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Abstract

Ensemble Modeling (EM) is a recently developed method for metabolic modeling, particularly for utilizing the effect of
enzyme tuning data on the production of a specific compound to refine the model. This approach is used here to
investigate the production of aromatic products in Escherichia coli. Instead of using dynamic metabolite data to fit a model,
the EM approach uses phenotypic data (effects of enzyme overexpression or knockouts on the steady state production rate)
to screen possible models. These data are routinely generated during strain design. An ensemble of models is constructed
that all reach the same steady state and are based on the same mechanistic framework at the elementary reaction level. The
behavior of the models spans the kinetics allowable by thermodynamics. Then by using existing data from the literature for
the overexpression of genes coding for transketolase (Tkt), transaldolase (Tal), and phosphoenolpyruvate synthase (Pps) to
screen the ensemble, we arrive at a set of models that properly describes the known enzyme overexpression phenotypes.
This subset of models becomes more predictive as additional data are used to refine the models. The final ensemble of
models demonstrates the characteristic of the cell that Tkt is the first rate controlling step, and correctly predicts that only
after Tkt is overexpressed does an increase in Pps increase the production rate of aromatics. This work demonstrates that
EM is able to capture the result of enzyme overexpression on aromatic producing bacteria by successfully utilizing routinely
generated enzyme tuning data to guide model learning.
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Introduction

The manipulation of the enzymatic reactions which make up

metabolic networks is at the heart of metabolic engineering.

However, due to the complex and highly-interconnected nature of

these networks, it is sometimes not a trivial process to understand

what the effect of an enzymatic perturbation will be, or vice versa,

what enzymatic perturbations are necessary to yield a desired

effect. Flux distribution is often controlled by multiple enzymes in

the network [1–10], indirectly linked to the pathways of interest.

Thus, it is desirable to develop mathematical models to describe,

understand, and predict network behavior. Through the develop-

ment of such models, one gains the ability to generate a set of

testable hypotheses for system behavior.

In typical kinetic modeling, kinetic parameters are determined

in order to best fit the time-dependent metabolite concentration

data obtained from experiment, using a wide variety of kinetic rate

expressions. However, these types of data are rare and are not

commonly generated in a typical strain improvement process. On

the other hand, enzyme overexpressions or knockouts are

commonly used in strain development, and the effects of enzyme

expression tuning on product formation or substrate consumption

are the typical readouts. To our knowledge, such data are difficult

to incorporate into modeling, particularly when the results are

semi-quantitative, since the fold-changes of enzyme overexpression

are rarely measured.

Recently, the Ensemble Modeling (EM) approach was developed

for the modeling of metabolic networks [11–13]. The detailed EM

framework has been previously published [11], but few biological

examples were used as validation. EM has been used to study a real

biological example for the production of lysine [13], and EM has

been compared to other modeling methodologies in more detail

[12]. In this approach, rather than focusing on the development of a

kinetic model that fits the dynamic metabolite concentration data,

we seek to utilize data that captures the effect of enzyme tuning on

the steady state production flux to guide model development. This

type of data is not typically utilized in modeling endeavors, and does

not result in a change in the stoichiometry of the network. However,

the effect that an enzyme’s overexpression has on the system’s

steady state flux can unveil some knowledge regarding how control

over the flux is distributed throughout the metabolic network, and

can thus be used to aid in model development. EM is related to the

insightful application of Metabolic Control Analysis (MCA) to

metabolic systems with uncertain kinetic parameters in that a

random sampling of kinetics was used for analysis [14,15].

However, EM does not require the MCA relationships which are

derived based on a linearized system. Other uses of sampling in

metabolic analyses was reviewed previously [16].

In EM, initially, an ensemble of models that all reach the

reference steady state in terms of flux distribution is constructed.

These models span the space of kinetics allowable by thermody-

namic constraints, and are based on elementary reactions, which

are the most fundamental and general kinetic descriptions for

enzymatic reactions [6,17]. EM describes the kinetics using a set of

elementary reactions, as shown in Figure 1, which can be
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transformed into a set of log-linear equations. This transformation

requires mass-action kinetics for the reactions, which is not valid if

enzyme concentrations are not explicitly considered. However,

through the use of elementary reactions at the enzyme level, the

log-linear transformation can be completed, while still preserving

the intrinsic non-linear behavior in enzyme kinetics, thus

preserving the true biological mechanism and benefiting from

the mathematical tractability. This framework does not rely on a

local linearization of the system, and one is free to perform and

determine the effect of large perturbations on the network. In lieu

of dynamic metabolite data, which can be difficult to obtain, the

EM approach uses phenotypic data to screen possible models.

Phenotypic data can include the effects of enzyme overexpressions

or knockouts on the production rate of any products or

byproducts. Such data are routinely generated in strain design

efforts. Through this approach, one does not attempt to acquire

detailed kinetic parameters that fit the time-dependent metabolite

data, but rather capture phenotypes that are dependent on

changes in the enzyme levels in the network. Also important is the

ability of EM to be driven by the goal of, and ability to, learn from

experimental results regarding the phenotypes obtained by

enzyme perturbations. Rather than assessing the control properties

of the system, or fitting dynamic metabolite concentrations, the

focus of EM is to rely on existing experimental data to drive strain

design. Through this knowledge feedback loop, we can further

constrain our subset of models and thus refine our predictions of

system behavior. The algorithm for EM is illustrated in Figure 2.

In this work, we implement the EM approach to the production

of aromatic amino acids in Escherichia coli. Aromatic compounds

are of substantial industrial importance, with many uses and high

rates of production, including the aromatic amino acids and other

derived compounds such as indigo, quinic acid and catechol

[18,19]. L-Tryptophan is primarily used as a feed and food

additive, and has other pharmaceutical applications [20]. The

estimated production rate of L-Tryptophan is 500 ton/year [21].

