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Many proteins function through conformational transitions be-
tween structurally disparate states, and there is a need to explore
transition pathways between experimentally accessible states
by computation. The sizes of systems of interest and the scale
of conformational changes are often beyond the scope of full
atomic models, but appropriate coarse-grained approaches can
capture significant features. We have designed a comprehensive
knowledge-based potential function based on a C� representation
for proteins that we call the virtual atom molecular mechanics
(VAMM) force field. Here, we describe an algorithm for using the
VAMM potential to describe conformational transitions, and we
validate this algorithm in application to a transition between open
and closed states of adenylate kinase (ADK). The VAMM algorithm
computes normal modes for each state and iteratively moves each
structure toward the other through a series of intermediates. The
move from each side at each step is taken along that normal mode
showing greatest engagement with the other state. The process
continues to convergence of terminal intermediates to within a
defined limit—here, a root-mean-square deviation of 1 Å. Valida-
tions show that the VAMM algorithm is highly effective, and the
transition pathways examined for ADK are compatible with other
structural and biophysical information. We expect that the VAMM
algorithm can address many biological systems.

coarse grained � potential function � transition pathways

Large-scale conformational transitions mediate allosteric regula-
tion and play other critical roles in protein function (1, 2).

Crystallographic studies have provided various snapshots of some
proteins in different conformational states, yet the transition mech-
anisms and the allosteric couplings of these proteins remain in-
completely understood at best. In addition to experimental tech-
niques, the near-native state dynamics of proteins have been studied
using various full atomic (3) and coarse-grained computational
approaches (4). Conformational changes may span an extensive
range of amplitudes and time scales, and relevant systems can be
quite large. Such transitions typically entail the crossing of large
energetic and entropic barriers and involve the collective motions
of very large protein complexes that are not readily accessible to
experiments and not easily modeled for computations. Accurate
and efficient molecular mechanics approaches are needed to ana-
lyze such large-scale motions and relate the complex dynamic
behaviors of proteins to their function.

Adenylate kinase (ADK) is prototypic of proteins that undergo
large-scale conformational change during functional transitions (5).
ADKs regulate energy homeostasis in cells by catalyzing the
transfer of a phosphate group from ATP to AMP to yield two ADP
molecules. ADK comprises three domains: a core domain, an
ATP-binding lid domain, and an AMP-binding lid domain. It has
been well characterized by structural (5–9), biophysical (9, 10), and
theoretical (11–14) studies that large conformational transitions of
ATP lid and AMP lid domains are coupled to ligand binding and
catalysis by ADK. Hinge-bending motions allow the ATP- and
AMP-binding domains to close onto their ligands and form the
catalytic site (closed state) and to open up for product release and

substrate rebinding (open state). Crystal structures are known in a
comprehensive set of ADK conformational states from multiple
orthologs (Fig. 1).

Several computational methods have been proposed in recent
years to study conformational transitions of macromolecules, no-
tably for ADK. Rigorous atomistic molecular dynamics simulations
have proven useful in revealing the trajectory of the ADK transition
(11–13); however, such approaches are computationally expensive
and still problematic for very large complexes, such as ribosomes
and RNA polymerase. Alternatively, coarse-grained normal-mode
analyses (15–17) or plastic network model approaches (18) using
different forms of simple harmonic potentials have generated
transition pathways of the ADK; however, these approaches are
questionable because the simple harmonic potential approximation
becomes less valid as the intermediate structures lie far away from
the native states.

Motivated largely by transition pathway applications, we recently
defined a knowledge-based potential function for large systems
undergoing large conformational changes (19). We call this coarse-
grained approach virtual atom molecular mechanics (VAMM).
The VAMM pseudo force field accurately describes the structure
and fluctuations of proteins around their native states. Here, we
establish an algorithm based on the VAMM force field to compute
transition pathways of conformational change in proteins. We
applied both the VAMM algorithm and control algorithms to
generate transition trajectories for the open/closed transformation
of ADK. Our analyses of these trajectories validate the VAMM-
based algorithm as being significantly more efficient and accurate
than control algorithms based on simple harmonic potential ap-
proaches. The transition trajectory generated by the VAMM-based
approach is further analyzed to gain insight into the conformational
pathway between the open and closed states of ADK.

