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Summary
Phospholipase D has long been implicated in vesicle formation and vesicular transport through the
secretory pathway. The Golgi apparatus has been shown to exhibit a plethora of mechanisms of
vesicle formation at different stages to accommodate a wide variety of cargo. Phospholipase D has
been found on the Golgi apparatus and is regulated by ADP-ribosylation factors which are themselves
regulators of vesicle trafficking. Moreover, the product of phospholipase D activity, phosphatidic
acid, as well as its degradation product diacylglycerol, have been implicated in vesicle fission and
fusion events. Here we summarize recent advances in the understanding of the role of phospholipase
D at the Golgi apparatus.
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Introduction
Studies into the role of phospholipase D (PLD) in the regulation of vesicle transport and protein
trafficking were provoked by the observation that ADP-ribosylation factor (ARF) proteins are
efficacious activators of PLD [1–3]. ARF proteins have been previously implicated as factors
for regulation of intracellular vesicle trafficking and are found on the Golgi apparatus and the
plasma membrane [4]. The PLD discussed in this review hydrolyzes phosphatidylcholine (PC)
to yield phosphatidic acid (PA) and choline. PA has been demonstrated to be a signaling
molecule as well as a crucial lipid during vesicle fusion and fission [5–8]. Furthermore, PA
can be hydrolyzed to generate diacylglycerol (DG) which also acts as signaling molecule as
well as a functional lipid in membrane modulation [9,10]. This review, which focuses on recent
advances in the localization and function of PLD in the Golgi apparatus is dedicated to the
memory of Dennis Shields, who unexpectedly passed away December 1st, 2008.
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Structure and Regulation of mammalian PLD enzymes
Two mammalian PC-PLD genes have been associated with intracellular vesicle trafficking:
PLD1 [11] and PLD2 [12]. Both share the same basic domain organization of a phox (PX) and
a pleckstrin homology (PH) domain in tandem in their amino terminus, the conserved dual
HKD motif which forms the active site, and a central phosphoinositide binding domain. This
domain structure is also shared by the single PLD genes of Yeast, Nematodes and Drosophila
[13], as well as by one of the plant PC-PLD families, PLDζ[6]. PLD1 exhibits low intrinsic
basal activity and is strongly and synergistically activated by members of the ARF and Rho
families of monomeric G proteins as well as by PKCα and PKCβ. Conversely, heterologous
expression of PLD2 results in high basal activity. However, endogenous PLD2 cannot be
measured without prior purification and therefore may be regulated by inhibitory proteins such
as synucleins [14]. In addition, the activity of PLD1 and PLD2 is highly dependent on the
presence of phosphatidylinositol 4,5-bisphosphate (PIP2) or phosphatidylinositol 3,4,5-
trisphosphate (PIP3).

Subcellular localization and membrane association of mammalian PLDs
Overexpression of epitope tagged variants has been widely used to examine the subcellular
localization of PLD1 and PLD2. GFP- or HA-tagged PLD1 and PLD2 localize mainly to the
plasma membrane and several other organelles, including endosomes, lysosomes, secretory
granules and the Golgi apparatus [12,15,16]. Cryo-immunoelectron microscopy using selective
antibodies, and subcellular fractionation, demonstrated that 25–30% of endogenous PLD1 was
localized to the Golgi apparatus. Although a fraction of endogenous PLD2 was evident on the
plasma membrane, much of the enzyme localized to the region of the Golgi apparatus and
cytosolic puncta [17]. Most significantly, cryoimmunoelectron microscopy demonstrated that
PLD2 was present almost exclusively on Golgi cisternal rims in pituitary GH3 cells; it was
enriched 80-fold in Golgi rims relative to cisternae [17]. The differential distribution of PLD1
and PLD2 suggests that these enzymes have separate functions in the Golgi apparatus.