L-Phenylalanine is primarily used for the production of the

artificial sweetener aspartame [20,22], and as a nutraceutical, a

flavor enhancer, and an intermediate for pharmaceutical produc-

tion [20], with an estimated production of 8,000 ton/year [21]. L-

Tyrosine is used in the production of the anti-Parkinson’s drug L-

DOPA, and as a dietary supplement [20], and is produced at a

smaller scale of about 120 ton/year [21].

In E. coli and many other organisms, the production of aromatic

compounds begins with the condensation reaction between

phosphoenolpyruvate (PEP) and erythrose-4-phosphate (E4P) to

form 3-deoxy-D-arabinoheptulosonate-7-phosphate (DAHP). This

reaction, catalyzed by DAHP synthase (AroG), is the committed

step and the most tightly regulated reaction in the common

aromatic amino acid pathway [20]. DAHP has often been used as

an index for the capability of aromatics production [19,22–27].

We choose the production of aromatic amino acids in Escherichia

coli as a system to demonstrate the applicability of EM because this

system is an example of both kinetic and stoichiometric limitations

that takes place in metabolic systems. Stoichiometric analysis

shows that the theoretical yield of DAHP production from glucose

in the wildtype E. coli is 43% (mol/mol) [19,22]. This relatively low

theoretical yield is due to the fact that E. coli cannot recycle

pyruvate back to PEP during glycolytic growth. Thus, when PEP is

converted to pyruvate during glucose transport via the phospho-

transferase system (PTS), the pyruvate generated cannot be used in

the aromatic synthesis, causing a decrease in yield. In order to

increase the yield, either pyruvate has to be recycled back to PEP

via PEP synthase (Pps) [22], or use a PEP-independent glucose

transport system [19,25]. Once pyruvate is recycled or a PEP-

independent transport system is used, the theoretical yield

increased to 86% (mol/mol). However, when Pps is overepressed

in E. coli, there is no change in DAHP yield. On the other hand,

overexpression of Tkt effectively increases the yield to close to

43%. Overexpression of both Pps and Tkt then increases the yield

to 86%, approaching the theoretical limit [19,22]. This example

indicates that Tkt is the first limiting enzyme. Once this bottleneck

is removed, then Pps can demonstrate its effect. This type of

kinetic behavior cannot be captured using either stoichiometric

models or a direct flux comparison between flux states.

Here we use EM to study the production of DAHP from glucose

in E.coli, utilizing existing data from the literature to screen the

ensemble of models. By using data that has been reported for the

overexpression of transketolase (Tkt), transaldolase (Tal) and

Figure 1. The elementary reaction mechanisms. Mechanisms used for the variety of different metabolic reactions. Reactions modeled as 1
substrate to 1 product: HPr, EIIA, Pgi, Tpi, Gpm, Eno, Pgl, Rpe, Rpi, Pta, Ppc, Fum, Sdh, recycle reactions of ATP, NADH and NADPH. 2 substrate to 1
product reactions: EIIBC, AroGfbr. 1 substrate to 2 products: EI, Fba, Pfl. 2 substrates to 2 products: Pfk, Gap, Pgk, Zwf, Gnd, Tkt, Tal, Pyk, Pps, Ack, Mdh.
doi:10.1371/journal.pone.0006903.g001

EM for Aromatic Production
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phosphoenolpyruvate synthase (Pps), we can screen the original

ensemble of models to a subset that accurately describes the kinetic

phenomena that is at work in this system. The final screened

ensemble of models demonstrates the property that the E4P

metabolite pool is initially limiting, and only after this limitation is

lifted, does the PEP pool become important. Thus, we can correctly

predict that only after Tkt is overexpressed does the overexpression

of Pps play a role in an increased rate of DAHP production. This

work thus demonstrates that EM is able to capture properties of

metabolic networks in a real biological system through the

utilization of enzyme tuning data to drive model development.

Results

The DAHP Metabolic Network
The metabolic network for the production of DAHP is depicted

in Figure 3. This network includes the PTS for glucose uptake,

glycolysis pathway, pentose phosphate pathway, Krebs cycle, the

formate and acetate production pathways, and the pathway for the

synthesis of DAHP. The PTS is modeled as a series of

phosphorylation steps [11]. First, enzyme I (EI) uses PEP as the

phosphoryl donor, thus converting PEP to pyruvate and

phosphorylating histidine protein (HPr). Next, HPr phosphorylates

enzyme IIA (EIIA), which in turn phoshorylates enzyme IIBC

(EIIBC). Finally, in the last step, EIIBC transfers the phosphate to

glucose, thus converting the glucose to glucose-6-phosphate (G6P).

Further, phosphofructokinase (Pfk) is feedback inhibited by

phosphoenolpyruvate (PEP). This network consists of 37 net

reactions and 34 metabolites. The full list of abbreviations used in

this network can be found in Table 1.

Obtaining Steady State Fluxes
For the production of DAHP, the external fluxes of the system

(glucose uptake and the secretion of DAHP, succinate, acetate and

formate) have been reported [19]. However, it can be seen that

even when the external fluxes are determined, there is an

additional degree of freedom at the metabolite glucose-6-

phosphate (G6P), where the flux coming into the system is split

between glycolysis (via Pgi) and the pentose phosphate pathway

(via Zwf). To account for this additional degree of freedom in

determining the steady state flux, we calculate the flux map for a

variety of glycolysis:pentose phosphate pathway split ratios (25:75,

50:50, 75:25 and 95:5) and carry out the EM approach using each

of these varying flux maps to examine the effect of the split ratio on

the modeling results. In addition, recycle reactions are included to

allow the cell to dispose of extra energy (ATP) or reducing power

(NADH, NADPH). Each of the steady state fluxes for the various

split ratios are reported in Table 2.