Algorithm Validation
Transition Pathway Computations for ADK. We developed an algo-
rithm for using VAMM in transition pathway computations, and we
have compared this VAMM algorithm with control algorithms
based on simple coarse-grained harmonic potentials. Briefly, at
each step we computed the normal modes from each of the starting
states, chose the normal mode with greatest involvement as directed
toward the alternate state, and made those two structural moves.
We then iterated this process to convergence (see Methods for
details). The VAMM algorithm was perfected in calculations on
conformational transitions in ADK based on crystal structures from
the thermophile Aquifex aeolicus in open [Protein Data Bank
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(PDB) ID: 2RH5 chain A] and closed (PDB ID: 2RGX) confor-
mations (14). Tests with the open and closed structures of Esche-
richia coli ADK gave similar results.

We first performed transition calculations using a control algo-
rithm with a simple harmonic potential. Then, hoping to reduce
geometric distortions, we used that same algorithm with a harmonic
potential modified to include restraints on the virtual C�–C� bonds.
Finally, we devised the VAMM approach, which adds other re-
straints to give a complete potential function for virtual atoms,
improves the algorithm for transition pathway calculations, and also
includes periodic energy minimizations and periodic reassessments
of secondary structure as needed for the VAMM force field.

Convergence of ADK Transition Pathway Intermediates. Transition
pathway calculations converged slowly for the control algorithm, as
seen in the progression of rmsd between the alternative interme-
diates generated from initial open and closed structures of ADK
(Fig. 2 and Fig. S1). These deviations dropped from an rmsd of 5.85
Å initially to 1.5 Å in 637 and 699 iterations for the simple harmonic
and bond-restrained potentials, respectively; however, convergence
beyond this point was very inefficient. To reach 1 Å rmsd required
7,655 total steps with only bond restraints, and the system stalled at
�1.1 Å rmsd with the simple harmonic potential and was discon-
tinued after 7,500 iterations. This situation indicates a very inef-
fective algorithm.

On the other hand, the VAMM algorithm yielded a transition
pathway that converged strikingly fast, requiring only 178 steps to
reach 1 Å rmsd (Fig. 2B). As moves proceeded toward convergence,
the involvement coefficients of engaged normal modes decreased,

and the frequencies of these modes tended to increase (Fig. S2).
The increased efficiency of the VAMM algorithm, reflecting the
more comprehensive energetic restraints, also implies lowered
computational strain along the transition pathway and structurally
more realistic intermediates. Intermediates generated from the
open state deviated from the initial structure more than those
generated from the closed state. For VAMM, the rmsd between the
open-state crystal structure and its terminal intermediate was 3.94
Å, whereas that between the closed-state crystal structure and its
terminal intermediate was only 2.26 Å (Fig. 2B). This result is in
accord with FRET experiments (9), which indicate that the unli-
ganded, open state samples a much larger conformational space.

Accuracy of Calculated C�–C� Virtual Bond Lengths. Distances be-
tween adjacent C� atoms are strictly confined to the vicinity of 3.8
Å for trans-peptide bonds of the protein molecules. We find that the
distribution of the C�–C� bonds in the EVA database (20) has a
3.78-Å mean value and an SD (�) of 0.0093 Å; C�–C� distances
below 3.45 Å and above 4.15 Å are almost never observed, and even
the next nearest values (in the range of 3.45–3.65 Å and 3.95–4.15
Å) are very rare, with p[3.45,3.65] � 6.3 � 10�3 and p[3.95,4.15] �
3.6 � 10�4. Thus, even minor deviations from the equilibrium
values are not usually allowed for C�–C� virtual bond distances.

