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Summary
Despite their location in the aqueous extracellular environment, a number of secreted proteins carry
hydrophobic lipid modifications. These modifications include glycosylphosphatidylinositol,
cholesterol, and both saturated and unsaturated fatty acids, and they are attached in the secretory
pathway by different classes of enzymes. Lipid attachments make critical contributions to protein
function in vivo through a diverse array of mechanisms. They can promote protein maturation and
secretion, membrane tethering, targeting to specific membrane subdomains, or receptor binding and
activation. Additionally, secretion of lipid-modified morphogens of the Wnt and Hh families requires
dedicated accessory proteins and may involve their packaging into lipoprotein particles for long-
range transport.

Introduction
During development, cells signal to each other using secreted proteins. A class of such proteins
known as morphogens can specify distinct cell fates in a concentration-dependent manner,
making their graded distribution important for patterning target tissues. Since secreted
signaling proteins must travel through the aqueous extracellular environment, it was surprising
to discover that several such molecules carry hydrophobic lipid modifications that are added
in the secretory pathway. The complex glycosylphosphatidylinositol (GPI) anchor has been
shown to tether many secreted proteins with enzymatic, signaling or adhesive functions to the
plasma membrane, restricting their range of action [1]. Members of the Hedgehog (Hh) family
of proteins, which act as important patterning signals at many different stages of development,
carry a C-terminal cholesterol modification [2]. In the past few years, fatty acid modifications
have been found on the N-terminus of Hh proteins as well as on other secreted proteins that
include members of the Wnt family, the Epidermal growth factor receptor (EGFR) ligand Spitz
(Spi), and the appetite-regulating hormone Ghrelin [3–5]. Interestingly, removal of these
modifications interferes with the ability of the proteins to carry out their functions in vivo.
Recent studies have shown that lipid modifications can affect the activity of signaling proteins
by altering their secretion, dispersal, or interaction with receptors. However, the consequences
of any specific modification are still difficult to predict and must be experimentally determined.

Enzymology of lipid modifications
Lipid modifications can be added to proteins in the secretory pathway by a variety of
mechanisms. GPI anchor addition is catalyzed by a 5-subunit transamidase located with its
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active site in the lumen of the endoplasmic reticulum (ER) [6]. The GPI8 subunit of this enzyme
cleaves a hydrophobic signal sequence from the C-terminus of the target protein and transfers
a preformed anchor generated through a series of other enzymatic steps [6] (Fig. 1). In contrast,
cholesterol addition to Hh requires no components other than purified Hh protein itself; the C-
terminal intein domain catalyzes proteolytic release of the N-terminal signaling domain and
cholesteroylation of its C-terminus [2].

Recently, the membrane-bound O-acyltransferase (MBOAT) family of polytopic membrane
proteins, many of which modify lipid substrates [7–9], has been shown to include members
that catalyze fatty acylation of secreted proteins in the lumen of the secretory pathway. The
Drosophila porcupine (por) gene, identified due to mutant phenotypes very similar to those
caused by loss of the Wnt family member wingless (wg), encodes an MBOAT protein that
promotes the hydrophobic modification and secretion of Wg [10–12]. Wnt proteins have two
fatty acid modifications, a saturated 16-carbon palmitic acid attached to a conserved cysteine
(C77 of Wnt3a) [13], and a monounsaturated palmitoleic acid attached to a conserved serine
(S209 of Wnt3a)[14] (Fig. 1). Por homologues are required for acylation of at least the serine,
and possibly both residues [14,15].

Mutations in a second Drosophila MBOAT family member, rasp (also known as sightless,
skinny hedgehog and central missing), were identified due to their defects in Hh and EGFR
signaling [16–20]. Both the Hh and Spi ligands carry essential palmitate modifications on their
N-terminal cysteine residues [16,20–22] (Fig. 1). Unlike palmitate modifications of
intracellular proteins, which form thioester bonds with cysteine residues [23], palmitate is
attached to Hh by a stable amide linkage to the N-terminal amino group [22]. The human Rasp
homologue Hhat has recently been purified to homogeneity and shown to palmitoylate Sonic
hedgehog (Shh) in vitro, demonstrating that it is the active acyltransferase rather than a cofactor
[24]. Hhat can modify a peptide corresponding to the first 11 amino acids of Shh, but shows
no activity on Wnt or on intracellular palmitoylation substrates [24]. The finding that Hhatl,
an Hhat paralogue in which the active site histidine is replaced by a leucine, can act as a
competitive inhibitor of Shh palmitoylation by Hhat [25] suggests a potential mechanism for
regulation of MBOAT activity in vivo.