The mechanisms by which PLD1 and PLD2 associate with cellular membranes have been
studied extensively. PLD1 and PLD2 exhibit three lipid-binding domains in addition to the
active site, a PX domain, a PH domain and a polybasic domain that is responsible for PIP2
stimulated enzyme activity and is sufficient for the membrane recruitment of PLD2 [18]. This
multi-domain organization reflects the complex cellular distribution of these proteins. The PX
domain preferentially binds to PIP3 but also mono-phosphorylated inositides, and its membrane
association is enhanced by binding of acidic lipids such as PA or PS at a secondary site [19,
20]. This is thought to be responsible for internalization of PLD after recruitment to the plasma
membrane [19]. PIP2 binds to the PLD2 PH domain albeit with low affinity, suggesting that
this domain functions in conjunction with other membrane association domains to target the
protein to different intracellular sites [21]. In addition, the PH domain of PLD1 is palmitoylated
[22,23]. Protein palmitoyl transferases are found along the secretory pathway [24] and it has
not been established where PLD is acylated. In fact, the effect of palmitoylation on the
subcellular localization of PLD1 is controversial [25,26]. Both, PX and PH domains have been
shown to bind to proteins in addition to lipids [27–30], and a model of combinatorial binding
of such domains has been suggested [30]. Interestingly, the four-phosphate-adaptor protein
PH-domain binds phosphatidylinositol 4-phosphate and ARF simultaneously to recruit these
proteins to the trans-Golgi network [31]. Investigations into the role of phosphoinositides in
membrane localization of PLD1 and PLD2 are complicated by the finding that certain isoforms
of the enzyme responsible for PIP2 synthesis, phosphatidylinositol 4-phosphate 5-kinase
(PI4P5K), are themselves stimulated by the PLD product PA [32,33]. PIP2 is synthesized on
isolated Golgi apparatus membranes incubated with cytosol in a PLD dependent manner
[34]. In vivo, synthesis of PIP2 on the Golgi apparatus is required for its structural integrity
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and treatment of cells with primary alcohols causes rapid fragmentation of the Golgi apparatus,
in part by PIP2 dependent relocalization of βIII-spectrin [35]. Stimulation of PI4P5K activity
by PLD-produced PA provides an attractive explanation for these observations. This process
forms a feed forward loop with PLD. PIP2 is rapidly degraded on the Golgi apparatus [35]
presumably by PIP2 5-phosphatases such as Ocrl1 [36]. This suggests a tightly regulated local
and temporal spike of PA and PIP2 production upon recruitment of PLD and PI4P5Ks by ARF
on the Golgi apparatus, contrasting with the comparatively large and static PIP2 pool of the
plasma membrane.

ARF as a PLD1 effector in membrane trafficking
PLD1 can be activated by all members of the ARF family in their GTP-bound states, and the
potency of this effect is enhanced by myristoylation of ARF [37]. However, although the effects
are likely to be direct because they can be readily observed using purified proteins, the
mechanism whereby ARF stimulates enzyme activity and a site of direct interaction on PLD1
remain to be identified. ARF1-5 localize to the perinuclear region and the Golgi apparatus, and
combinatorial RNAi mediated knock-down revealed that when ARF1 was depleted together
with ARF3, ARF4 or ARF5, the distribution of the COPI coat protein β-cop was disrupted
[38]. ARF1 regulated PLD activity at the Golgi apparatus has been implicated in vesicle
budding [39,40], whereas the plasma membrane localized ARF6 regulates PLD activity at the
plasma membrane [41,42]. It has been demonstrated that ARF1 is a more potent activator of
PLD1 than ARF6 [43]. However, a study using effector domain mutants of ARF3 suggested
that ARF activation of PLD1 and coatomer recruitment are separable processes [44]. Whereas
ARF proteins are strong stimulators of PLD1 activity, their effect on PLD2 activity is low.
However, paradoxically, N-terminally truncated PLD2 mutants are more sensitive to ARF
stimulation [45]. Effects of ARF on PLD2 activity in cell-based assays might in fact be
explained by ARF stimulated PI4P5K activity [43].

Insights from the transphosphatidylation reaction
A large body of work implicating PLD activity in an extensive variety of cellular functions,
including Golgi membrane transport, is based on the long-established preference of PLD for
primary alcohols over H2O to hydrolyze PC, yielding a phosphatidylalcohol instead of PA
[46,47]. This reaction, termed transphosphatidylation, has been used to infer the involvement
of PLD-generated PA in cellular processes based on the following presumptions: diversion of
PA to the corresponding phosphatidylalcohol would be complete, and phosphatidylalcohols,
which are metabolically stable and accumulate to significant levels in primary alcohol treated
cells, would be themselves inert and do not exert inhibitory effects on the cellular processes
under study. In support of the suggested involvement of PLD in intracellular trafficking,
primary alcohols were shown to inhibit both protein transport from the endoplasmic reticulum
to the Golgi apparatus and release of secretory vesicles from the trans-Golgi network [40,48,
49]. Moreover, the Golgi apparatus reversibly fragments in the presence of primary alcohols
[34,50].

