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Abstract
Early detection of diabetic patients at high risk for developing diabetic cardiomyopathy may permit
effective intervention. The goal of this work is to determine whether measurements of the magnitude
and time delay of cyclic variation of myocardial backscatter, individually and in combination, can
be used to discriminate between subgroups of individuals including normal controls and
asymptomatic type 2 diabetes subjects. Two-dimensional parasternal long-axis echocardiographic
images of 104 type 2 diabetic patients and 44 normal volunteers were acquired. Cyclic variation data
were produced by measuring the mean myocardial backscatter level within a region-of-interest in
the posterior wall, and characterized in terms of the magnitude and normalized time delay. The cyclic
variation parameters were analyzed using Bayes classification and a nonparametric estimate of the
area under the receiver operating characteristic (ROC) curve to illustrate the relative effectiveness
of using one or two features to segregate subgroups of individuals. The subjects were grouped based
on glycated hemoglobin (HbA1c), the homeostasis model assessment for insulin resistance (HOMA-
IR), and the ratio of triglyceride to high-density lipoprotein cholesterol (TG/HDL-C). Analyses
comparing the cyclic variation measurements of subjects in the highest and lowest quartiles of
HbA1c, HOMA-IR, and TG/HDL-C showed substantial differences in the mean magnitude and
normalized time delay of cyclic variation. Results show that analyses of the cyclic variation of
backscatter in young asymptomatic type 2 diabetics may be an early indicator for the development
of diabetic cardiomyopathy.
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INTRODUCTION
Insulin resistance and type 2 diabetes are growing concerns in populations in which there is an
increasing prevalence of obesity. Although diabetes is a well-known risk factor for coronary
artery disease, and consequently, ischemia-related heart failure, there is increasing evidence

Corresponding Author: James G. Miller, Ph.D., Campus Box 1105, Washington University, One Brookings Drive, St. Louis, MO 63130,
voice: 314-935-6229, fax: 314-935-5868, email: james.g.miller@wustl.edu.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Ultrasound Med Biol. Author manuscript; available in PMC 2010 September 1.

Published in final edited form as:
Ultrasound Med Biol. 2009 September ; 35(9): 1458–1467. doi:10.1016/j.ultrasmedbio.2009.04.003.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



that diabetes is also a risk factor for the development of heart failure apart from coronary
disease, a so-called “diabetic cardiomyopathy” (Fang et al. 2004; Hamby et al. 1974; Kannel
et al. 1974; Witteles and Fowler 2008).

The mechanisms for the development of diabetic cardiomyopathy are not completely known
and likely involve multiple pathways including impaired renal function, sympathetic/
parasympathetic imbalance, protein glycosylation, and upregulation of the renin-angiotensin-
aldosterone system. Evidence is also emerging that hyperlipidemia plays a central role in the
pathogenesis of heart failure in diabetic patients, independent of atherosclerosis. Type 2
diabetes is associated with elevated serum triglyceride and free fatty acid level (Barrett-Connor
et al. 1982; Fraze et al. 1985; Hallgren et al. 1960). These elevated levels can increase the
supply of fatty acid substrates to the heart, increase fatty acid utilization, and alter the lipid
homeostasis of the tissue, particularly in the setting of insulin resistance (Augustus et al.
2003; Carley and Severson 2005; Peterson et al. 2004; Stremmel 1988). Several mouse models
show that accumulation of lipids in non-adipose tissue such as the myocardium can lead to cell
dysfunction and cell death, and ultimately result in cardiomyopathy, even in the absence of
hyperglycemia (Borradaile and Schaffer 2005; Chiu et al. 2001; Chiu et al. 2005; Finck et al.
2003; Nielsen et al. 2002; Rijzewijk et al. 2008; Zhou et al. 2000). While the link between lipid
metabolic abnormalities and cardiomyopathy in diabetic patients is less clear, evidence
suggests that the myocardium of patients with type 2 diabetes is exposed to excessive free fatty
acid and triglyceride delivery, which causes lipotoxicity and thereby contributes to the
development of diabetic cardiomyopathy. This is supported by studies demonstrating increased
myocardial triglycerides in hearts of diabetic patients at autopsy and in pathological
examinations of failing hearts explanted from individuals with diabetes and cardiomyopathy
who underwent orthotopic cardiac transplantation (Alavaikko et al. 1973; Sharma et al.
2004; Szczepaniak et al. 2003).