In violation of this reality, the SDs of C�–C� distances along
transition pathways (Fig. 2A) reveal gross distortions for the simple
harmonic potential (terminal � � 0.93 Å) and even unacceptable
departures for the bond-restrained potential (terminal � � 0.08 Å).
Many distances fell into the highly disallowed range for trans-
peptides (3.5 Å � d � 4.1 Å), with maximum distances of 7.21 Å
and 4.03 Å for simple and bond-restrained potentials, respectively.
Iterative fitting of normal modes computed by using simple har-
monic potentials clearly generates unrealistic bond distances.

In sharp contrast with the control algorithms, the C�–C� dis-
tances from the VAMM algorithm conformed to standard values
throughout the transition (Fig. 3C). The terminal intermediate
state originated from the open ADK had � � 0.0055 Å, in the same
range as that deduced from the entire EVA database. All of the
virtual trans-bond distances fell within the range between 3.7 Å and
3.9 Å. Thus, VAMM provides an accurate tool for preserving the
integrity of virtual bond distances during a pathway calculation.

Accuracy of Virtual Bond and Dihedral Angles. Protein conformations
are well defined by their backbone (�,�) dihedral angles, and
distributions of polypeptide conformations in accurate crystal
structures allow for the definition of probability contours in familiar
Ramachandran (�,�) plots (21). Although (�,�) angles are not
defined in C� virtual-atom representations of proteins, a compa-
rable picture of the conformational state is specified by the virtual
C�–C�–C� bond angles � and the virtual C�–C�–C�–C� dihedral
angles �. Distributions of (�,�) pairs are plotted in Fig. 4 A–E for the
open-state crystal structure and terminal intermediate states gen-
erated from it. Probability contours deduced from the Top500
database (21) are drawn at the MolProbity levels of 95% (favored)

Fig. 1. A schematic representation of ADK conformational transitions. The
open state (Left; PDB ID: 2RH5) is in the apo state. The closed state (Right; PDB
ID: 2RGX) is bound to Ap5A nucleotide. The semiopen state (Upper; PDB ID:
2AK3) is in complex with AMP, and its AMP lid is in a closed conformation. The
other semiopen state (Lower; PDB ID: 1DVR) is in complex with an ATP analog
(phosphodifluoromethylphosphonic acid-adenylate ester), and its ATP lid is in
a closed conformation.

Fig. 2. Structural deviations along ADK transition pathways. (A) Deviations
(rmsd) between the succession of two intermediate states generated from
open and closed ADK, respectively, as analyzed with the simple harmonic
potential (blue), with the bond-restrained potential (red), and with the
VAMM potential (green). (B) Deviations during the VAMM-based transition
calculations. An expanded view is shown for deviations (rmsd) between the
succession of VAMM intermediate states as they move, frame by frame, from
the respective closed (Left) and open (Right) states toward similar terminal
intermediates (blue). Deviations between the closed state and intermediates
generated from the closed state (green) and deviations between the open
state and intermediates generated from the open state (red) are also shown.

Fig. 3. SDs (�) of C�–C� virtual bonds during trajectories starting from the
open state of ADK (rmsd between intermediate- and starting-state distances).
(A) Comparison of trajectories based on different potential functions: simple
harmonic potential (blue), bond-restrained harmonic potential (green), and
VAMM potential (red). (B) VAMM-based trajectory in an expanded view.
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and 99% (allowed). Similar distributions of virtual bond and
dihedral angles were reported previously (22).

For the crystal structure of open ADK, no outlier (�99%) was
observed (Fig. 4A), and only two residues were outside the favored
(�95%) region (Table S1). The virtual dihedral angle vs. bond
angle plots for the VAMM-minimized open ADK structure (Fig.
4D) and for the open-state terminal intermediate state calculated
by the VAMM algorithm (Fig. 4E) were both similar to the
experimental result, with no outliers for either and only one residue
for each outside the favored region.

In contrast to VAMM, intermediate states generated by using
the control algorithms contained several outlier residues [nine from
the simple harmonic model (Fig. 4B), and 24 from the bond-
restrained model (Fig. 4C)]. Interestingly, restraining the virtual
bond distances caused more unrealistic curvilinear distortions in
ADK as a payoff for the more realistic C�–C� distances (Fig. 3A).
Pathway calculations based on simple harmonic potentials clearly
yield distorted molecules.