Construction of the Initial Ensemble
For each glycolysis:pentose pathway split ratio, an ensemble of

1500 models was constructed using Matlab (Mathworks, Natick,

MA) on an Intel (Santa Clara, CA) Pentium 4 processor running

Figure 2. Algorithm for Ensemble Modeling. The algorithm is illustrated on the left, while the steps are described in detail on the right.
doi:10.1371/journal.pone.0006903.g002
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Microsoft (Redmond, WA) Windows XP. The total computational

time to develop and perturb each ensemble to obtain the

overexpression phenotypes of interest was approximately

18 hours. In addition to the steady state fluxes, the other input

into the algorithm is the standard Gibbs free energies for each

reaction, which are listed in Table 3. The reactions are then

broken down into their elementary steps, as described in Methods.

The way that each reaction in the network is modeled is described

in Figure 1. The reversibilities for each elementary step are

sampled uniformly from zero to one, and the thermodynamic

compliance of the reaction is checked using Eq. (13). If the

reversibilities are determined to be outside the constraints imposed

by thermodynamics, they are resampled. The enzyme fractions for

each set of elementary reactions are uniformly sampled from zero

to one, and each of the fractions relating to enzyme i are rescaled

such that there sum is equal to one.

Perturbation and Screening of the Ensemble
In our system of interest for the production of DAHP, an

important metabolic kinetic phenomenon is at work. The

Figure 3. The metabolic network for the production of aromatic precursor 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP).
Metabolites are denoted by capital letters, while enzyme abbreviations are in italics. The metabolite PEP feedback inhibits the enzyme
phosphofructokinase (pfk). In the studied system, 2-dehydro-3-deoxyphosphoheptonate aldolase (aroG) had already been made feedback resistant,
denoted by superscript ‘‘fbr’’.
doi:10.1371/journal.pone.0006903.g003

EM for Aromatic Production
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synthesis of DAHP draws from the pools of two metabolites, PEP

and E4P, from different areas of the metabolic network. Thus,

how these pools are balanced, a kinetic property, is the key to

increased DAHP production. It has been demonstrated that the

E4P metabolite pool is the limiting metabolite in DAHP

synthesis, and that only after this limitation is lifted do

perturbations in enzyme levels that increase the PEP pool size

yield an increase in production. It has been reported that the

overexpression of Tkt [19,22–26] and Tal [27], which increase

the E4P pool, lead to an increase in the DAHP production rate

and yield from glucose. While the overexpression of both of these

enzymes increased the production rate, it was found that

overexpression of Tkt had a stronger effect than the overexpres-

sion of Tal [27]. Further, the overexpression of Tkt shows a

negligible impact on the glucose uptake rate [19,22,26]. The

overexpression of Pps alone, which would increase the PEP pool,

had no effect on DAHP production [22]. However, when both

Tkt and Pps were overexpressed simultaneously, the combined

effect of these overexpressions was far greater than the single

overexpression of either Tkt or Pps [22,26]. All of the phenotypes

are summarized in Table 4.

After constructing the ensemble of models for each of the split

ratios, each model was perturbed by overexpressing Tkt, Tal and

Pps two-fold, one at a time. After perturbation of the ensemble, the

models that did not match the literature phenotypes were screened

out of the ensemble. For the phenotypes where overexpression led

Table 1. Abbreviations for metabolites and enzymes.

Metabolite Name Metabolite Symbol Enzyme Name Enzyme Symbol

2-phosphoglycerate 2PG acetate transport acetate_out

3-phosphoglycerate 3PG acetate kinase ack

acetyl-CoA ACCOA 2-dehydro-3-deoxyphosphoheptonate aldolase aroG

acetate ACETATE DAHP transport dahp_out

acetyl phosphate ACP enzyme I EI

adenosine diphosphate ADP enzyme IIA EIIA

adenosine triphosphate ATP enzyme IIBC EIIBC

3-deoxy-D-arabino-heptulosonate-7-phosphate DAHP enolase eno

dihydroxy acetone phosphate DHAP fructose biphosphate aldolase fba

1,3-biphosphoglycerate DPG formate transport formate_out

erythrose-4-phosphate E4P fumarase fum

fructose-6-phosphate F6P glyceraldehyde 3-phosphate dehydrogenase gap

fructose-1,6-biphosphate FDP 6-phosphogluconate dehydrogenase gnd

formate FORMATE phosphoglycerate mutase gpm

fumarate FUM histidine protein HPr

glucose-6-phosphate G6P malate dehydrogenase mdh

glyceraldehyde-3-phosphate GAP phosphofructokinase pfk

b-D-glucose GLUCOSE pyruvate formate lyase pfl

malate MAL phosphogluco isomerase pgi

nicotinamide adenine dinucleotide NAD phosphoglycerate kinase pgk

nicotinamide adenine dinucleotide reduced NADH 6-phosphogluconolactonase pgl

nicotinamide adenine dinucleotide phosphate NADP phosphoenolpyruvate carboxylase ppc

nicotinamide adenine dinucleotide phosphate reduced NADPH phosphoenolpyruvate synthase pps

oxaloacetate OAA phosphate acetyltransferase pta

phosphate group P phosphotransferase system pts

phosphoenolpyruvate PEP pyruvate kinase pyk

6-phosphogluconolactone PGL ATP recycle recATP

6-phosphogluconate PGT NADH recycle recNADH

pyruvate PYR NADPH recycle recNADPH

ribose-5-phosphate R5P ribulose-5-phosphate 3-epimerase rpe

ribulose-5-phosphate Ru5P ribulose-5-phosphate isomerase rpi

sedoheptulose-7-phosphate S7P succinate dehydrogenase sdh

succinate SUCCINATE succinate transport succinate_out

xylulose-5-phosphate X5P transaldolase tal

transketolase tkt

triose phosphate isomerase tpi

glucose-6-phosphate dehydrogenase zwf

doi:10.1371/journal.pone.0006903.t001
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to an increase in DAHP production (Tkt and Tal), models that

exhibited any increase in the DAHP production rate were kept.