Cyclic variation of myocardial backscatter is a non-invasive approach for assessing myocardial
structure and function. This form of tissue characterization analysis has been employed to
characterize a number of cardiac pathologies including ischemia (Barzilai et al. 1984),
myocardial infarction (Hancock et al. 2002; Iwakura et al. 2003; Ohara et al. 2005), cardiac
hypertrophy (Losi et al. 2007; Masuyama et al. 1989), and changes in myocardial size,
structure, and function (Di Bello et al. 1998; Giglio et al. 2003; Hu et al. 2003; Komuro et al.
2005; Madaras et al. 1983; Micari et al. 2006; Naito et al. 1996). One such study from our
laboratory examined differences in magnitude and normalized time delay of cyclic variation
of backscatter among type 1 diabetic patients with systemic complications and normal controls
(Perez et al. 1992). In a follow up study, Wagner et al. extended this work by using Receiver
Operating Characteristic (ROC) analysis to quantitatively assess the univariate and
multivariate discriminating power of the cyclic variation parameters (1995). The results of that
paper indicated that a combination of two or more cyclic variation parameters (magnitude of
the septal wall, time delay of the septal wall, magnitude of the left ventricular free wall, and
time delay of the left ventricular free well) yielded a larger area under the ROC curve than a
single feature. Early detection of diabetic patients at high risk for developing diabetic
cardiomyopathy might permit effective intervention. The long-term goal of this exploratory
study is to determine whether myocardial tissue characterization based on measurements of
the magnitude and time delay of cyclic variation of myocardial backscatter might be a useful
non-invasive indicator of hearts at potentially higher risk for developing diabetic
cardiomyopathy. Although a longitudinal study over many years would be required to
determine the utility of this approach in modifying clinical outcomes, this preliminary study
examines methodology that might be appropriate for such a longer-term investigation.
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METHODS
Subjects Studied

A total of 148 subjects (44 normal controls and 104 asymptomatic type 2 diabetic patients)
between the ages of 30 and 55 years old were recruited for the research study over a 3-year
period. Subjects were enrolled in the study after signing informed consent forms approved by
the Washington University Human Studies Committee. Subjects were excluded if they met the
following criteria that are known to affect adversely heart function or metabolism independent
of parameters being studied: participants who had greater than Stage 1 hypertension as defined
by the seventh report of the Joint National Committee (Joint National Committee on the
Prevention 2003); valvular disease including trace or mild valvular regurgitation; systolic
dysfunction; ischemic heart disease as assessed by a screening stress echocardiography exam;
or symptoms of heart failure. Subjects were also excluded if they were outside the age range
of 30 to 55 years old, current smokers, postmenopausal, pregnant or lactating. Out of the 148
subjects enrolled, 7 subjects withdrew from the study, 4 subjects did not have all the plasma
markers needed for analysis, and data from 12 subjects were not analyzed due to poor signal
to noise ratios for the tissue characterization measurements. In the end, data from 125 subjects
were collected and analyzed. These 125 subjects had an average age of 43 ± 7 years (mean ±
standard deviation) and included 72 females and 53 males.

Laboratory Tests
Once a subject was enrolled in the study, laboratory tests were performed after an overnight
fast. The tests included fasting glucose, glycated hemoglobin, lipid, and protein levels. The
echocardiographic evaluation included standard measurements to assess cardiac function as
well as study specific measurements such as tissue characterization.

