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Abstract
Methamphetamine (METH) is a psychostimulant that causes damage to dopamine (DA) axons and
to non-monoaminergic neurons in the brain. The aim of the present study was to investigate short-
and long-term effects of neurotoxic METH treatment on novelty-induced locomotor activity in mice.
Male BALB/c mice, 12–14 weeks old, were injected with saline or METH (i.p., 7.5 mg/kg × 4 times,
every 2 hours). Behavior and neurotoxic effects were assessed at 10 days, 3 and 5 months following
drug treatment. METH administration caused marked decreases in DA levels in the mouse striatum
and cortex at 10 days post-drug. However, METH did not induce any changes in novelty-induced
locomotor activity. At 3 and 5 months after treatment METH-exposed mice showed significant
recovery of DA levels in the striatum and cortex. In contrast, these animals demonstrated significant
decreases in locomotor activity at 5 months in comparison to aged-matched control mice. Further
assessment of METH toxicity using TUNEL staining showed that the drug induced increased cell
death in the striatum and cortex at 3 days after administration. Taken together, these data suggest
that delayed deficits in novelty-induced locomotor activity observed in METH exposed animals are
not due to neurodegeneration of DA terminals but to combined effects of METH and age-dependent
dysfunction of non-DA intrinsic striatal and/or corticostriatal neurons.
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1. Introduction
The abuse of the illicit psychostimulant methamphetamine (METH) has reached epidemic
proportions in the USA and throughout the world (Krasnova and Cadet, 2009). This is a
growing public health disaster because chronic METH abuse is associated with serious health
complications that include impairments in learning, memory, decision-making (Scott et al.,
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2007) and motor deficits (Caligiuri and Buitenhuys, 2005) in humans. In addition to these
negative neuropsychiatric consequences, neuroimaging studies have found persistent
decreases in the levels of dopamine transporters (DAT) and vesicular monoamine transporters
2 in the striatum and cortex (Sekine et al., 2001, 2003; Volkow et al., 2001; Johanson et al.,
2006; McCann et al., 2008), indicating dopamine (DA) axonal damage in the brains of METH
addicts. Postmortem analyses have also detected decreases in tyrosine hydroxylase (TH), DAT
and DA levels in the striatum of chronic METH abusers (Wilson et al., 1996; Moszczynska et
al., 2004). In addition to neurodegeneration of DA axons, METH addicts show loss of gray
matter in the cortex, smaller hippocampus, and hypertrophy of the white matter, suggesting
cell death and gliosis secondary to neuronal damage in the brain (Thompson et al., 2004).

Evidence has accumulated to show that these drug-induced neuropathological changes might
underlie deficits in cognitive behaviors in chronic METH abusers (Scott et al., 2007). These
ideas are further strengthened by data from animal studies showing that METH neurotoxicity
is associated with impairments in motor learning (Chapman et al., 2001; Daberkow et al.,
2005), novel object recognition (Schroder et al., 2003; He et al., 2006; Belcher et al., 2008;
Herring et al., 2008) and spatial memory acquisition (Friedman et al., 1998) in rodents. In
addition to cognitive deficits, METH also causes disturbances in balance beam performance
and increased latency in active avoidance task, suggesting appearance of motor impairments
in drug-treated animals [(Walsh and Wagner, 1992); however, see (Timar et al., 2003)].
Because the majority of previous reports have focused on short-term toxic effects and related
cognitive deficits, the present study was undertaken to investigate short- and long-term
consequences of neurotoxic METH treatment on novelty-induced locomotor activity in mice.
Thus, we examined behavioral performance in mice 10 days, 3 and 5 months after METH
administration using an open field test. In addition, we studied drug-induced damage to
monoaminergic and to non-monoaminergic neurons in the mouse brain.

2. Materials and Methods
2.1 Animals and METH treatment

Male BALB/cByJ mice 12–14 weeks old, weighing 30–35 g and obtained from Jackson’s Lab
(Bar Harbor, ME) were used in the study. All animal procedures were performed according to
the NIH Guide for the Care and Use of Laboratory Animals and were approved by the local
Animal Care Committee. Prior to injections, mice were housed one per cage to eliminate
fighting and to reduce stress associated with METH treatment. The mice were injected i.p. with
dl-METH hydrochloride (7.5 mg/kg × 4 times, every 2 hours) or saline. METH caused an
increase in locomotor activity, which disappeared approximately one hour after the last
injection of the drug. Mice were tested for behavioral performance at different time intervals
after treatment.