For the phenotype of Pps overexpression leading to no change in

the DAHP rate, only models that did not exceed an increase or

decrease of 10% of the maximum DAHP rate increase for that

ensemble were kept. For the glucose uptake rate being unchanged

with Tkt overexpression, only models that exhibited less than a

10% change in the glucose uptake rate were retained. To screen

for Tkt overexpression increasing the DAHP rate more than Tal

overexpression, only models where the DAHP rate when Tkt is

overexpressed was greater than the DAHP rate when Tal was

overexpressed were retained.

The results of the screening are illustrated in Figure 4. In

screening for the overexpression of Tkt leading to an increase in the

DAHP production rate, 122, 90, 575 and 534 models were retained

for the 25:75, 50:50, 75:25 and 95:5 split ratios, respectively. From

this reduced subset of models, screening for those in which Tal

overexpression also leads to an increase in the DAHP production,

led to the retention of 70, 42, 525, and 512 models for the 25:75,

50:50, 75:25 and 95:5 split ratios, respectively. It should be noted

that higher fractions of models are retained in each successive step.

This result suggests that the ensemble becomes more and more

predictive. Ideally, when the model is truly predictive, 100% of the

ensemble will be retained between screening steps and the

Table 2. Net flux (mmol/g DCW/hr) of reference state for
various glycolysis vs pentose pathway split ratios.

Glycolysis:Pentose Split 25:75 50:50 75:25 95:5

acetate_out 1.408 1.517 1.625 1.712

ack 1.408 1.517 1.625 1.712

aroG 0.260 0.260 0.260 0.260

dahp_out 0.260 0.260 0.260 0.260

EI 1.300 1.300 1.300 1.300

EIIA 1.300 1.300 1.300 1.300

EIIBC 1.300 1.300 1.300 1.300

eno 1.928 2.037 2.145 2.232

fba 0.888 0.997 1.105 1.192

formate_out 1.408 1.517 1.625 1.712

fum 0.260 0.260 0.260 0.260

gap 1.928 2.037 2.145 2.232

gnd 0.975 0.650 0.325 0.065

gpm 1.928 2.037 2.145 2.232

HPr 1.300 1.300 1.300 1.300

mdh 0.260 0.260 0.260 0.260

pfk 0.888 0.997 1.105 1.192

pfl 1.408 1.517 1.625 1.712

pgi 0.325 0.650 0.975 1.235

pgk 1.928 2.037 2.145 2.232

pgl 0.975 0.650 0.325 0.065

ppc 0.260 0.260 0.260 0.260

pps 0.006 0.011 0.017 0.022

pta 1.408 1.517 1.625 1.712

pyk 0.114 0.228 0.342 0.433

recATP 2.557 2.773 2.990 3.163

recNADH 1.668 1.777 1.885 1.972

recNADPH 1.950 1.300 0.650 0.130

rpe 0.563 0.347 0.130 20.043

rpi 0.412 0.303 0.195 0.108

sdh 0.260 0.260 0.260 0.260

succinate_out 0.260 0.260 0.260 0.260

tal 0.412 0.303 0.195 0.108

tkt (1) 0.412 0.303 0.195 0.108

tkt (2) 0.152 0.043 20.065 20.152

tpi 0.888 0.997 1.105 1.192

zwf 0.975 0.650 0.325 0.065

doi:10.1371/journal.pone.0006903.t002

Table 3. Overall reactions and free energies.

Reaction Overall Equation Inhibitor
Free Energy
(kcal/mol)

acetate_out ACETATE --.out – 23.5

ack ACP+ADP --. ACETATE+ATP – 24.7

aroG PEP+E4P --. DAHP – 217.9

dahp_out DAHP --. out – 23.5

EI PEP --. PYR+P – 26.45

EIIA P --. P – 20.1

EIIBC P+GLUCOSE --. G6P – 26.45

eno 2PG --. PEP – 20.2

fba FDP --. DHAP+GAP – 1.1

formate_out FORMATE --. out – 23.5

fum MAL --. FUM – 1.3

gap GAP+NAD --. DPG+NADH – 4.2

gnd PGT+NADP --. Ru5P+NADPH – 20.8

gpm 3PG --. 2PG – 22.2

HPr P --. P – 20.1

mdh OAA+NADH --. MAL+NAD – 24.8

pfk F6P+ATP --. FDP+ADP PEP 24.5

pfl PYR --. FORMATE+ACCOA – 22.5

pgi G6P --. F6P – 22.5

pgk DPG+ADP --. 3PG+ATP – 4.7

pgl PGL --. PGT – 213.3

ppc PEP --. OAA – 211.7

pps PYR+ATP --. PEP+ADP – 23.6

pta ACCOA --. ACP – 23.9

pyk PEP+ADP --. PYR+ATP – 28.4

recATP ATP --. ADP – 20.1

recNADH NADH --. NAD – 20.1

recNADPH NADPH --. NADP – 20.1

rpe Ru5P --. X5P – 20.1

rpi Ru5P --. R5P – 0.7

sdh FUM --. SUCCINATE – 20.7

succinate_out SUCCINATE --. out – 23.5

tal S7P+GAP --. F6P+E4P – 20.6

tkt (1) X5P+R5P --. S7P+GAP – 0.9

tkt (2) X5P+E4P --. F6P+GAP – 20.6

tpi DHAP --. GAP – 0.2

zwf G6P+NADP --. PGL+NADPH – 20.9

doi:10.1371/journal.pone.0006903.t003
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phenotypic screening will converge to the same ensemble of models.