The distributions of virtual bond angles in (�,�) pairs from
VAMM-based structures conform statistically with observations
from the PDB (Fig. 4), which further validates VAMM as being
sufficient to calculate intermediate states that are in accordance
with the physical laws imposed on macromolecules. Moreover,
because outliers occur frequently when simple harmonic potentials
are used, we conclude that VAMM has a clear superiority in
pathway calculations.

Distributions of Neighboring Dihedral Angles. The analysis of virtual
bond and dihedral angle distribution plots reveals that allowed
virtual bond angles were confined to the interval 80° to 150°,

whereas allowed dihedral angles spanned the entire range, from 0°
to 360° (Fig. 4 A–E). Thus, an alternative approach is needed to
analyze accuracy of the virtual dihedral angles. Here, we analyze
distributions of the consecutive virtual dihedral angles preceding
(��) and following (��) a given C� atom, again deriving probability
contours from the Top500 database. Values for open ADK were
spotted on contoured �� vs. �� plots (Fig. 4 F–H).

The ��/ �� plot from the open-state ADK crystal structure
conformed well to the contours of allowance (Fig. 4F), but there
were three outlier residues. These outlier dihedrals all joined central
glycine residues, however, indicating a greater dihedral liberty at
glycine positions, as is also seen in Ramachandran plots. The
number of outliers dropped to two in the ��/�� plot from the
minimized open structure (Fig. 4G) and to one in the plot from the
terminal intermediate state (Fig. 4H), both of which derived from
VAMM. The ��/�� plots from control-based structures showed 14
outliers (i.e., outside the 99% probability level) from the simple
harmonic model, and 15 outliers from the bond-restrained potential
(Table S1). Here again, we see that VAMM maintains structural
integrity, in keeping with a realistic transition pathway, whereas
unrealistic distortions are encountered in calculations from simple
potentials.

Strain Energy of ADK Intermediates. The strain energy of interme-
diate structures from ADK transitions was calculated with a double-
well potential (see Methods). This strain energy is a measure of
deviation from native contacts that exist in the initial input struc-
tures. Computational strains are shown for transition pathways
based on each of the potential function algorithms (Fig. 5).

The comparison shows that the VAMM-based conformational

Fig. 4. Distributions of virtually bonded conformation parameters. Conformational values from defined ADK structures are spotted (blue dots) onto contour
plots based on the MolProbity Top500 database (21). (A–E) �� vs. � profile. Contour levels are at 95% (favored) and 99% (allowed). (A) Crystal structure of open
ADK. (B) The terminal intermediate state generated from open ADK using the simple harmonic control algorithm. (C) The terminal intermediate state generated
from open ADK using the bond-restrained control algorithm. (D) The open ADK structure after energy minimization with VAMM. (E) The terminal intermediate
state generated from open ADK using the VAMM-potential algorithm. (F–H) The �� vs. �� profile. Contour levels are at 95% (favored) and 99% (allowed). (F)
Crystal structure of open ADK. (G) The open ADK structure after energy minimization with VAMM. (H) The terminal intermediate state generated from open
ADK using the VAMM algorithm. (I) Definition of virtual bond (�) and virtual dihedral (�) angles.
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transition generated significantly less computational strain (maxi-
mal strain energy of 26.6 kcal/mol) than happened with the control
algorithms (up to 219.1 kcal/mol and 199.5 kcal/mol from the simple
harmonic and bond-restrained approaches, respectively). Values
from harmonic potentials were in the same high range as those
found with other coarse-grained approaches using similar poten-
tials (17, 18). Thus, the VAMM algorithm significantly decreases
the energy barrier for transition pathways, which is in accord with
the more realistic geometric features and the greater efficiency of
the method.

In summary, all of our tests validate the performance of the
VAMM algorithm, and we describe results of our applications to
ADK based entirely on VAMM computations.