2.2 Open field test
Mice were examined for novelty-induced locomotor activity 10 days, 3 and 5 months after
METH or saline injections in an open field test (Fig. 1). This test is widely used in the
assessment of locomotor activity in a novel environment in studies of vulnerability to drugs of
abuse (Piazza et al., 1989), for behavioral evaluation of knockout mice (Kelly et al.,
1998;Fetsko et al., 2005), and in animal models of neurodegenerative disorders (Srinivasan
and Schmidt, 2004;Tadaiesky et al., 2008). On the day of the experiment, mice were transported
from the animal facility to the laboratory and tested in a darkened (red light) environment. The
details of the open field test and apparatus were described previously (Krasnova et al., 2007).
In brief, the apparatus consisted of a small plastic pool (diameter 120 cm / 30 cm deep) (Fig.
1). The arena was divided into four quadrants with medical tape. Mice were taken out of their
home cages and placed into the first quadrant of the unfamiliar open field. The number of
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quadrants crossed (locomotor activity) and of rearings was monitored immediately following
the exposure to the novel environment. Relative time spent in the central zone was also
measured. Data were collected for 6 min at the same time of day (9 am to 12 pm) for each test
period. The 6 min session was chosen because a short exposure captures the locomotor activity
of animals in a novel environment. After that animals become habituated to the environment
and their locomotion and rearing behavior decline (Thiel et al., 1999;Antoniou et al., 2008).
The open field arena was thoroughly cleaned with 75% ethanol solution before each test to
eliminate possible odor cues. Mice were videotaped during the performance with an overhead
camcorder and open field behaviors were assessed using CleverSys Top Scan (CleverSys, Inc.,
Reston, VA) software. Statistical analysis of the data was done using factorial ANOVA
(GraphPad Prizm 5, GraphPad Software, Inc., San Diego, CA). Differences were considered
significant at p < 0.05.

2.3 High-performance liquid chromatography (HPLC) analysis
To examine METH-induced depletion of monoaminergic terminals in the mouse brain, animals
were euthanized 10 days, 3 and 5 months after drug treatment. Cortical, striatal and
hippocampal tissue samples (N=5–9 per group) were dissected from each brain, weighed and
extracted with 0.01M perchloric acid, then centrifuged at 15,000g for 15 min. Concentrations
of DA, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), serotonin (5-
HT), and 5-hydroxyindoleacetic acid (5-HIAA) in the tissue extracts of METH- and saline-
treated mice were measured by HPLC with electrochemical detection as described earlier
(Krasnova et al., 2000) and expressed as ng/mg of tissue weight. All data are presented as
means ± SEM. Statistical analysis was performed using analysis of variance (ANOVA)
followed by Fisher’s protected least significant difference (PLSD) (StatView 4.02, SAS
Institute, Cary, NC). Criteria for significance were set at p < 0.05.

2.4 Terminal deoxynucleotidyl transferase-mediated deoxyribonucleotide triphosphate
(dNTP) nick end labeling (TUNEL) histochemistry

To test if METH causes cell death in the mouse brain, we performed TUNEL histochemistry
using the protocol previously described by us (Krasnova et al., 2005). At 3 days after METH
or saline injections, animals were euthanized, their brains were removed, frozen and then cut
into 30µm coronal sections, and sections containing cortical, striatal and hippocampal areas
were used for TUNEL staining. For statistical analyses, TUNEL-positive cells were counted
in coronal sections using a Zeiss (Carl Zeiss MicroImaging, Inc., Thornwood, NY) microscope.
Five sections were counted per brain region from each mouse, and 5–8 animals were used in
each group. Data are presented as means ± SEM. Statistical analysis was done using analysis
of variance (ANOVA) followed by Fisher’s PLSD (StatView 4.02). Differences were
considered significant at p < 0.05.