Figs. 4C & 4D illustrate this phenomenon. On the other hand,

when no model is retained after screening, at least one of the

underlying assumptions is invalid. This phenomenon is illustrated in

Figs. 4A & 4B, where incorrect glycolysis:pentose pathway split

ratios gave no acceptable model.

While we are screening from the previously determined subset,

each of the perturbations was done in parallel, not sequentially.

Table 4. Summary of literature used for screening phenotypes.

Target Gene(s) Phenotype Reference

transketolase (tkt) tkt overexpression increases DAHP production rate Draths et al. (1992), Flores et al. (1996), Gosset et al. (1996), Baez et al. (2001)

transketolase (tkt) tkt overexpression has no change on glucose uptake Patnaik & Liao (1994), Patnaik et al. (1995), Gosset et al. (1996)

transaldolase (tal) tal overexpression increases DAHP production rate Lu & Liao (1997)

phosphoenolpyruvate
synthase (pps)

pps overexpression has no change on DAHP production
rate

Patnaik & Liao (1994)

tkt & tal tkt overexpression gives a larger increase than tal
overexpression

Lu & Liao (1997)

tkt & pps tkt & pps simultaneous overexpression increases DAHP
production rate

Patnaik & Liao (1994), Gosset et al. (1996)

doi:10.1371/journal.pone.0006903.t004

Figure 4. Results of screening for each of the reported literature phenotypes. Screening of phenotypes from Table 4, using each of the four
glycolysis:pentose phosphate pathway split ratios. For the two fluxes with the highest proportion of the flux through the pentose-phosphate
pathway (panels A&B), zero models in the ensemble were able to match all of the experimental phenotypes. For the two flux distributions with the
highest flux through glycolysis (panels C&D), approximately one-tenth of the original ensemble matched each of the screening phenotypes. The size
of each column represents the number of models remaining after the screening step indicated on the x-axis.
doi:10.1371/journal.pone.0006903.g004

EM for Aromatic Production
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The screening for the Tkt and Tal phenotypes could be done

independently, and the models common to both screens could be

retained. Further, the order in which the models are screened does

not influence the final number of models that matches all

phenotypes. When the phenotypes are observed relative to the

same reference state (i.e. done in parallel), they can all be viewed

independently, and the models retained after screening can be

illustrated as the intersection between each phenotype, as

demonstrated in Figure 5.

From the reduced subset matching the Tkt and Tal phenotypes,

screening for Pps overexpression leading to no change in DAHP

production results in 8, 0, 318 and 278 models matching the

phenotype for each of the split ratios. Of these models, the number

that exhibited the property that the glucose uptake rate did not change

when Tkt was overexpressed reduced the size of the ensembles to

7, 0, 241 and 235 models, in order of increasing glycolytic flux.

The final literature observation used for screening is that of an

increase in DAHP production via Tkt overexpression being

greater than the increase observed from Tal overexpression. This

led to a final ensemble size of 171 and 195 models for the 75:25

and 95:5 split ratios, respectively (Figs. 4C & 4D). For the split

ratios with a higher percentage of the flux through the pentose-

phosphate pathway (Fig. 4A & 4B), zero of the models in the

original ensemble remained after all of the screening steps. In fact,

no models remained after just three screening steps when the flux

was split 50:50 between glycolysis and the pentose pathway. This

indicates that in the EM approach, just as in nature, the effect of

enzyme overexpression is dependent on the reference flux

distribution. Further, this demonstrates that in the true system,

the reference steady state flux may indeed have the majority of the

metabolic flux directed through glycolysis, which follows the

experimental observation that the overexpression of Tkt is

limiting, as the Tkt net flux only becomes negative (thus feeding,

not draining, the E4P pool) when the split ratio is 60:40 or greater.

Prediction of Tkt/Pps Dual Overexpression
To determine whether the screened ensemble of models

becomes increasingly predictive, we test the behavior of the

remaining models when both Tkt and Pps are simultaneously

overexpressed two-fold. Indeed, even though these subsets of the

original ensemble demonstrate that the sole overexpression of Pps

has no effect on the DAHP steady state production rate, when Pps

is overexpressed simultaneously with Tkt, 100% of the models for

both the 75:25 and 95:5 split ratios yield an increase in the DAHP

rate that is greater than the sum of the single overexpressions of

Tkt and Pps, as shown in Figure 6A.

Since PEP is used in glucose transport via the PTS to form

pyruvate, most carbon is not used in aromatics biosynthesis, resulting

in a low yield. This problem was identified previously [22] and two

solutions were developed. The first is recycling pyruvate back to PEP

via overexpression of Pps, and the second is the use of non-PTS genes

for glucose transport [25]. Interestingly, relieving this stoichiometric

limitation did not increase the yield of DAHP until transketolase (the

product of the tktA gene) was overexpressed [22,26]. Apparently, a

kinetic limitation caused by Tkt is the first bottleneck for DAHP

production. Such behavior cannot be predicted using either

stoichiometric models or a direct flux comparison between flux

states. However, the EM approach was able to reproduce this

phenomenon, which is illustrated in Figure 6B.

Properties of Screened Models
For the final ensembles of 171 and 195 models for the split

ratios of 75:25 and 95:5, respectively, the sampled parameters of

these screened subsets were examined to determine what

Figure 5. Illustration of screening the ensemble of models using different literature phenotypes. Because the ensemble is being
screened using the effect of different enzyme overexpressions on the same reference state, the final screened ensemble is independent of the path
chosen, and can be represented by the intersection of the subsets screened by each phenotype. For demonstration, the results of screening for the
reference flux with a glycolysis:pentose phosphate pathway split ratio of 75:25 are shown. The values indicate how many of the original ensemble of
n = 1500 models match the given phenotype.
doi:10.1371/journal.pone.0006903.g005
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characteristics they exhibited that deviated from the original

ensemble of models. The enzyme fractions of each free enzyme

(enzyme not in a complex), and the net reversibilities of each

overall reaction were examined to determine how their distribu-

tions for the screened models deviated from the original ensemble.