Tissue Characterization Data Acquisition
A detailed description of the system calibration, backscatter data acquisition, and cyclic
variation analysis can be found in Holland et al. (2006) and is summarized below. Subjects
were imaged using a General Electric (GE) Vivid 7 clinical imaging system (General Electric
Medical Systems, Waukesha, WI). Data was collected from the parasternal long-axis view in
harmonic imaging mode with a transmit frequency of 1.7 MHz and a receive frequency of 3.4
MHz. The post-processing settings (compression, reject, dynamic range, data dependent
processing (DDP)) of the imaging system were configured to optimize the dynamic range of
images of the left ventricular free wall, and to provide a linear relationship between changes
in the displayed grayscale value and changes in the level of ultrasonic backscatter expressed
in decibels. This relationship was achieved by acquiring a succession of images of a tissue-
mimicking phantom as the overall receiver gain was systematically changed in known decibel
(dB) steps. The phantom images were analyzed offline using NIH ImageJ (National Institutes
of Health, Bethesda, MD). In this approach, a region-of-interest was placed within each
phantom image and the mean grayscale value was measured. Analysis of the measured mean
grayscale level corresponding to each known gain setting was used to determine the
relationship between changes in the displayed grayscale value and changes expressed in dB.
Furthermore, this approach established the range where this relationship was linear. To obtain
echocardiographic data from subjects, images from five consecutive heart cycles were digitally
acquired with the overall gain of the imaging system configured to maximize the available
dynamic range of backscattered signals. Subsequent analyses of the acquired image data were
performed off-line using NIH ImageJ.

Backscatter data were generated from a region-of-interest that was manually tracked to stay
within the mid-myocardium of the left ventricular free wall over the heart cycle. Figure 1a
shows a representative echocardiographic image with a region-of-interest drawn in the
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posterior wall of the parasternal long-axis view. Previous studies have used this method of
measuring backscatter data from a manually positioned region-of-interest and shown both
intra- and inter-observer backscatter results are reproducible (Holland et al. 2009). For each
image frame of the cineloop, the mean grayscale value of the region-of-interest was recorded
and converted to backscattered energy expressed in decibels. The backscattered energy was
plotted versus time (or frame number) to yield the systematic variation of backscatter from the
heart. A similar procedure was performed for a region-of-interest placed in the blood-filled
cavity of the left ventricle. This analysis was done to ensure clutter in the image did not strongly
affect the measured backscatter energy from the myocardium and ultimately influence the
cyclic variation results. Figure 1b shows the cyclic variation of myocardial backscatter over
five heart cycles for the region-of-interest drawn in Figure 1a, and for a region-of-interest
placed in the blood-filled cavity. The vertical scale in Figure 1b illustrates the relative
difference between the measured backscatter energy in the myocardium and the blood-filled
cavity, and does not represent the absolute level of backscatter. Figure 1c depicts the average
cyclic variation waveform calculated by averaging the five separate heart cycles of myocardial
backscatter in Figure 1b. The data are represented as a zero-mean curve and plotted as a
percentage of the heart cycle. In this formalism, end-diastole is defined as the start (0%) and
end (100%) of the heart cycle.

The systematic variation of the backscattered energy was quantified by analyzing the
magnitude and normalized time delay of cyclic variation using an automated algorithm
(Mobley et al. 1995; Mohr et al. 1989). The magnitude of cyclic variation was calculated as
the difference between the average peak and average nadir values of the backscattered energy.
The corresponding normalized time delay is expressed as a dimensionless ratio obtained by
dividing the time interval from end-diastole to the nadir of the mean backscatter trace by the
systolic interval. Mitral valve motion was used to identify the diastolic and systolic intervals.
End diastole was defined as the frame just after the mitral valve closed and end systole
corresponded to the frame before the mitral valve opened. The analysis of magnitude and
normalized time delay of cyclic variation are illustrated in Figure 1d.