3. Results
3.1 Behavioral response to a novel environment

To examine METH effects on behavior, we used the open field test which allows for assessment
of novelty-induced activity, including horizontal locomotion, rearing and time spent in the
central versus peripheral zone in rodents. At 10 days and 3 months after treatment METH-
injected mice did not show significant differences in locomotor activity in comparison to
control animals when exposed to the novel environment (Fig. 2A, B). However, at 5 months
after drug administration, locomotor activity was reduced (−45%) in METH-treated mice [F
(1,8)=5.39, p=0.0487] (Fig. 2C). In contrast, control animals did not show any deficits in
novelty-induced locomotor activity in comparison to younger saline-treated mice (compare
control groups in Fig. 2C and Fig. 2A, B). Rearing and time spent in the center of the field
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were not significantly affected in METH-treated mice at any of the time-points studied (data
not shown).

3.2 The effects of METH on monoamine levels in the brain
In order to assess the status of monoaminergic terminals after METH treatment, we measured
levels of DA, 5-HT and their metabolites in the cortex, striatum and hippocampus using HPLC.
The drug caused substantial reduction in the DA [F(3,46)=43.68, p<0.0001], DOPAC [F(3,46)
=30.76, p<0.0001] and HVA [F(3,46)=13.23, p<0.0001] levels in the mouse striatum (Fig.
3A). An average of 70% DA depletion was found in the striatum of METH-treated mice
euthanized at 10 days after injections (Fig. 3A). There were also 61% and 35% depletion of
DOPAC and HVA concentrations, respectively, at the 10 day time-point (Fig. 3A). These
decreases were partially reversible with time, with DA levels showing significant recovery to
38% and 34% depletion, respectively, at 3 and 5 months after drug injections (Fig. 3A). DOPAC
concentrations also significantly recovered to 25% depletion at 5 months after treatment (Fig.
3A). HVA values had eventually normalized (Fig. 3A). METH treatment had no effect on 5-
HT levels in the striatum (data not shown), however, caused significant increases in 5-HIAA
[F(3,46)=3.22, p<0.05]. Post-hoc analyses showed that this was due to 20% increases in 5-
HIAA concentrations at 5 months time-point.

In the cortex, the levels of DA [F(3,46)=7.59, p=0.0003], DOPAC [F(3,46)=22.83, p<0.0001]
and HVA [F(3,46)=19.35, p<0.0001] were significantly decreased after METH treatment (Fig.
3B). The drug caused marked decreases in DA (−84%), DOPAC (−61%) and HVA (−49%)
levels at 10 days following treatment (Fig. 3B). Similar to the striatum, these levels significantly
recovered at 3 and 5 months, with DA showing 35% and 37% depletion, respectively, DOPAC
– 36% and 27% reduction, respectively, and HVA tempering back to control values (Fig. 3B).
METH treatment did not affect 5-HT levels (data not shown), but induced increases in 5-HIAA
concentrations in the cortex [F(3,46)=7.65, p=0.0003]. Specifically, there were 40% increases
in the 5-HIAA levels in the cortex at 5 months after treatment. METH did not cause any changes
in monoamine levels in the mouse hippocampus (data not shown).

3.3 The effects of METH treatment on cell death in the brain
To test if METH administration caused cell death in the brains of BALB/c mice, we used
TUNEL histochemistry to detect for DNA fragmentation. Previous studies from our lab have
shown that treatment with neurotoxic doses of METH causes time-dependent changes in cell
death in the rodent brain with significant increase at 1 – 3 days after injections and
normalization to control values at 7 days post-drug (Deng et al., 2002; Jayanthi et al., 2005).
Therefore, we chose 3 days as a time-point to examine METH-induced cell death in the brain
in the present study. METH treatment produced significant increases in the number of TUNEL-
positive cells in the striatum [F(1,26)=36.46, p<0.0001] and cortex [F(1,26)=53.21, p<0.0001]
(Fig. 4). Specifically, saline-treated mice had very few TUNEL-positive cells in these brain
areas (Fig. 4A, B). However, drug administration caused substantial increases in the amount
of TUNEL staining in the striatum (Fig. 4B) and cortex (Fig. 4E). The quantitative and
statistical data are shown in Fig. 4C, F. In contrast, METH treatment did not induce any
increases in the number of TUNEL-positive cells in the hippocampus (data not shown).