The appetite-stimulating and growth hormone-releasing peptide hormone Ghrelin also has an
acyl modification essential to its function, octanoylation of serine 3 [26] (Fig. 1). The enzyme
responsible for this modification is another MBOAT family member, Ghrelin-O-
acyltransferase (GOAT) [4,5]. The first 5 amino acids of Ghrelin are sufficient for recognition
by GOAT [27], supporting the model that these enzymes recognize fairly short peptide
sequences. Further study of the determinants of their substrate specificity may reveal additional
extracellular proteins that are candidates for fatty acid modification.

Lipid modifications can tether secreted proteins to membranes
Lipid modification of intracellular proteins promotes their association with membranes [23],
suggesting the possibility that lipidation of extracellular proteins might tether them to the
outside of the plasma membrane (Fig. 2). Indeed, the GPI anchor is believed to play this role,
as its phospholipid moiety is stably inserted into the extracellular leaflet of the plasma
membrane [1]. There is good evidence that palmitoylation of Drosophila Spi also has a
tethering function. Wildtype Spi is associated with the surface of cultured cells, and mutation
of the palmitoylated cysteine residue results in its release into the medium [16]. Loss of
palmitoylation also increases the range of GFP-tagged Spi movement in vivo and results in
weaker, but longer-range activation of target genes [16]. Modified Spi thus appears to be
concentrated on the membrane of producing cells, while unmodified Spi is diluted by diffusion.
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Nevertheless, Spi-expressing cells can signal to cells that are not their immediate neighbors,
especially in mutants lacking the inhibitor Argos [28]. Some Spi molecules may escape
palmitoylation, or this modification may be insufficient for stable membrane tethering.
Alternatively, a mechanism for Spi release may exist. GPI-linked proteins can be released after
cleavage of the anchor by GPI-phospholipase C, GPI-phospholipase D [29], or other hydrolases
such as the Wg antagonist Notum [30], or they can be packaged into membrane vesicles with
their lipid anchor intact [29]. The palmitate group of Spi is likely to be attached by a stable
amide linkage; sequence analysis of Spi secreted by cultured cells suggests that its release may
occur by proteolysis rather than depalmitoylation [16]. Interestingly, cleavage by extracellular
metalloproteases was recently implicated in releasing lipid-modified Shh from cell membranes
[31].

Lipid modifications may also target proteins to specific membrane subdomains (Fig. 2). GPI-
anchored proteins such as Ephrins are thought to be concentrated in lipid rafts, regions rich in
glycosphingolipids and cholesterol that have been implicated in signal transduction and in
endocytosis through the caveolar pathway [32,33]. Lipid rafts form a more ordered phase than
the surrounding plasma membrane and are resistant to disruption by detergent. Wnt proteins
associate with rafts in a Por-dependent manner [11], consistent with the ability of palmitic acid
adducts to target intracellular proteins to rafts [23]. However, the double bond in the palmitoleic
acid introduces a kink in the acyl chain and would be expected to prevent inclusion in the
ordered phase of the raft [23,33]. The opposing effects of the two acyl chains might thus allow
for regulation of Wnt localization to rafts. Hh proteins also associate with lipid rafts via both
their lipid modifications [21,34]. This lipidation-dependent localization of Hh to rafts that
contain GPI-linked heparan sulfate proteoglycan (HSPG) molecules may enhance its clustering
through protein-protein interactions and prepare it for dispersal [35]. Since lipid rafts are
thought to be small, heterogeneous and highly dynamic [36], different lipid modifications may
target proteins to distinct raft populations.

Lipid modifications control secretion
The early observation that por mutant cells retain Wg in the ER implicated Por in Wnt secretion
[12]. Wnts are cysteine-rich proteins that carry up to four asparagine-linked glycosylations in
addition to their lipid modifications. Both types of modification occur in the ER and might
contribute to correct Wnt folding, which is required for its export from the ER [10,37] (Fig.
2). Glycosylation appears to be a prerequisite for palmitoylation of mammalian Wnt3a in
HEK293 cells [14,38]. Although the sites of lipid modification are not required for normal
glycosylation in these cells [14,38], Drosophila Wg is not glycosylated appropriately in the
absence of Por [37], and Por overexpression enhances the glycosylation of multiple Wnts in a
variety of cell types [10,37], suggesting that glycosylation and lipidation are intimately linked.

Secretion of mouse Wnt3a requires the serine residue normally modified by palmitoleate
[14], while Wnts lacking the palmitoylated cysteine are released normally from cultured cells.
This implicates the unsaturated but not the saturated fatty acid in secretion [13,38,39]. In
contrast, a study of Drosophila Wg found that the palmitoylated cysteine is essential for
secretion in vivo [40]. The discrepancy may reflect more stringent requirements for secretion
in polarized epithelial cells than in cells in culture. Furthermore, in por mutants, the free
sulfhydryl group of the unpalmitoylated cysteine could disrupt the normal pattern of disulfide
bonding of cysteine-rich Wnts [41], whereas mutation of the cysteine would not have the same
effect. One role for lipid modification thus appears to be to promote Wnt folding and export
from the ER.