Data Analysis
For this preliminary study, analyses of the cyclic variation of myocardial backscatter were
performed with subjects divided into quartiles based on each of three indices, glycated
hemoglobin (HbA1c), the homeostasis model assessment of insulin resistance (HOMA-IR) as
calculated by The Oxford Centre for Diabetes, Endocrinology, and Metabolism HOMA
calculator (Wallace et al. 2004), and the ratio of triglyceride to high-density lipoprotein-
cholesterol levels (TG/HDL-C). With regard to the choice of indices for these planned
comparisons, HbA1c and HOMA-IR were selected for the data analyses because they represent
useful indices for the monitoring of type 2 diabetic patients. The ratio of TG/HDL-C, which
was previously employed as a predictor of insulin resistance and cardiometabolic risk in the
Framingham offspring cohort (Kannel et al. 2008), illustrates a particular dislipidemia that
could play a role in the pathogenesis of heart failure in diabetic patients. For each classification,
cyclic variation measurements from subjects in the highest quartile (N=32) were compared
with those in the lowest quartile (N=32). The quartiles were determined by rank ordering the
subjects according to the index of interest, and grouping the 32 subjects with the largest rank
as the highest quartile and the 32 subjects with the smallest rank in the lowest quartile. Our
hypothesis was that subjects with a high percentage of HbA1c, large value for HOMA-IR, or
large ratio of TG/HDL-C exhibited a less favorable profile than those subjects with lower
values. In this sense, the lowest quartile might be considered to be the “healthier” of the two
quartiles; however, the subjects in both groups have clinically normal hearts as assessed by a
stress echocardiography exam. A subset of the laboratory results for these three subject
groupings is presented in Table 1.
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Cyclic variation data from the lowest and highest quartile-groups (small HbA1c, HOMA-IR,
or ratio of TG/HDL-C and large HbA1c, HOMA-IR or ratio of TG/HDL-C respectively) served
as the input data for Bayes classification. Bayes classification was employed to combine
information from the magnitude and time delay of cyclic variation and assign a subject to the
lowest or highest quartile. Once the result was calculated for each subject, Receiver Operating
Characteristic (ROC) analysis was used to assess the performance of the Bayes classified data.
A more detailed explanation of Bayes classification and ROC analysis is provided in the
Appendix.

RESULTS
The mean and standard error for the magnitude and time delay of cyclic variation of myocardial
backscatter were analyzed for the highest and lowest quartile groups of each metabolic
parameter to quantify how the subjects separated on average. Figure 2 illustrates these results
for three metabolic parameters, HbA1c, HOMA-IR, and TG/HDL-C. For each parameter, we
observed a separation between the lowest and highest quartiles for the magnitude and the
normalized time delay. In all but one case this separation between the results for the lowest
and highest quartile was calculated to be statistically significant with a two-tailed, unpaired
student t-test. Of the three metabolic parameters, HbA1c yielded the largest separation between
the mean magnitude results, with the lowest quartile averaging 5.4 dB and the highest quartile
averaging 4.1 dB. The average time delay measurements for this classification were 0.78 and
0.85 for the lowest and highest quartiles respectively. Dividing the subjects by HOMA-IR
resulted in a similar separation of the average time delays as that seen in the HbA1c results.
The results for subjects in the lowest and highest quartiles of HOMA-IR were mean time delays
of 0.76 and 0.83, respectively, and mean magnitudes of 5.5 dB and 4.4 dB, respectively. TG/
HDL-C yielded a less pronounced separation of the cyclic variation results than the other
metabolic parameters. In this subject classification, the lowest quartile had an average
magnitude of 5.6 dB and average time delay of 0.79 whereas the highest quartile had a mean
value of 4.6 dB for the magnitude and 0.83 for the time delay. The magnitude and normalized
time delay of cyclic variation are illustrated together in Figure 3. The left panels of Figure 3
show the means, and standard deviations for the magnitude and time delay of cyclic variation
for the highest and lowest quartile groups of each metabolic parameter. The right panels display
the individual data for the 64 subjects included in the HbA1c, HOMA-IR, and TG/HDL-C
analysis. For the two cyclic variation parameters used in combination, the means suggest a
modest separation of the data for all three subject classifications.