For each parameter of interest, a two-sample Kolmogorov-

Smirnov test [28] was conducted to determine if the distribution

of that parameter within the screened models exhibited a

significantly shifted distribution (with 95% confidence) when

compared to the original ensemble of 1500 models. Examples of

these distributions can be seen in Figure 7.

For both flux states examined, it was found that three of the

enzymes showed a significant deviation in their distributions

relative to the original ensemble, and none of the reaction

reversibilities exhibited a deviation. For both flux states, the free

enzyme fractions of enzyme I (EI), pyruvate kinase (Pyk), and

phosphoenolpyruvate carboxylase (Ppc) had a significantly differ-

ent parameter distribution compared to the original ensemble.

Figure 7A demonstrates the change in the distribution of the EI

free enzyme fraction for the 95:5 split ratio. Each of these three

identified enzymes share the metabolite phosphoenolpyruvate

(PEP) as a reactant, which is also involved in the condensation

reaction to form our desired product DAHP. Biologically, in the

case of EI, the relatively low free enzyme fraction in the selected

models indicates that glucose uptake is essentially saturated, and

that a change in the concentrations of substrates of this reaction

Figure 6. Dual overexpression kinetic phenomena for DAHP production. A) Illustration of the prediction for the dual overexpression of Tkt
and Pps for the split ratio of 95:5. 100% of the selected models exhibit the phenotype where when Tkt and Pps are simultaneously overexpressed, the
combined effect is greater than the sum of the two individual overexpressions. B) The kinetic phenomenon in DAHP production illustrated. Pps
overexpression does not increase DAHP production until Tkt is overexpressed. After removing this limitation, Pps overexpression has a dramatic
effect on DAHP production, pushing yields near the theoretical limit of 86% mol DAHP/mol glucose.
doi:10.1371/journal.pone.0006903.g006
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(such as an increase in the PEP concentration through overex-

pression of Pps) would have little effect on changing the system.

After determining that these three parameters were significantly

distributed in the screened models, a hierarchical clustering

analysis was performed examining these three free enzyme

fractions in the original ensemble of models for the 95:5

glycolysis:pentose pathway split, as shown in Figure 7B. The

models which were eventually to be selected from this ensemble

existed in primarily two distinct clusters. To determine the

differences between the models within these two clusters, the

distribution of the parameter values in each individual cluster was

calculated, and compared to the original ensemble (Fig. 7C).

While both clusters show a similar distribution for the EI free

enzyme fraction, the two clusters demonstrate significant differ-

ences when the Pyk and Ppc free enzyme fractions are compared.

The Pyk free enzyme fraction of cluster 1 deviates from both the

original ensemble and cluster 2, as cluster 1 has a higher

proportion of the Pyk enzyme in its free form. The Ppc free

enzyme fraction for cluster 2 is higher than both the original

ensemble and cluster 1. Each of these enzymes reacts to form a

complex with PEP, and thus by having a higher fraction in the free

enzyme form, would leave more PEP free, keeping this metabolite

from becoming limiting, and allowing these models to match the

experimental phenotype indicating that E4P, and not PEP, is the

first limiting metabolite in DAHP synthesis. Thus, there exist two

alternative routes to match the experimentally observed pheno-

types. Relatively high free enzyme fractions of Pyk and Ppc seem

to act as alternative methods to achieve the observed phenotypes.

If the free enzyme fractions of Pyk and Ppc are too low, much of

the PEP concentration will be trapped in complex with the

enzyme, and the PEP pool will become limiting. Further, if these

two reactions have low free enzyme fractions, they are essentially

saturated, and thus when Pps is overexpressed, there would be an

increase in the PEP pool that would necessarily lead to an increase

in DAHP production, as there would be no other alternative

pathways to consume the increase in PEP.

Spanning the Kinetic Space
To determine if the construction of 1500 models in the original

ensemble was enough to adequately cover the range of possible

kinetics, and thus yield screening results which were reproducible,

the ensemble construction and screening process for the 95:5 split

Figure 7. Analysis of parameters in screened models relative to original ensemble. Parameter analysis for the glycolysis:pentose
phosphate pathway split ratio of 95:5. A) The distribution of the enzyme fraction representing the free enzyme EI for the original ensemble (solid line)
compared to the final screened ensemble of n = 195 models (dashed line). B) Hierarchical clustering by the sampled enzyme fractions indicates that
the screened models (denoted by black bars) exist primarily in two distinct clusters. C) The distribution of enzyme fractions representing the free
enzymes EI, Pyk & Ppc for each of the two clusters (dashed lines) relative to the original ensemble (solid line). Both clusters have distributions in EI
that deviate significantly from the original ensemble. Only cluster 1 has a distribution for Pyk significantly different from the original ensemble, and
only cluster 2 has a Ppc distribution that deviates from the original ensemble.
doi:10.1371/journal.pone.0006903.g007
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ratio was repeated three times to see the variability in the screening

results. From an initial ensemble of 1500 models for each of the

three ensembles, both the final number of models retained after all

screening steps, and the models retained after each individual step

varied less than 10% from repeat to repeat, shown in Figure 8. The

final ensemble of models for the 95:5 split ratio for each of the three

repeats was 195, 207, and 212 models, indicating that the

construction of 1500 models adequately covers the kinetic space.