After ER exit, the association of lipid-modified signaling ligands with lipid rafts may provide
a sorting signal for trafficking through the secretory pathway (Fig. 2). GPI-linked proteins are
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segregated into lipid rafts in the Golgi. In some polarized cell types, this directs their trafficking
toward the apical side of the cell [42,43]. Regulated raft inclusion of Wnts mediated by the
interplay between the two lipid modifications could coordinate their polarized trafficking to
the plasma membrane [44]. Indeed, Wg is thought to be secreted from both the apical and
basolateral domains of wing disc cells, forming distinct extracellular gradients that may be
related to signaling at short range versus long range [44,45]. In addition, release of both Wg
and Hh from the plasma membrane is enhanced by the lipid raft scaffolding protein Reggie-1/
Flotillin [46].

Most Wnts require the cargo receptor Wntless/Evenness interrupted/Sprinter (Wls) for
trafficking from the Golgi to the plasma membrane [47–49] (Fig. 2). Binding of Wls to Wnt3a
requires neither the palmitoylated cysteine nor the glycosylation sites [38], and Wnt3a lacking
the palmitoylated cysteine still requires Wls for secretion in cell culture [48]. Together these
data hint that the requirement for Wls in Wnt trafficking is independent of palmitoylation,
although recognition by Wls could involve the serine-linked palmitoleic acid. The retromer
complex is also required for Wnt secretion, due to its function in recycling Wls from the plasma
membrane through endosomes to the Golgi [50]. Intriguingly, the recent finding that
Drosophila WntD, a non-lipidated Wnt involved in dorsal-ventral patterning and innate
immunity, does not rely on Wls for secretion suggests that there may be a difference in the
exocytosis pathways utilized by lipid-modified and non-lipidated Wnts [51].

Hh secretion is not impaired by mutations in Rasp/Hhat, the Hh acyltransferase, nor by
mutations in Hh itself that delete the lipid adducts [17,18,20,21]. However, cholesterol-
modified Hh proteins specifically require the function of the multipass transmembrane protein
Dispatched (Disp) for their secretion [52,53]. Disp is homologous to the RND family of
bacterial transporters that transport hydrophobic molecules across membranes, and therefore
it is thought to catalyze the release of cholesterol-anchored Hh from the plasma membrane
[54] (Fig. 2). The specificity of Disp for cholesterol-modified Hh again supports the existence
of distinct secretion pathways for lipidated and non-lipidated ligands.

Lipid-modified proteins can be packaged into lipoprotein particles for long-
range transport

The question of how membrane-tethered ligands of the Wnt and Hh families can act as long-
range morphogens is beginning to be resolved. A clue to the answer came from the discovery
that Drosophila Wg and Hh copurify and colocalize in imaginal discs with lipophorin, which
forms the protein scaffold of lipoprotein particles [55] (Fig. 2). The association with lipoprotein
particles, which is likely to be mediated by the lipid modifications on the morphogens, may
be important for their transport, since depletion of circulating lipophorin restricts the range of
Wg and Hh signaling in the wing disc [55]. In mammals, the existence of multiple types of
lipoprotein particle adds a further complication; a recent study shows that high density
lipoprotein particles (HDLs) but not low density lipoprotein particles (LDLs) can mediate
Wnt3a release from cultured mouse fibroblast L-cells [56].

The transport of lipidated proteins by lipoprotein particles is not unprecedented, as GPI-linked
proteins such as parasite coat proteins are known to circulate through the body in this manner
[29,57], but the regulated use of lipoprotein particles in developmental patterning events may
represent a new paradigm. Such a mechanism might explain the findings that the lipoprotein
receptor-related proteins Arrow/LRP5/LRP6 and Megalin can act as coreceptors for Wnt and
Hh proteins respectively [58,59], and that the Hh receptor Patched (Ptc) can bind and internalize
lipophorin [60]. It remains to be seen whether lipoprotein particles are the only vehicles for
morphogen transport; several groups have described the release of lipid-modified Hh and Wg

Steinhauer and Treisman Page 4

Curr Opin Genet Dev. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



in multimeric aggregates or vesicular structures, some of which might represent alternative
transport mechanisms acting in different settings [21,61–63].

An important question is how signaling proteins are loaded onto lipoprotein particles. Prior
work points to the possible involvement of lipid rafts [46] and transmembrane transporters
such as Disp [64]. One possibility is that incorporation occurs during the endocytosis and
recycling of lipoprotein particles, and that rafts play a role in this process [57]. It is not clear
whether more than one morphogen can be incorporated into the same lipoprotein particle; in
this case binding of the particle to the receptor for one protein might prevent the second from
reaching its target. In support of specificity in lipoprotein particle loading, an artificial GPI-
linked form of Hh is not released from the membrane [52], even though GPI-linked GFP seems
to be incorporated into Wg-containing particles [63].