Application Results
Conformational Transition Pathways in ADK. Differences between
fully open (no ligand) and closed (Mg2�, Ap5A) states of ADK (9)
are accounted for almost entirely by rigid hinge-bending rotations
of the ATP-lid domain (�1) and the AMP-lid domain (�2) relative
to the core domain, which we measured here relative to their
dispositions in the closed state. By using program TOSS (23), we
found that rotations of (�1 � 38.1°, �2 � 35.2°) superimpose the two
lid domains from the open-state crystal structure onto those of the
closed state, and thereby reduce the rmsd from 5.85 Å to 1.40 Å.
The two terminal intermediates from the VAMM algorithm have
very similar lid conformations (�1 � 21.6°, �2 � 10.6°) vs. (�1 �
19.4°, �2 � 6.1°), as generated from the open and closed states,

respectively, and the terminal rmsd (1 Å) is even less than that from
direct rigid-body superposition (1.40 Å).

The conformational transition between open and closed states of
ADK is constructed as the joining of two trajectory segments,
closure computed from a fully open state and opening from a fully
closed state. We used the two lid-domain angles (�1 and �2) to
monitor evolution of the trajectory and, because the terminal
intermediates meeting from opposite directions are so similar, we
invoked reversibility to reconstruct the entire transition from closed
to open or vice versa (Fig. 6A). Closure from the open state
proceeded quickly to reach (�1, �2) of (27.4°, 25.3°) after only 60
steps on way to the terminal intermediate (21.6°, 10.6°) at 178 steps.
Further closure of the ATP lid (�1) proceeded more slowly, but the
AMP lid (�2) closure continued at the same pace. Opening from the
closed state proceeded sharply for the AMP lid (�2) for a few steps
and then meandered slowly toward the terminal intermediate,
whereas the ATP lid (�1) opened more smoothly over the course
of �100 steps to (15.7°, 5.3°) before ultimately reaching the terminal
intermediate (19.4°, 6.1°) at 178 steps. The juncture between
forward and reverse directions was relatively smooth (Fig. 6 A
and B).

The computed transition pathway can be visualized in an ani-
mation of the course for closing from the open state through the
terminal intermediate states to complete closure by reversal of
opening from the closed state (Movie S1). This trajectory shows a
very large rearrangement of the open state to a semiclosed form
during the initial stages. This is consistent with the FRET exper-
iments that showed the rapid partial closure of the open state (9).
After the semiclosed state formed, the transition slowed down and
did not sample a large space around this semiclosed form. The
closed state sampled a narrower portion of the conformational
space, with a limited opening of the ATP- and AMP-lid domains.

Comparison with Crystallographic Intermediate States. We studied
trajectories that targeted only one or the other lid domain as well
as that for the entire ADK molecule. The couplings of �1 and �2
angles during these conformational transitions of ADK are shown
in Fig. 6B together with the locations of intermediate ADK crystal
structures in the (�1, �2) space. The trajectories, viewed from open
(Fig. 6B Upper Right) to closed (Fig. 6B Lower Left) states, can be
thought to mimic the binding of Ap5A (Fig. 6B, blue curve) and, in
some sense, of ATP (Fig. 6B, red curve) and AMP (Fig. 6B, green
curve). The entire structure was included in the transition pathway
calculation for the blue curve, but the AMP-lid domain was
excluded from calculations of involvement coefficients for the red
curve, and the ATP-lid domain was excluded for the green curve.

Fig. 5. Energetics of ADK transitions. The strain energies stored in interme-
diate states are shown for trajectories computed with the simple harmonic
(red), bond-restrained (green), and VAMM (blue) potentials. In each case, the
strain energies in trajectories from both the open and the closed states are
plotted against rmsd values between intermediates as they approach one
another, ultimately reaching terminal intermediates.