Initiation of assembly of the COPI coat on Golgi membranes was demonstrated to occur
independently of ARF in cell lines exhibiting high constitutive PLD activity [39,48]. COPI
coated vesicles mediate intra-Golgi apparatus trafficking as well as retrograde transport to the
endoplasmic reticulum [51]. The formation of coated vesicles was sensitive to ethanol at
concentrations that inhibit PLD catalyzed PA production. Furthermore, exogenous bacterial
PLD was able to induce the binding of coatomers to Golgi membranes. Additionally, ARF1,
reconstituted purified COPI coatomer proteins and chemically defined synthetic liposomes
containing PA can form coated vesicles in vitro in the absence of PLD [52]. This led to the
idea that PLD catalyzed production of PA is a key event in the formation of coatomer-coated
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vesicles, which is supported by the finding that the coatomer protein β-cop and ARF directly
bind to PA in vitro [53]. Recently, PLD2 has been described as a crucial component of COPI
vesicle formation [54]. The BARS protein, a structural protein acting at the fission step of COPI
vesicle formation [55] requires PA in liposomes to induce tubulation. Depletion of PLD2 from
Golgi membranes by either RNAi or using antibodies trapped β-cop on membranes [54]. This
indicates that in absence of PA generated by PLD2 fission is not completed.

In Drosophila, absence of PLD was lethal by preventing embryonic cellularization and caused
abnormal Golgi apparatus structure and vesicle trafficking [13]. The observation of abnormal
Golgi apparatus structure in Pldnull Drosophila embryos suggested a role for PLD in facilitating
the fission of vesicles from the trans Golgi network which are targeted to the embryonic cortex.
In addition, fusion of vesicles into the plasma membrane was inhibited [13], demonstrating
that Drosophila PLD is required for both events.

Interestingly, it has been demonstrated that SNARE mediated fusion of vesicles is enhanced
by the presence of PA and PIP2 [56,57], where PA has to be present on the tSNARE side
whereas PIP2 is stimulatory only on the vSNARE side. Since PLD1 and PLD2 require PIP2
for their activity, it can be speculated that PLD binds to PIP2 on the vesicle while generating
PA on the target membrane. The structure of PLD1 and PLD2 is unknown, however, their
ability to form homo- as well as heterodimers [58] would support this scenario. However, these
studies have not yet been extended to Golgi apparatus SNAREs and it is unclear if those exhibit
a similar lipid requirement. Finally, the budding yeast spo14p PLD plays a conditional role in
maintaining normal secretory function during the “sec14 bypass” and an obligatory role in
formation of the prospore membrane during meiosis [59]. The latter process involves a
redirection of the secretory pathway to sites of membrane fusion at the spindle pole bodies
[60]. The identification of a PA binding function for the putative PLD effector, the SNARE
protein spo20p, provides a potential mechanism for this process [56].

Role of PLD in production of diacylglycerol
In addition to its role in production of PA, PLD may also be important in the production of
other lipid messenger molecules. In many systems hormone-induced production of DG is
biphasic by nature [61,62]. A small transient increase is followed by a larger sustained increase.
Polyunsaturated DG predominates during the initial phase of stimulation and is thought to be
derived from PIP2 by the action of phospholipase C [63]. During the sustained phase, the
concentration of mono-unsaturated and saturated DG rises. PLD has some preference for
mono-unsaturated and saturated PC molecular species [64]. Therefore, it is proposed that PLD
contributes to the production of DG by promoting the formation of PA, which is subsequently
converted into DG by PA phosphohydrolase (Fig. 1). Since phosphatidylalcohols are not a
substrate for PA phosphohydrolase, as described above, the transphosphatidylation reaction
can be exploited to demonstrate that the second peak of DG accumulation results from the
actions of PLD [65]. Additionally, the PA phosphohydrolase inhibitor propranolol can
attenuate DG production in some systems [65]. The most prominent function of DG is
activation of PKC; and PKCμ (PKD1), PKD2 and PKCν (PKD3) regulate vesicle trafficking
at the Golgi apparatus [66]. Intriguingly, brief treatment with propranolol causes reversible
relocalization of PKD from the Golgi apparatus into the cytoplasm [67]. Moreover,
ilimaquinone, a drug that causes fragmentation of the Golgi apparatus, requires PLD-mediated
PA generation and its subsequent conversion to DG to cause PKD stimulation [68]. It is
important to note that DG on the Golgi apparatus can also be derived from sphingomyelin
synthesis. Phosphocholine is transferred from PC to ceramide, producing sphingomyelin and
DG [69]. Depletion of ceramide using fumonisin B1 therefore reduces DG production through
this pathway, and it has been shown that extended treatment with fumonisin B1 causes cytosolic
distribution of PKD [67]. Moreover, ten mammalian DG kinases have been described [70]
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which can utilize DG to create a pool of PA independent of PLD. Indeed, activation of PLD
may not be an essential part of the basic ARF-mediated vesicle budding machinery in the Golgi
apparatus of eukaryotic cells, because in yeast such a functionality does not exist [71], and any
PA required in these processes might be produced by DG kinase [72]. The only known PLD
gene in the yeast Saccharomyces cerevisiae, SPO14, is not essential for secretion, but does
play a conditional role in this process during the “sec14 bypass” [73]. Spo14p is mainly
involved in prospore formation which depends on vesicle transport from the Golgi apparatus
to the prospore membrane [74]. The contributions of the PLD and the DG kinase pathways
likely differ between cell types and for the transported cargo by way of adaptor and coat
proteins.