4. Discussion
The main findings of the present study are that: (i) METH caused decreases in locomotor
activity in a novel environment at 5 months but not at 10 days or 3 months after injections; (ii)
METH administration resulted in selective depletion in the levels of DA and its metabolites in
the cortex and striatum at 10 days, with partial recovery at 3 and 5 months following drug
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treatment; (iii) METH induced DNA fragmentation and cell death in the mouse striatum and
cortex.

It is interesting that treatment with neurotoxic doses of METH in our study caused more
profound DA depletion in the cortex than in the striatum of BALB/c mice. Previous studies by
our laboratory (Ladenheim et al., 2000) and by others (Achat-Mendes et al., 2005; Anderson
and Itzhak, 2006) also showed greater magnitude of decreases in DA levels in the cortex than
in the striatum of METH-treated C57BL/6 and in Swiss Webster mice. Thus, these effects are
probably species-specific because METH induces opposite effects in rats, with DA levels in
the striatum being more affected than DA concentrations in the cortex (Ricaurte et al., 1980;
Friedman et al., 1998; Danaceau et al., 2007). Our findings are consistent with previous
observations showing time-dependent recovery of depleted DA levels in the brain caused by
neurotoxic doses of METH in rats (Friedman et al., 1998) and in non-human primates (Melega
et al., 1997). The results of our study are different from those obtained by Walsh and Wagner
(1992) who reported that Long-Evans rats treated with neurotoxic doses of METH are impaired
on a balance beam and show increases in response latency during active avoidance
performance, suggesting appearance of motor deficits at seven days after drug administration.
The differences between our studies might be due to the different species used. There is also
a possibility that these motor deficits are strain-specific, since toxic doses of METH induced
no changes in locomotor activity in a novel environment and no deficits in active avoidance
performance in Wistar rats up to four weeks after injections (Timar et al., 2003). Our data are
in agreement with those of recent studies by Boger et al. (2007, 2009) who did not find any
influence of METH on locomotor activity at two weeks and three months after treatment but
reported a 40% reduction in total distance traveled by the mice at six months after drug
administration. Finally, our results are consistent with findings of clinical studies showing
deficits in motor skills, including slower gait, in abstinent METH abusers (Volkow et al.,
2001; Toomey et al., 2003).

It is interesting to discuss our data in a view of the accumulated evidence which has documented
the dependence of locomotor functions on DA neurotransmission in the striatum (Smith and
Villalba, 2008). For example, motor deficits in patients who suffer from Parkinson’s disease
and age-related decline in locomotion in humans are linked with decreases in striatal DA
markers (Reeves et al., 2002; Brooks and Piccini, 2006; Smith and Villalba, 2008).
Nevertheless, a profound (80–95%) dopaminergic denervation in the striatum is required for
manifestation of motor deficits (Fornaguera et al., 1993; Srinivasan and Schmidt, 2004; Grant
et al., 2009), because of compensatory mechanisms and presynaptic adaptations which occur
secondary to a loss of DA terminals (Zigmond, 1997; Perez et al., 2008). This compensation
has been documented by microdialysis studies in 6-hydroxydopamine- and METH-treated rats,
which have revealed that only 20% of normal DA input to the striatum is enough to maintain
normal extracellular DA concentrations (Robinson et al., 1990). Therefore, these data suggest
that delayed locomotor deficits that coincide with the recovery of DA levels in our study are
not likely related to METH-induced damage to striatal DA axons because there were no
decreases in motor activity at the time of the most intense DA depletion (70 %) in the striatum
at 10 days post-drug. This idea is supported by findings of previous studies showing that partial
(59%–75%) decreases in DA levels in the striatum induced by 6-hydroxydopamine treatment
do not cause changes in locomotor activity in rats (Tadaiesky et al., 2008) and mice (De
Leonibus et al., 2007).

