduce the
number of possible paths through the model for a given multilocus genotype, thus reducing
the computational burden for each iteration of the EM algorithm. With the Browning model,
there is no need to estimate parameters such as mutation rates and recombination rates
explicitly, which appears to have the effect of reducing the number of iterations required
(relative to Mach and fastPHASE which do estimate such parameters). A final difference is
that many haplotype configurations are assigned a probability of zero by the Browning model.
For example, the haplotype 111 has probability zero in Figure 1. This difference is necessary
to allow the model to be so parsimonious, but means that the haplotype model must be
constructed from all sampled individuals, rather than from a subset acting as a reference panel.
If an individual's genotypes are not used in the model-building process, it is possible to
encounter the situation in which there is no haplotype configuration in the model that is
consistent with the individual's genotype. In summary, the Browning model is a much more
parsimonious model than the Li and Stephens framework. Thus, there are many fewer
parameters to estimate in the Browning model, which results in much faster computation times.

The localized haplotype clustering in the Browning model used by Beagle is conceptually
similar to the clusters of the Scheet and Stephens model. One major difference between the
clusters in the Browning model and the clusters in the Scheet and Stephens model is that the
latter uses a fixed number of clusters, while the former allows the number of clusters to vary
from one position to another. Another important difference is that clusters in Beagle are based
on the current estimates of the haplotypes rather than on underlying ancestral haplotypes. For
example, two haplotypes with different alleles at the current marker position will not be in the
same cluster at this position with Beagle, whereas they might be in the same cluster with
fastPHASE, if the haplotypes are otherwise very similar at nearby markers.

Other methods for haplotype phase inference
The EM algorithm can also be used directly for haplotype phase and missing data estimation
(Excoffier and Slatkin 1995; Hawley and Kidd 1995; Long et al. 1995). In this case, there is
no mediating model, but the frequencies of the haplotypes are estimated directly. The methods
can only be applied to small numbers of markers at once, because the haplotype frequencies
become too low to be estimated with any accuracy when more than a handful of markers are
considered. For large-scale data sets, then, haplotype phasing involves sliding a window along
the chromosome, estimating haplotype phases within each window and piecing the fragments
together over the whole chromosome. Due to the limitation on the number of markers that can
be considered at once, and on the lack of a model to account for historical recombination and
mutation, it is unlikely that direct EM algorithms will be able to achieve the accuracy of good
model-based methods.
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Another successful class of large-scale haplotype phase inference methods is based on piecing
together observed haplotype segments, such as in HaploRec (Eronen et al. 2006). HaploRec
divides reference haplotypes into fragments. All fragments with observed frequency greater
than some threshold are placed in a dictionary. The probability of a haplotype is defined to be
the product of corresponding fragment frequencies from the dictionary. As there are multiple
ways to construct a given haplotype from the dictionary of fragments, the result is averaged
over all such “segmentations”. An EM algorithm is used to successively refine the estimated
phased haplotypes. HaploRec does not impute missing data as part of the haplotype phasing
process, in contrast to the other methods described above. The dictionary model of Ayers et
al. (2007) is very similar, however Ayers et al. use MCMC to fit their model. This enables
imputation of missing data, but makes the algorithm too slow for application to large data sets.

Consideration of phylogeny can be used in haplotype reconstruction, as in HAP (Halperin and
Eskin 2004). This approach assumes no recurrent mutation, and no historical recombination
within the window of markers, when building an ancestral tree for the haplotypes underlying
the observed genotype data. This is inherently a block-based or window-based approach, which
has some disadvantages, as mentioned above for the direct EM approaches.

There are a great many papers describing other methods for haplotype phase inference.
Typically, these methods show excellent accuracy on small data sets (a handful of markers and
fewer than 100 individuals) but have not been shown to have good accuracy for large data sets,
such as those found in GWAS. In addition, most of these methods are computationally costly,
and would be extremely difficult to apply to on a genome-wide scale.

Methods for missing data imputation
Except for HaploRec, all of the above haplotype phasing methods impute missing data as part
of the process of inferring haplotype phase. In addition, Mach and fastPHASE have options to
only impute missing data (i.e. not infer haplotype phase), which reduces computational time
somewhat. Mach and fastPHASE have options to specify that the phase of some individuals
is known – this is useful when including reference data that has been accurately phased with
the use of data on related individuals, such as HapMap trios (The International HapMap
Consortium 2005). Beagle version 3.0 also allows for use of a phase known reference panel
(B.L. Browning and S.R. Browning, unpublished data; software available on request).

Two imputation-specific methods that are based on the Li and Stephens framework (Li and
Stephens 2003) are Impute (Marchini et al. 2007) and Bim-Bam (Servin and Stephens 2007).
Impute uses a panel of phased reference haplotypes to build a model, and requires user-
specification of recombination rates and mutation rates. Thus, it avoids the need for an iterative
model-building approach, but it may be sensitive to misspecification of model parameters, and
does not utilize information contained in the other individuals on whom imputation will be
performed. Bim-Bam uses fastPHASE to perform the imputation, but adds new methodology
for using the imputed values in association testing. Missing data are imputed multiple times,
with the imputed values being used in a Bayesian regression approach to test for association.
It is beyond the scope of this review to discuss specific statistical techniques for using imputed
genotypes in association testing, so we do not consider Bim-Bam in further detail here.