The involvement of lipoprotein particles in Wnt and Hh transport also has implications for the
functions of HSPGs in morphogen movement. Cell-surface HSPGs are known to specifically
affect the extracellular distribution of lipid-modified Hh and Wg [65,66]. Their effects on the
range of morphogen activity may be attributable to their demonstrated affinity for lipoprotein
particles [67,68]. HSPGs might also prevent morphogen-loaded lipoprotein particles from
entering the circulatory system, which could have dramatic developmental and homeostatic
consequences.

Lipid modifications can affect receptor binding or activation
Finally, lipid modifications can enhance the ability of a ligand to bind to or activate its receptor
(Fig. 2). The palmitoylated cysteine of Wnt molecules is necessary for strong binding to
Frizzled receptors [38–40]. Octanoylation of serine 3 of Ghrelin is essential for maximal
activation of the growth hormone secretagogue receptor, although its function can be
experimentally replaced by other hydrophobic adducts [69]. Interestingly, palmitoylation or
other N-terminal hydrophobic modifications of Sonic Hedgehog (Shh) greatly increase its
activity in a cell-based assay that does not require transport, without significantly affecting its
ability to bind to cells expressing the Ptc receptor [70]. This suggests that unmodified Shh may
bind Ptc in a non-productive manner. However, palmitoylation of Spi does not alter its ability
to bind to or activate the EGF receptor [16], indicating that not all lipid modifications contribute
to receptor interactions.

Conclusions
Lipid modifications have a surprising variety of effects on extracellular proteins. Lipid
modifications of Wnts clearly impact exocytosis, but the specific roles of each post-
translational modification with regard to folding, trafficking, raft inclusion, and polarized
membrane targeting have yet to be determined. While palmitoylation of Spi appears to tether
it to the plasma membrane, in a similar manner to GPI linkage, lipid-modified Hh and Wnt
molecules can be transported over a long range in vivo. These lipidated ligands require specific
cofactors, Wls and Disp, for their trafficking to the cell surface and release from the membrane.
The involvement of lipoproteins in Wnt and Hh signaling may explain how lipid-modified
signaling ligands are packaged for long-range signaling, dispersed through tissues in a
regulated manner, and recognized by receptors on receiving cells, and has the potential to link
these processes to the metabolic state of the animal. Future investigations may uncover
additional lipid modifications of signaling ligands with novel functional consequences.
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Figure 1. Lipid modifications of secreted proteins
Secreted proteins can be post-translationally modified by the addition of saturated and
unsaturated fatty acids, as well as by cholesterol and GPI. The appetite-regulating hormone
Ghrelin (green) carries an ester-linked octanoyl group on a serine near its N-terminus. Hh
proteins (pink) and the Drosophila EGFR ligand Spi (gold) have amide-linked palmitic acids
on their N-terminal cysteine residues, and Hh proteins are also modified by cholesterol at their
C-termini. Wnts (violet) carry a thioester-linked palmitic acid on an internal cysteine residue
as well as an ester-linked palmitoleic acid on a serine residue. GPI linked proteins such as
Ephrins (blue) are attached to GPI at their C-termini.
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Figure 2. Secretion of lipid-modified proteins
(1) Following translation in the rough ER and translocation into the ER lumen, secreted proteins
are glycosylated by the oligosaccharyl transferase (OST) complex. Lipidation can also be
catalyzed in this compartment, by MBOAT-family acyltransferases such as Por and GOAT,
by GPI transamidase, or, in the case of Hh, by autocatalytic cholesteroylation. Rasp and
possibly other acyltransferases may function in later compartments, such as the Golgi. (2)
Proper lipidation and glycosylation may be required for ER export. (3) In the Golgi, secreted
proteins are sorted for trafficking to the plasma membrane. For many lipidated proteins, this
entails partitioning into lipid rafts. Association of Wnts with the cargo receptor Wls also occurs
here. (4) Association with lipid rafts may mediate delivery of lipid-modified proteins to the
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apical plasma membrane. (5) Lipidation stably tethers GPI-linked proteins and Spi to the
plasma membrane. (6) Wls is recycled from the plasma membrane to the Golgi for additional
rounds of Wnt sorting by the retromer complex. (7) Lipid-modified Wnt and Hh proteins may
be packaged into lipoprotein particles for dispersal, possibly with the aid of specialized
transporters such as Disp. (8) Lipoprotein particles bearing lipid-modified morphogens may
interact with target cells via HSPGs and cell surface receptors such as Wnt receptors of the
Frizzled family, the Hh receptor Patched, and/or lipoprotein receptor-related proteins (LRPs).
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