Role of PLD in Golgi fragmentation during apoptosis
Recently, it has been demonstrated that fragmentation of the Golgi apparatus is an early event
in apoptosis coinciding with cytochrome c release from the mitochondria [75]. Several Golgi
apparatus proteins are cleaved during apoptosis by caspases, and some, such as golgin-160, or
p115 are targets of upstream caspases such as caspase-2 and caspase-8 [76,77]. Since treatment
of cells with n-butanol but not t-butanol causes reversible fragmentation of the Golgi apparatus
[34], the fate of PLD1 and PLD2 during apoptosis is clearly of interest. In vitro, PLD1 and
PLD2 were substrates for caspases, including the upstream caspase-8 but not caspase-2 [78].
Interestingly, both isoforms retained their activity after cleavage and PLD1 showed an altered
response to regulatory stimuli. Cleavage of PLD1 resulted in an enzyme not responsive to
phorbol ester and increased response to GTPγS. The caspase-mediated removal of the amino
terminus that is responsible for the loss of response to phorbol ester would also prevent PLD1
from being recruited by PKC to the plasma membrane. It is therefore tempting to speculate
that this cleaved form of PLD1 accumulates on the Golgi apparatus and its activity is in part
responsible for Golgi fragmentation during apoptosis.

Conclusion
Recent advances have provided insight as to how PLD is involved in regulating structure and
function of the Golgi apparatus (Fig. 2). However, PA and DG, the immediate and secondary
lipid products of PLD activity respectively, can also be derived via other pathways (Fig. 1).
Mammalian cells exhibit a plethora of mechanisms of vesicle formation on the Golgi apparatus
[79,80], and alternative pathways of lipid modification add to the specific regulation of each.
This complexity demands further characterization of the role of PLD in particular pathways of
vesicular transport at the Golgi apparatus. Although considerable progress has been made in
this area, the range of experimental tools available for manipulations of PLD activity in intact
cells limits the types of experiments that can be attempted. In particular, concerns about the
specificity and persistence of the effects of primary alcohols to manipulate PLD activity may
limit their usefulness while more specific “epigenetic” approaches such as overexpression or
RNA interference are slow in onset. The very recent identification of small molecule inhibitors
of PLD1 and PLD2 activity may provide an invaluable new tool to re-examine these issues
with greater precision [81,82]. If these probes can be rapidly accumulated by, and washed out
of cells, then their use in conjunction with live cell imaging techniques will provide a way to
directly evaluate the role of PLD in intracellular transport and organelle dynamics.
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Fig. 1.
Phosphatidic acid and diacylglycerol can be synthesized through separate routes on the Golgi
apparatus. In mammalian cells all pathways are active, allowing for complexity of regulation.
Note that diacylglycerol might be derived by additional pathways. PA, phosphatidic acid; PLD,
phospholipase D.
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Fig. 2.
Regulation and effectors of phospholipase D and phosphatidic acid on the Golgi apparatus.
See text for details. ARF, ADP-ribosylation factor; BARS, Brefeldin-A ADP-ribosylated
substrate; DG, diacylglycerol; PA, phosphatidic acid; PAP, PA phosphatase; PC,
phosphatidylcholine; PI, phosphatidylinositol; PIP, PI 4-phosphate; PIP2, PI 4,5-bisphosphate;
PI4KIIIβ, type III PI 4-kinase β; PI4P5K, type I PIP 5-kinase; PKD, protein kinase D; PLD,
phospholipase D; SAC1, PIP 4-phosphatase; 5-P’tase, PIP2 5-phosphatase.
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