Fig. 6. The conformational transition of ADK. (A) The evolution of � angles along the progression of ADK trajectories from closed (Left) and open (Right) states
toward similar terminal intermediates (Middle). (B) The coupling of �1 and �2. The conformations of intermediate crystal structures are shown on the �1, �2 domain
angle space alongside dots at respective �1, �2, color-coded corresponding to C. Trajectories are plotted starting from closed-state ADK (Left) and open-state ADK
(Right): entire structure involved in targeting (blue), AMP-lid domain excluded from targeting (red), and ATP-lid domain excluded from targeting (green). (C)
Deviations (rmsd) between the trajectory intermediate states and respective intermediate crystal structures: semiclosed apo state (PDB ID: 2RH5) vs. the fully
targeted trajectory (blue); complex with ATP analog AMPPCF2P (PDB ID: 1DVR) vs. the ATP-lid-directed trajectory (orange); and complex with AMP (PDB ID: 2AK3)
vs. the AMP-lid-directed trajectory (green).
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Such domain-selected calculations can be used for dissecting po-
tential allosteric couplings; based on our calculations, the two
closures in ADK are relatively uncoupled.

When both lid domains were targeted, ADK followed an initial
trajectory roughly diagonal in the (�1, �2) space. It passed at (�1 �
36.1, �2 � 33.3°), very close to values (�1 � 35.1°, �2 � 34.3°) of a
semiclosed structure (PDB ID: 2RH5, chain C), which has been
shown to lie on the trajectory of ADK closure (9). When only the
core and ATP-lid domains were targeted, as in a trajectory that
might be induced by binding of an ATP analog (7), intermediate
states approached (�1 � 18.2°, �2 � 30.2°), the conformation (�1 �
5.1°, �2 � 35.4°) of an ATP-lid closed/AMP-lid open crystal
structure (PDB ID: 1DVR). When only the core and AMP-binding
domains were targeted, intermediate states approached (�1 � 34.1°,
�2 � 25.0°) the conformation (�1 � 42.8°, �2 � 10.3°) of the crystal
structure (PDB ID: 2AK3) of an AMP complex (24).

Deviations of computed trajectory intermediates from crystal
structures of intermediate states are consistent with the preceding
(�1, �2) plot analysis. Minima close to experimental intermediates
occurred in each of the respective rmsd plots against intermediate
crystal structures (Fig. 6C). The closest approaches of trajectory
intermediates to the observed crystal structures were at 1.34 Å rmsd
for the semiclosed apo state (Fig. 6C, blue), 2.21 Å rmsd for the
ATP analog complex (Fig. 6C, orange), and 2.59 Å for the AMP
complex (Fig. 6C, green). The red and green domain-selected
trajectories are biased toward the respective ATP and AMP
complex structures, but their more distant close approaches may
reflect either coupling between the lid domains or calculation
defects.

Discussion
In all respects, the VAMM force field with its associated algorithm
for iterative fitting of normal modes and energy minimization is
superior in conformational transition calculations to algorithms
based on simple harmonic potentials. This is not to diminish that
elastic network models are highly effective for analyzing motions
near the native state. First, transition pathway calculations are
significantly more efficient with the VAMM-based algorithm.
Second, with simple potentials, the C�–C� bond distances show
absurd deviations from their equilibrium states, whereas the
VAMM preserves the virtual C�–C� bond integrity. Third, the
VAMM-based algorithm generates accurate virtual bond and
dihedral angles compared with the simple network models. Fourth,
the VAMM-based algorithm generates a transition trajectory with
significantly lower computational strain.

Several computational and experimental studies of protein dy-
namics show that proteins in an unbound state can fluctuate with
varying populations over an ensemble of conformations that sample
states adopted in complexes with ligands or binding partners
(25–27). The conformational space accessible to an uncomplexed
apo state is likely to be greater than that accessible in a state closed
down onto a ligand. The transition pathways found here for ADK
are consistent with this view. In our calculations, ADK moves quite
freely and rapidly away from the open state but more slowly and
with greater restriction away from the closed state (Figs. 2B and
6A). Indeed, the most populated subspaces may not necessarily lie
on the most likely trajectory. Relaxed states that approach the
‘‘closed-state ensemble’’ defined by the restricted fluctuations
about the closed state dictate the most likely conformational
trajectory. In our current description of the ADK system, slight
openings of the ATP- and AMP-lid domains are followed by further
opening of the ATP-lid domain within the narrow conformational
space of the closed system. Open states that can adapt to this
confine are selected to drive the full conformational transition. A
more realistic description of such conformational transitions will
require inclusion of stochastic processes in the algorithm to yield an
ensemble of transition pathways populated around the most likely
pathway.