Discussion

In this work, we used the EM approach [11] to model the

production of aromatic precursor DAHP production in E. coli. The

difficulty in developing kinetic models for metabolic systems is well

recognized, and is due to a lack of kinetic parameters. In this work,

rather than attempting to construct a traditional kinetic model that

matches dynamic metabolite concentration data and facing the issue

of kinetic parameter identification, we focused on utilizing enzyme

overexpression phenotype data, which are plentiful and relatively

straightforward to acquire, to screen models. The EM approach is

used to construct an ensemble of models for four different flux

distributions, which are then screened using enzyme overexpression

data from the literature. We show that in five screening steps, the

ensembles can converge to a set of models which becomes predictive.

Since the entire flux map is not known, but only the external

fluxes have been measured, a variety of split ratios were examined

between glycolysis and the pentose phosphate pathway. The E4P

metabolite pool is fed by transketolase (Tkt) ‘‘running backwards’’

from glycolysis, thus supporting the literature phenotypes only

when the fraction of the carbon flux through glycolysis is above

60%. Interestingly, the EM approach was able to identify this

property, as neither of the flux maps with less than a 60:40 split

ratio were able to retain any models that matched each of the

screening phenotypes. However, many models were retained for

each of the two flux distributions with greater than a 60:40 split

ratio. This indicates that a general idea of the flux distribution

could be reverse engineered through the use of enzyme

overexpression phenotypes and EM.

As one looks at the advantages and challenges of such an

approach, it can be seen that for complicated networks with many

pathways that lead to the external fluxes, there may be many

degrees of freedom in determining the steady state flux, and thus the

determination of the reference flux (the algorithm’s primary input)

may limit the possible systems to be studied. The iterative screening

approach demonstrated here allows for the rapid collaboration and

iteration between experiment and computation. As demonstrated

for DAHP production, any enzyme overexpression phenotype can

be used as a step in screening the ensemble, making all experimental

data potentially useful, whether the data shows an increase in the

production rate of interest, a decrease, or no change at all. While the

predictive capabilities of the EM approach are primarily qualitative,

this provides a tool to drive experimentation and to learn from the

results. If a prediction is proven to be incorrect, this information can

also be incorporated into the screening, allowing for the formation

of an alternate hypothesis.

In using reported enzyme overexpression data for Tkt, Tal and

Pps, it is demonstrated that the screened set of models exhibits the

kinetic phenomena that is at work in the network, without the

need for kinetic parameters. The final screened ensemble of

models shows that Tkt is the first limiting step, and correctly

predicts that only after this limitation is lifted does an increase in

Pps increase the production rate of DAHP. This work thus

demonstrates that EM is able to capture kinetic properties of

metabolic networks by utilizing enzyme tuning data to refine and

screen the ensemble.

Methods

Obtaining Steady State Fluxes
The first step in EM is to obtain the steady-state fluxes in the

reference state of interest. The reference state is typically the base-

line control strain before further metabolic engineering. In order

to model a given steady state, the flux distribution of that state

must first be determined. This flux distribution, or flux map, can

be deduced via a variety of methods. Typically, the external fluxes

of the system may be known, or easily measureable using GC or

HPLC. In this case, the internal fluxes of the system can be

estimated by a standard flux balance around each metabolite at

the steady state:

dxi

dt
~
X

vgeneration{
X

vconsumption~0 ð1Þ

This can be represented for the entire network in matrix form:

S:v~0 ð2Þ

where the matrix S is the m x n stoichiometric matrix consisting of

m metabolites and n net reactions, and v is the n x 1 vector of net

reaction rates. For more detailed analysis, the full flux map may be

determined through the use of C13 isotopomer analysis [29–33],

which involves feeding the cells a precisely labeled mix of glucose.

However, such detailed analyses are not necessary in the first step.

Model Building Using Elementary Reactions
At the molecular level, the basic elementary reactions (either bi-

molecular or uni-molecular) that follow mass-action kinetics are the

most fundamental kinetic events [6]. An elementary reaction is a

Figure 8. Repeatability of Ensemble Modeling. Three repeats of
1500 models in each ensemble for a 95:5 split ratio show very similar
models retained after each screening step. Less than 10% variance in
the number of models retained is observed at each screening step, with
each ensemble selecting out 195, 212, and 207 models, respectively,
after all screening.
doi:10.1371/journal.pone.0006903.g008
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chemical reaction in which one or more of the chemical species

react directly to form products in a single reaction step and with a

single transition state. These reactions follow mass action kinetics.

Free enzymes and enzyme-substrate complexes are treated as

separate chemical species as either reactants or products. The

elementary reactions are the basis for deriving lumped enzyme

kinetic rate laws such as Michaelis-Menten kinetics and more

complicated allosteric regulation kinetics. Because of total enzyme

conservation, the elementary reactions automatically give rise to a

saturation behavior characteristic in biological reactions. Regulato-

ry mechanisms are also broken down in terms of elementary

reactions. In the EM approach, each enzymatic reaction is broken

down into a series of elementary reactions, thus preserving the

fundamental behavior we know to exist in metabolic networks. The

mechanism that is used for the various metabolic reactions in this

work is depicted in Figure 1, for various combinations of reactants

and products. The PTS is modeled as a series of phosphorylation

steps [11]. For modeling purposes, each of the phosphorylated

enzymes is considered to be a substrate or reaction product, while

each of the free enzymes is considered to be the enzyme that

participates in the reaction. Thus, for the entire PTS, each enzyme

drives a step of the reaction and is then regenerated in the

subsequent phosphorylation step. Also demonstrated in Figure 1 is

how regulatory steps can be easily included into the framework.