Rather than using all markers (on a chromosome, or within a large window) as potential
predictors of genotype via phased haplotypes, several approaches use small sets of genotyped
markers (usually tag SNPs). The predictors of genotype can be regression equations based on
tag SNPs (Chapman et al. 2003), specific two or three marker haplotypes (Pe'er et al. 2006),
or weighted averages of haplotype indicators (Lin et al. 2008; Nicolae 2006; Zaitlen et al.
2007).
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In addition to specialized genetics-based approaches, one can use standard statistical
techniques for imputing missing data, such as linear regression with variable selection,
regression trees, or k-nearest neighbor methods. Yu and Schaid (2007) reviewed a number of
these methods, and compared them to fastPHASE on masked HapMap data. They found that
fastPHASE provided better results (gave lower imputation error rates) than any of the non-
genetic methods.

Accounting for uncertainty in imputation
The degree of accuracy that can be achieved when estimating ungenotyped markers varies
greatly depending on the extent of LD between the ungenotyped marker and nearby genotyped
markers. Ungenotyped markers that are in low LD with nearby markers, or, equivalently, for
which the estimated accuracy is low, are usually discarded rather than being carried forward
into association analysis. For example, the study of Scott et al. (2007) imputed genotypes in
2335 individuals for 2.15 million HapMap SNPs with minor allele frequency > 1% in
Caucasians that were not included on the Illumina 300K panel. In this study, 0.06 million
imputed SNPs (3%) failed to have sufficiently high estimated accuracy, and were removed
from the analysis. Nonetheless, there will be some uncertainty around the remaining estimated
(imputed) missing genotypes that should not be ignored.

Lin et al. (2008) recommend using likelihood-based methods to integrate over uncertain
haplotype phase and missing data values when imputing and testing ungenotyped variants.
This avoids the potential loss of power inherent in the two-stage approach of imputing variants
then using the imputed values (without accounting for uncertainty in these values) in the
association tests. Most imputation methods provide posterior probabilities for imputed
genotypes, which allows for accounting of uncertainty without taking the full likelihood
approach. It is beyond the scope of this review to discuss the best ways to use imputed values
in association tests, however various approaches have been described (Lin et al. 2008; Marchini
et al. 2007; Nicolae 2006; Servin and Stephens 2007).

Whichever approach is used, tests based on ungenotyped variants are subject to the same
problems as those on actual genotypes, such as effects of population stratification, and
differential rates of missing data and genotyping error in cases and controls. Genotyping
problems at a single marker can adversely affect imputation at multiple nearby imputation
positions. Thus, replication of imputation-based results should always include actual
genotyping of the implicated markers on a separate set of cases and controls.

Comparisons of methods
Both error rates and computing times need to be considered when assessing the performance
of competing methods. The relative performance of the methods differs greatly as a function
of sample sizes, marker densities and computing parameters such as the number of EM
iterations. As a general rule, for both haplotype phase inference and missing data imputation,
the larger the sample size, the more hidden states (e.g reference haplotypes in the Li and
Stephens framework, or haplotype clusters in the fastPHASE and Beagle models) are needed
in the model to achieve optimal performance. This is not surprising, as a larger sample size
means a greater number of observed haplotypes, which can be better captured by greater model
complexity.

Eronen et al. (2006) found that EM methods based on direct estimation of haplotype
frequencies, such as PL-EM (Qin et al. 2002) are less accurate than model-based methods such
as HaploRec, fastPHASE and PHASE on large data sets. Browning and Browning (2007b)
showed that Beagle is faster and more accurate than HaploRec and fastPHASE on very large
data sets (thousands of individuals and a density of at least 1 SNP per 3 kb). See Browning and
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Browning (2007b) and Eronen et al. (2006) for comparisons of other methods on large sample
sizes. Also see Marchini et al. (2006) for results on smaller sample sizes.

Although simulation results in Lin et al. (2008) suggest that the tag-based maximum likelihood
approach is more powerful than a haplotype-based imputation approach using fastPHASE, the
simulations included only five SNPs. With more markers, fastPHASE could obtain improved
estimates of haplotype phase, and thus increase the accuracy of the imputation. Thus, these
simulations are too limited to allow valid comparison of the relative performance of Lin et al.'s
method and fastPHASE.

Conclusions
This paper has reviewed the best methods for haplotype phase inference and missing data
imputation, and their application to GWAS. The best haplotyping methods in this context differ
from those suggested in an earlier comparison (Marchini et al. 2006) with smaller sample sizes,
because of the computational demands of whole genome data, and because methods that
provide most accurate inference on data sets with small numbers of individuals do not
necessarily provide the most accurate inference on larger data sets.