The VAMM algorithm for conformational transition pathway
calculations is very versatile and not restricted by ADK-specific
characteristics. Because of its coarse-grained nature, it is not limited
by protein size; because it uses iterative normal-mode fittings rather
than simulations requiring short integration time intervals, it is not
limited by the amplitude or time scale of the conformational
change. Moreover, because the VAMM potential is completely
general, the algorithm is not limited to hinge-bending motions. It is
directly applicable as well to shear motions, as in citrate synthase
(28), or more complicated conformational changes such as in HIV
envelope glycoprotein gp120. Being coarse-grained, VAMM nec-
essarily has limitations; for example, there is insufficient detail for
calculation of energetic barriers. Nevertheless, we expect that the
VAMM algorithm for conformational transition calculations will
be useful quite generally in describing large conformational tran-
sitions in even the largest of protein complexes.

Methods
Potential Functions. We have performed parallel calculations based on three
different coarse-grained potential functions.

A simple harmonic potential function, which models all interactions between
residues within a cutoff radius (13 Å) as springs to calculate a subset of the slow
normal modes (29), serves as a control. It is given by

Vharmonic � �
i, j

N

k 	 � �R� i, j� 
 �R� i, j
0 �	2. [1]

A uniform spring constant k of value 1 kcal/molÅ2 is adopted for all residues that
are closer than the cutoff distance. Rij represents the displacement vector, and Rij

0

represents the equilibrium distances between positions of C� atoms i and j. N is
the number of residues.

An alternative approach is taken to introduce additional restraints to the
neighboring C� atoms to model pseudo bonds between each residue. The mod-
ified potential becomes

VBond-restrained � �
i

N

kbond 	 � �R� i,i�1� 
 �R� i,i�1
0 �	2

� �
i, j

N

knonbond 	 � �R� i, j� 
 �R� i, j
0 �	2. [2]

In this bond-restrained model, kbond is the spring constant of the interaction
betweenneighborC�atoms,andknonbond is thespringconstantofthe interaction
between nonbonded neighbor C� atoms. A value of 70 kcal/molÅ2 is adopted for
kbond based on the statistical analysis and Boltzmann inversion of the crystallo-
graphic data.

The fully elaborated VAMM force field is

VVAMM � Vbonded � Vangle � Vdihedral � Vnonbonded � V local [3]

where each of the terms is defined in a companion paper (19). In brief, Vbonded is
the same bond-restraint term as for VBond-restrained in Eq. 2, including separate
definitions for trans- and cis-peptide bonds and for disulfide bonds; Vangle is for
restraints on virtual bond angles �, which depend on type of secondary structure;
Vdihedral is for restraints on virtual dihedral angles �, which also depend on
secondary structure; Vnonbonded is for restraints on nonbonded interactions be-
tween atom pairs more than five residues apart, which are specific to amino acid
identities; and Vlocal is for restraints that maintain local geometries.

Iterative Normal-Mode-Driven Transitions. We computed the transition path-
way between two alternative conformations, A (e.g., open-state ADK) and B
(e.g., closed-state ADK), by moving each structure toward the other in iterations
of moves directed at each step along the normal mode of greatest engagement
with its target structure. Only protein residues are modeled; bound ligands are
implicit. For each structure, from the starting points at A0 and B0 through
intermediates Ai and Bi at each step i, the Hessian matrix is constructed from the
particular potential function used in that analysis (Eq. 1, 2, or 3) and diagonalized
to compute normal modes (30, 31).