After the average cyclic variation results were obtained, ROC analysis was employed to
quantify how magnitude and time delay could distinguish between populations, both
individually and in combination. Table 2 summarizes the nonparametric estimate of the area
under the curve and the associated standard error for the cyclic variation parameters analyzed
individually as well as in combination. When the subjects are divided into quartiles of HbA1c,
the magnitude of cyclic variation yielded an area and standard error of 0.69 ± 0.07. The
normalized time delay, for these subjects, resulted in an area under the curve and standard error
of 0.75 ± 0.06, and the combination of the magnitude and time delay of cyclic variation through
Bayes classification gave an area and error of 0.78 ± 0.06. A similar trend is seen when the
subjects are divided into quartiles of HOMA-IR. In this analysis the magnitude of cyclic
variation resulted in an area and standard error of 0.63 ± 0.07, normalized time delay of cyclic
variation yielded an area and error of 0.74 ± 0.06, and the combination of the two parameters
gave an area and error of 0.76 ± 0.06. In the third measure, TG/HDL-C, the area under the
curve and standard error for the magnitude of cyclic variation was 0.58 ± 0.07, and 0.64 ± 0.07
(area ± standard error) for the normalized time delay. The combination of magnitude and
normalized time delay gave an area under the curve and standard error of 0.68 ± 0.07 for the
TG/HDL-C grouping of subjects.
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DISCUSSION
Although the study subjects were considered to have clinically normal hearts as assessed by a
stress echocardiography exam, and no greater than Stage 1 hypertension, differences in the
magnitude and normalized time delay of cyclic variation were observed when the subjects were
classified by hemoglobin A1c (HbA1c), homeostasis model assessment of insulin resistance
(HOMA-IR), and the ratio of triglycerides to high-density lipoprotein cholesterol (TG/HDL-
C). For each of these parameters, the cyclic variation of backscatter measurements behaved in
a fashion similar to that observed in previous studies of subjects with type 1 and type 2 diabetes
(Akdemir et al. 2001; Di Bello et al. 1995; Di Bello et al. 1996; Di Bello et al. 1998; Fang et
al. 2003; Perez et al. 1992; Wagner et al. 1995). Those studies showed that the magnitude of
cyclic variation is larger and the normalized time delay measurements are smaller in normal
hearts than in diabetic hearts. Figures 2 and 3 demonstrate a similar trend in the current subject
population. The subjects with more favorable profiles (low HbA1c, HOMA-IR, or TG/HDL-
C) have a larger magnitude and smaller time delay of cyclic variation than the subjects in the
highest quartiles of each classification. These differences in the cyclic variation parameters
reach significance in all but one instance.

The cyclic variation results may suggest a trend toward a larger area under the ROC curve
when information from magnitude and time delay of cyclic variation is combined using Bayes
classification than when each feature is analyzed individually. However this observed
improvement is relatively modest, suggesting the need for additional studies and the
identification of additional features that may improve the approach used to characterize the
cyclic variation waveform. Many laboratories only report the magnitude of cyclic variation,
yet this study suggests an improved ability to distinguish between subject groups when both
magnitude and time delay of cyclic variation are used together. This result is similar to that
reported in the Wagner et al. study of type 1 diabetic patients with systemic complications
versus normal controls (1995). Unlike the Wagner et al. study, the current study examined
subjects who have clinically normal hearts and no systemic complications from diabetes. Yet
in spite of this, the magnitude and time delay measurements show differences between the two
groups. The 95% confidence intervals calculated in the current study are comparable to those
reported in Figures 2, 3, and 4 of the Wagner et al. paper despite the different subject
populations. In the current study, the difference between the area under the curve for the
magnitude, time delay, and combination of cyclic variation parameters could increase if a
quadratic classifier was used in the Bayes classification rather than the linear classifier used in
this study (Fukunaga 1972; Wagner et al. 1995). Although the calculated values for area under
the curve are quite modest, they are comparable to the areas obtained when the ratio of
triglyceride to high-density lipoprotein cholesterol is used as a surrogate for insulin resistance
(Kannel et al. 2008).

There are a number of limitations to the present study. First, because endomyocardial biopsy
was not appropriate in these otherwise healthy subjects, we do not have direct evidence of
myocardial abnormalities, either with regard to structure or metabolism. Second, the body mass
index of subjects in the highest quartiles was substantially larger than that in the lowest quartiles
for all three metabolic parameters. However, because obesity is a known risk factor for the
development of type 2 diabetes, this finding is not unexpected. Studies suggest that there may
be a link between obesity and the magnitude of cyclic variation of backscatter (Di Bello et al.
2006; Wong et al. 2004). This connection could be due to the influence of obesity on the load
experienced by the myocardium. However, studies have shown that the magnitude of cyclic
variation is relatively preload and afterload independent (Naito et al. 1996).