Missing data imputation is a new and exciting way to improve the power of GWAS. By means
of a reference panel, one can impute ungenotyped SNPs and/or combine studies genotyped on
different platforms. The development of larger reference panels, such as the 1000 Genomes
Project, with more individuals and more variants, will make this approach increasingly useful.
However, haplotype-based multilocus analysis (Browning and Browning 2007a) should not
be neglected as a complement to single marker analysis.

For large sample sizes (>1000), Beagle has an advantage over other haplotype-phasing
programs, in that its parsimonious modelling scales well to such large data sets while other
methods have to be scaled back for computational reasons. For smaller sample sizes (100
individuals), for which computing times are not as significant, I have found that Mach provides
excellent results, providing better accuracy than other methods such as fastPHASE and Beagle
(S.R. Browning, unpublished results).

I have not directly compared the imputation-only methods with imputation using the haplotype-
phasing methods. Some of the imputation methods do not actually output imputed genotypes,
but only output the final results of testing for association (for example, Lin et al. 2008). These
methods need to be compared in terms of power to detect association rather than accuracy of
imputation. Of the available imputation methods, Impute and Mach have both been used for
imputation in GWAS, and have yielded similar results (Barrett et al. 2008).

What makes for a good method for haplotype phasing and missing data inference for GWAS?
Since the data sets are so large, they contain a lot of information. A careful balance must be
maintained in the level of modelling that is applied. With low levels of modelling, such as in
the direct EM methods, only a small number of markers can be considered simultaneously.
This reduces the amount of information that can be extracted from the data. Careful selection
of the markers that are used to provide information (as in Lin et al. 2008) helps, but may still
be sub-optimal. Overly stringent modelling can also be disadvantageous with large data sets,
as the data contain a lot of information that can be partially lost if an inadequate model is
strongly imposed. Thus with large data sets, the data should be allowed to speak for themselves
to quite an extent. Several of the more successful methods are very empirical. Mach and Impute
use estimated or observed haplotypes directly as reference haplotypes, with other haplotypes
being imperfect mosaics of these haplotypes. Beagle constructs a parsimonious model based
on the estimated haplotypes, and allows only for certain mosaics of these haplotypes. To
achieve the balance of over-modelling versus under-modelling, an extremely useful approach
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is to recognize that haplotypes will tend to be locally similar to one another, with patterns of
changes following those expected from the biological processes of recombination and mutation
(Li and Stephens 2003). This principle underlies the models that are used by the most successful
haplotype phasing algorithms, such as models based on the Li and Stephens framework,
HaploRec's segmentation model and the Browning model.

Beyond modelling, the implementation of the method must be computationally efficient, and
the method must have good convergence properties if it is iterative (as most of the methods
are). HMMs facilitate efficient sampling of new haplotype estimates given the current model,
and are thus extremely useful. The models based on the Li and Stephens framework and the
Browing model are examples of HMMs. EM-style iterative methods, such as those used by
Mach, fastPHASE, HaploRec and Beagle require much less computation than methods based
on MCMC (such as PHASE). It is my opinion that MCMC is too slow for GWAS data sets,
and that MCMC will not be able to provide useful solutions to the problem of haplotype phase
estimation for large-scale data. Currently, EM algorithms are widely used, whereas other types
of iterative maximization, such as variants of Newton's method (for example, Dudbridge
2008), are rare, however this may indicate fashion rather than inherent advantages of the EM
approach.
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Figure 1.
Illustration highlighting major differences between models based on the Li and Stephens
framework (2003) and the Browning model (Browning 2006). Excerpts of the models covering
three markers (SNPs i-1, i and i+1) are shown. Ovals are hidden states of the models. For the
Li and Stephens framework, these states are defined by the reference haplotypes, while for the
Browning model the states are localized clusters of haplotypes. Note that the graphical
representation of the Browning model is that given in Browning (2008), while earlier
representations had states as edges rather than as nodes of the graph. The Browning model will
tend to have fewer states at any given marker than will unconstrained models based on the Li
and Stephens framework, and the number of states can vary from marker to marker for the
Browning model but is fixed in the Li and Stephens framework. Arrows between states from
one SNP to the next are transitions of the HMM. For the Li and Stephens framework, transitions
with highest prior probability (those seen in the reference haplotypes) are shown with bold
arrows, while thin arrows allow for historical recombination. For the Browning model, there
are at most k transitions coming out of a state, where k is the number of alleles at the next
marker (i.e. 2 for SNPs), which helps to keep the model parsimonious. Arrows coming out of
the top of the states are possible emissions of the HMM, which are the observed alleles. For
the Li and Stephens framework, emissions with highest prior probability (the alleles on the
reference haplotypes) are shown with bold arrows, while thin arrows represent mutations to
other alleles. The reference haplotypes here are 011, 010, 101 and 001. For the Browning
model, there is only one possible emission from each state, which helps to keep the model
parsimonious. The models shown are illustrative only. The actual form of the Browning model
will vary depending on the alleles of the reference haplotypes outside this window of markers.
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