In general, 20 slow modes are considered sufficient to span the slow fluctua-
tions of macromolecules that sample the functional motions (17). Thus, we
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screened the 20 lowest-frequency normal modes for each of conformations Ai

and Bi to find that normal mode from each vibrating state having the greatest
Marques–Sanejouand overlap factor (32) with the alternate, target state. This
factor, also called the involvement coefficient by Ma and Karplus (33), measures
how much a given normal mode contributes to the molecular displacement
between two conformers. The involvement coefficient, Iik, is the projection of the
normal-mode vector onto the linear displacement:

Iik �

� �
j�1,3N

L� kj�
R� j�
� �

j�1,3N

Lkj
2 � �

j�1,3N


Rj
2�1/2 [4]

where at step i, Lkj is the component from eigenvector k acting on atom j, and 
Rj

is the displacement vector between the intermediate states generated from
alternative starting structures. Both for the mode from Ai with highest involve-
ment coefficient into the direction of Bi and for the mode of Bi with highest
involvement coefficient into the direction Ai, each direction of the mode must be
tested, which we do by calculating the pairwise rmsd values between four
possible conformers generated from states Ai and Bi after applying shifts dictated
by the respective modes in each of the alternative directions.

The shifts for each move for residue j are found by


X� jk � �C � � N

�k�
j

3N

�L� jk	
2

� L� jk [5]

where C is a constant chosen as 0.005, �k is the eigenvalue of mode k, Ljk is the
eigenvector for mode k acting at atom j, and � refers to the alternative directions
for this mode. Tests showed that the nature of conformational transitions is
relatively insensitive to the value of C within a certain interval (Table S2), and
0.005 was chosen so that the calculations are performed within a feasible CPU
time and without unrealistic distortions due to large step sizes.

The two new conformers from shift sets giving minimal rmsd values then
become the input structures for the next iteration step. The process continues
until intermediate conformers Ai and Bi converge to within the convergence
criteria,which isusually setasanrmsdvalueof1Å.This cutoffvalue isappropriate
because the normal modes calculated from two structures that are closer than 1
Å rmsd are not significantly different (34), and two such structures are generally

very similar, except at flexible loops. A more lenient criterion might be set in cases
where complicated motions, such as in flexible loops or local folding events, are
also involved in contrast to the transition observed in ADK.

Control Algorithm. Computations of conformational transitions with the simple
harmonic potential (Eq. 1) or the bond-restrained harmonic potential (Eq. 2) use
the algorithm shown in Fig. S3. Normal modes and iterative moves are made as
described above, sampling the 20 lowest-frequency modes and moving in the
direction of normal modes having greatest involvement in the directions toward
the respective target structures.

VAMM Algorithm. Computations of conformational transitional pathways with
the VAMM potential function (Eq. 3) use the algorithm shown in Fig. S4. The
VAMM algorithm is similar to the control algorithm, but additional requirements
are imposed. In the initial step, secondary structures needed for VAMM are
assigned from the crystal structure coordinates of conformers A0 and B0 by using
the DSSP algorithm (35). This step is followed by a truncated Newton minimiza-
tion of the C� system in the VAMM force field to a gradient of 0.1 kcal/molÅ (36).
Hessian matrices are constructed from each of these minimized structures by
using VAMM and are then diagonalized for normal-mode evaluations. The
procedure is iterated as described above to generate successive intermediates Ai

and Bi. As the calculation proceeds, secondary structures of the computed inter-
mediate states are updated at intervals of 0.1 rmsd (rmsdUPDATE) between the
calculated intermediate states. The rmsdUPDATE values between 0.1 and 0.5 Å
generated reliable and consistent results on calculation of the ADK transition. In
addition, energy minimizations of the intermediate states are performed when-
ever the energy gradient rises above 1 kcal/molÅ. This approach keeps the system
near-local energy minima and also helps to relax artificially high strains. The
convergence criterion is again 1 Å rmsd.

Distributions of Virtually Bonded Conformation Parameters. Probability contour
plots for relevant conformational parameters were evaluated from the same
Top500 database (21) as used to produce Ramachandran plots by the MolProbity
software (37). Details are in SI Text.

Strain Energy of Intermediate States. Strains that accumulate during conforma-
tional transitions are calculated with a double-well potential similar to that for
the plastic network model (18). Details are in SI Text.
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