In summary, classifying subjects according to hemoglobin A1c, homeostasis model assessment
of insulin resistance, and the ratio of triglycerides to high-density lipoprotein cholesterol
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resulted in differences in the magnitude and normalized time delay of cyclic variation between
the lowest and highest quartile groups for each classification. In the long view, these results
suggest that monitoring the hearts of patients with type 2 diabetes using the combination of
magnitude and time delay of cyclic variation of backscatter might permit observation of
changes associated with disease progression that may contribute to the development of diabetic
cardiomyopathy.
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Appendix

APPENDIX

Bayes Classification
A detailed description of Bayes classification can be found in Introduction to Statistical Pattern
Recognition by Fukunaga and is summarized below (1972). In this study Bayes classification
analysis used cyclic variation results to calculate a decision rule that minimized the error of
identifying a new subject with the wrong group. The Bayes decision rule incorporated both the
magnitude and normalized time delay from the same subject and used information about the
mean and covariance of the tests within both groups.

In general, when the two populations studied are normally distributed and their covariance
matrices are equal, the Bayes decision rule simplifies to a linear classifier,

where h(X) is the log likelihood ratio that the subject is in population 1 or 2, X is a vector of
test results for one subject, M is a vector representing the means for each test, Σ is the covariance
matrix, T the matrix transpose, and the subscripts 1 and 2 represent the two different
populations (Fukunaga 1972). The elements of the covariance matrices were calculated using
the formula

In the cyclic variation analysis, N is the number of subjects in the test population, x is the kth

subject’s test result for test m or n, and μ is the mean of test m or n, where m and n are indices
corresponding to the diagnostic tests that are being compared. In this cyclic variation analysis,
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two tests (magnitude and time delay) were analyzed for each patient, so m and n both run from
1 to 2, and four covariance matrix elements are calculated. If the two populations studied
(highest and lowest quartiles) do not have equal covariance matrices, the elements in the
covariance matrix of population 1 can be averaged with the corresponding elements in the
covariance matrix of population 2 to yield a common covariance matrix (Wagner et al. 1995).
Alternatively a quadratic classifier can be calculated for the decision rule. In the present study,
the covariance matrices for the two groups were averaged and a linear classifier was employed
in order to make the results comparable to those presented in the Wagner et al. study of type
1 diabetic patients (1995). In the current study the h(X) values ranged from approximately -3
to 3 with negative h(X) values indicating a higher likelihood to be in population 1 and positive
h(X) values signifying the subject is more likely to be in population 2.

The calculated linear classifier was estimated from a finite sample of subjects resulting in a
decision rule that was derived from imperfect information. The performance of this classifier
is expected to be inferior to a decision rule based on precise knowledge of the study population,
but by using resampling techniques the effects of finite sample size can be reduced. The primary
resample method was round-robin classification, also known as leave-one-out jackknife (Efron
1982; Wagner et al. 1995). In the round-robin resampling scheme, one of the samples was held
out of the training set and the other samples were used to calculate or train the classifier. The
left out sample was then classified using the trained decision rule and replaced into the original
dataset. After replacement of the first left-out sample, a different sample was removed from
the training dataset and the remaining samples were used to calculate the decision rule. The
newly calculated decision rule was slightly different from the first rule because the training
dataset included the previously left-out sample and did not include the latest sample that was
removed. The removed sample was classified using the latest decision rule and then the sample
was moved back into the original dataset. This process was repeated multiple times with
different samples excluded from the training set until all the samples were classified and results
could be used in ROC analysis.

Receiver Operating Characteristic (ROC) Analysis
A nonparametric estimate of the area under the ROC curve was used to assess the performance
of the Bayes classified data by quantifying its ability to distinguish between the two
populations. ROC analysis provides a description of the separability of two groups that is
independent of a decision threshold, a test interpreter’s mindset, and prevalence of the disease.
This method of analysis often relates the true positive fraction (the fraction of actually positive
cases that are identified as positive by the test) to the false positive fraction (the fraction of
actually negative cases that are called positive by the test) as a function of decision threshold.
An ideal test with clear separation between test results of two groups would yield an area under
the curve of 1.0. Conversely an area under the curve of 0.50 is representative of a random
guess. In general an area under the curve between 0.50 and 0.70 indicates a poor test
performance, an area between 0.70 and 0.80 is considered fair, 0.80 to 0.90 is good, and an
area greater than 0.90 is considered excellent (Kannel et al. 2008).