These observations suggest the potential involvement of non-DA striatal and/or cortical
systems, working in concert with aging process in the delayed decrease in novelty-induced
locomotor activity found in METH-treated in mice. These systems might include intrinsic
striatal neurons as well as corticostriatal projections since, in addition to damage to DA axons
(Ricaurte et al., 1980), METH also causes death of striatal and cortical neurons as reported
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above and elsewhere (Deng et al., 2001; Jayanthi et al., 2005; Zhu et al., 2006) for review, see
(Cadet et al., 2007; Krasnova and Cadet, 2009). This line of reasoning is also supported by
numerous studies showing that normal aging is associated with decline in locomotor functions
in rodents (Fetsko et al., 2005), non-human primates (Ingram et al., 2001) and humans (Volkow
et al., 1998). Research into mechanisms that underlie such behavioral deficits has shown no
overt neuronal loss in the cortex and striatum during normal aging, however, accumulation of
DNA damage, shrinkage in soma size, loss of dendrites and dendritic spines and alterations in
neurotransmitter receptors have been shown in individual neurons (Dickstein et al., 2007;
Brasnjevic et al., 2008). These changes include a progressive decrease in the density and
activity of striatal D2 DA receptors (Volkow et al., 1996; Ishibashi et al., 2009), which correlate
with decline in motor functions during aging (Roth and Joseph, 1994). Because postsynaptic
D2 DA receptors are localized on striatal medium spiny neurons (Surmeier et al., 1996) and
because METH also causes death of medium spiny striatal neurons (Jayanthi et al., 2005; Zhu
et al., 2006) it is logical to suggest that delayed motor deficits in METH-treated mice might
be related to a reduction in D2 DA receptors caused by a combination of METH treatment and
aging in mice. This idea is supported by findings of previous studies demonstrating that D2
DA receptor knockout mice show reduced locomotor activity, which is not associated with
changes in DA or 5-HT levels in the striatum (Kelly et al., 1998). This proposition is further
strengthened by reports that young mice selectively deficient in postsynaptic form of D2 DA
receptor demonstrate decrease in locomotor activity similar to aged wild-type mice (Fetsko et
al., 2005). Finally, this idea is also supported by a study showing that progressive loss of striatal
medium spiny neurons in DAT knockout mice is associated with motor dysfunctions, such as
decrease in step length and gait width, in these animals (Cyr et al., 2003).

In conclusion, although precise mechanisms were not identified, our observations suggest that
METH treatment causes delayed reduction of the locomotor activity in the novel environment
in a manner independent of the drug-related decreases in DA levels in the striatum and cortex.
Because these declines in novelty-induced locomotor activity become evident only months
after METH treatment, it is likely that degeneration of non-DA striatal and cortical cells
accompanied by aging might account, in part, for such time-dependent behavioral deficits.
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Figure 1.
A schematic diagram of the open field test. The open field arena was divided into four quadrants
(Q1–Q4) with medical tape. The center zone is indicated by dashed line and the periphery
indicated by the solid line.
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Figure 2.
Novelty-induced locomotor activity in METH- and saline-treated mice. METH administration
had no effect on the number of crossed quadrants in the open field test at 10 days (A) and 3
months (B), but caused a significant decrease in the locomotion 5 months post-drug (C). N=
5–9 mice per group. * p < 0.05 versus control.
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Figure 3.
Effects of METH administration on the levels of DA and metabolites in the mouse striatum
(A), and cortex (B). The METH injections caused decreases in the levels of DA, DOPAC and
HVA 10 days after treatment. These values recovered significantly at 3 and 5 months post-
drug. Data were calculated as percent of control values and presented as means ± SEM (N=5–
9). * p < 0.05, ** p < 0.01, *** p < 0.001 in comparison with the saline group. # p < 0.05, ##
p < 0.01 in comparison to METH-treated group euthanized at 10 day time-point.
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Figure 4.
METH injections caused cell death in the mouse striatum and cortex. Only few apoptotic cells
were observed in the striatum (A) and cortex (D) of saline-treated mice. However, METH
caused marked increases in the amount of TUNEL-positive cells measured 3 days after drug
injections (B, E). The quantitative and statistical data are shown in panels C and F. Values
show means ± SEM (N=5–8). *** p < 0.001 in comparison with saline group.
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