The nonparametric estimate of area under the curve is also referred to as the Wilcoxon
(Wilcoxon 1945) and the Mann-Whitney U-statistic (Mann and Whitney 1947). Several studies
have shown that these unbiased estimators are analogous to that of the parametric area under
the ROC curve (Bamber 1975; DeLong et al. 1988; Gallas 2006; Hanley and McNeil 1982).
The Wilcoxon and Mann-Whitney U-statistic estimate the probability that a randomly selected
result from one group will be greater than or equal to a randomly selected result from the other
group. This statistic W is expressed as
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In this formulation, the two subject groups are represented by X and Y, with subject populations
M and N respectively. This figure of merit can be interpreted as the expected percent correct
in a binary decision situation. As more test results are assigned to the correct population the
statistic W gets closer to 1.0, in a fashion similar to that of the parametric area under the ROC
curve. In this study all of the ROC results reported are from a nonparametric estimate of the
area under the ROC curve.
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Figure 1.
a) Image showing a representative region-of-interest placed in the posterior wall of the
parasternal long-axis view for one subject. RV = right ventricle LV = left ventricle Ao= aorta
b) Cyclic variation of myocardial backscatter data from the region-of-interest shown in Figure
1a and backscatter data from the blood-filled cavity. The vertical scale illustrates the relative
difference in backscatter results and does not represent an absolute measurement. c) Average
waveform calculated from the five heart cycles illustrated in Figure 1b. The data are represented
as a zero-mean curve and the heart cycle is defined as starting and ending with end diastole.
d) A model waveform utilized in the automated analysis of cyclic variation data (Mohr et al.
1989) to calculate the magnitude and time delay of the cyclic variation of myocardial
backscatter. The vertical arrow illustrates the magnitude of cyclic variation, and the normalized
time delay is calculated as the time interval from end diastole to the center of the nadir divided
by the systolic interval.
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Figure 2.
The averages and standard errors of the magnitude (left panels) and normalized time delay
(right panels) of cyclic variation for the lowest and highest quartiles in each subject division.
The significance of each cyclic variation parameters was found using a two-tailed unpaired
student t-test. HbA1c = Hemoglobin A1c, HOMA-IR = Homeostasis model assessment for
insulin resistance, TG/HDL-C = Triglyceride to high density lipoprotein-cholesterol ratio
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Figure 3.
The left panels are the mean, and standard deviations of the magnitude and normalized time
delay of cyclic variation for the lowest and highest quartiles in each subject division. The right
panels are individual subject results for the magnitude and normalized time delay of cyclic
variation. In all the graphs, the open circles represent the 32 subjects in the lowest quartile of
each subject division while the squares illustrate the results for the 32 subjects in the highest
quartiles. HbA1c = Hemoglobin A1c, HOMA-IR = Homeostasis model assessment for insulin
resistance, TG/HDL-C = Triglyceride to high density lipoprotein-cholesterol ratio
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Table 2
A summary of the nonparametric estimate of the area under the Receiver Operating Characteristic curve (AUC) and
the associated standard errors (St.Err.). The first two rows represent the results when only magnitude or normalized
time delay information is used. The third row reports the results when the magnitude and time delay results are combined
through Bayes classification. HbA1c = Hemoglobin A1c, HOMA-IR = Homeostasis model assessment for insulin
resistance, TG/HDL-C = Triglyceride to high density lipoprotein-cholesterol ratio

HbA1c AUC ± St.Err. HOMA-IR AUC ± St.Err. TG/HDL-C AUC ± St.Err.

Magnitude 0.69 ± 0.07 0.63 ± 0.07 0.58 ± 0.07

Delay 0.75 ± 0.06 0.74 ± 0.06 0.64 ± 0.07

Combination 0.78 ± 0.06 0.76 ± 0.06 0.68 ± 0.07
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