The general form for the elementary reactions in an enzymatic

reaction of one substrate to one product can be depicted as follows:

XizEi /{{?
vi,1

vi,2

XiEi /{{?
vi,3

vi,4

Xiz1Ei /{{?
vi,5

vi,6

Xiz1zEi

step 1 step 2 step 3

where the rate of each individual elementary reaction, vi,k, follows

the mass action principle:

vi,1~ki,1 Xi½ � Ei½ � ð3Þ

where ki,1 is the rate constant of the forward reaction of step 1 of

the overall reaction catalyzed by the enzyme i, Xi½ � is the

concentration of metabolite i, and Ei½ � is the concentration of free

enzyme i. To avoid quantifying the absolute concentrations of

each metabolite and enzyme, we scale their concentrations by the

corresponding concentration at the steady state, and Eq. (3)

becomes:

vi,1~ ~KKref
i,1
: ~XXi
:~eei,1 ð4Þ

where ~KKref
i,1 is the rescaled kinetic parameter defined as:

~KKref
i,1 ~ki,1Eref

i,total
X

ss,ref
i ð5Þ

withXi
ss,ref equal to the metabolite’s concentration at steady state,

and E
ref
i,total the total concentration of the corresponding enzyme at

the reference state. Note that the rate law in Eq. (4) has the log-

linear form:

ln vi,1~ln ~KKref
i,1 zln ~XXizln ~eei,1, ð6Þ

Each of the transport reactions out of the system are modeled

with mass-action kinetics:

v~K :x ð7Þ

For the reference state, ln ~XXi~0, and ~KKref
i,1 can be calculated

from Eq. (6) after the uni-directional flux vi,1 and enzyme fraction

~eei,1 are determined. The uni-directional flux vi,1 is determined

from the sampled reversibility (see next section), and the enzyme

fraction ~eei,1 is sampled directly (see next section).

The Ensemble Modeling (EM) Sampling Algorithm
The EM methodology is illustrated in Figure 2. The inputs into

the algorithm are the steady state flux distribution of the reference

state and the Gibbs free energies of the reactions, which allow for

the assignment of thermodynamic constraints on the system. The

reference steady state fluxes are obtained as described above, while

the range of Gibbs free energies are calculated from the standard

Gibbs free energies [34] allowing for a one-hundred fold change in

metabolite concentrations.

In the first sampling step, the reversibilities for each elementary

step Ri,j are sampled. These reversibilities can be related to the

individual elementary reaction rates via the following:

v
ref
i,2j{1{v

ref
i,2j~V

ref
i,net ð8Þ

Ri,j~
min vi,2j{1,vi,2j

� �
max vi,2j{1,vi,2j

� � ð9Þ

where V
ref
i,net is the net flux of the reaction i at the reference steady

state, and vi,2j{1 and vi,2j are the forward and backward rates of

step j in reaction i. The reversibilities range from 0 (for an

irreversible step) to 1 (for a step at equilibrium). Thus, the forward

and backward rates can be calculated from the reversibility and

the steady state flux determined in the first step:

v
ref
i,2j{1~

V
ref
i,net

1{R
sign V

ref
i,netð Þ

i,j

ð10Þ

v
ref
i,2j~

V
ref
i,netR

sign V
ref

i,netð Þ
i,j

1{R
sign V

ref

i,netð Þ
i,j

ð11Þ

where sign(Vi,net) represents the direction of the net flux (positive if

forward and negative if backwards). The reversibilities are

constrained by the Gibbs free energy of the overall reaction, DGi:

Xni

j~1

ln Ri,j~sign Vi,net

� �
:DGi

RT
ð12Þ

where ni represents the number of elementary steps for enzyme i.

This requires that the net flux of reaction i be positive if DGiv0, and

negative if DGiw0. This constraint is used to check if the reference

steady-state is thermodynamically compliant. Since the exact values

for the Gibb free energies are not known, but their ranges can be

determined [34–36], Eq. (12) at the reference state becomes:

DGi

RT

� �
lower bound

ƒsign V
ref
i,net

� �
:
X

j

ln R
ref
i,j ƒ

DGi

RT

� �
upper bound

ð13Þ
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This relationship between the reversibilities of the elementary

steps, the net reaction, and the free energy bounds has been

previously derived [11].

Next, the enzyme fractions are sampled. The enzyme fractions

are the fractions of the total enzyme amount that exist as the free

enzyme and as the various enzyme complexes at steady state, such

that the sum of all the fractions are equal to one, conserving the

total amount of each enzyme:

Xni

j~1

~eeref
i,j ~1 ð14Þ

At the reference steady state ~XXi~1 and Eq. (6) becomes:

ln v
ref
i,1 ~ln ~KKref

i,1 zln ~eeref
i,1 ð15Þ

Once this sampling of enzyme fractions is complete, the kinetic

parameters for that model can be assigned. The kinetic parameters
~KKref

i,k can be easily computed from Eq. (15), as v
ref
i,1 is determined

from the sampling of reversibilities (Eqs. (10) and (11)), and ~eeref
i,j is

directly sampled.

Establish the Ensemble of Models
Next the ordinary differential equations (ODEs) governing the

system are solved at the reference state. The network can be

described by a system of ODEs and solved numerically, where the

metabolite concentrations and enzyme fractions, not the total

enzyme concentrations, are the ODE variables:

d ~XX i

dt
~

1

X
ss,ref
i

X
vgeneration{

X
vconsumption

 !
ð16Þ

d~eei,j

dt
~

1

Eref
i,total

X
vgeneration{

X
vconsumption

 !
ð17Þ

With enzyme fraction initial conditions set such that:

Xni

j~1

~ee0
i,j~1 ð18Þ

where the superscript ‘‘0’’ represents the initial condition of the

enzyme fractions.

Different combinations of reversibilities represent different

kinetic states. Each model is a function of the reversibilities and

enzyme fractions:

Modelk~f R
ref
k ,e

ref
k

� �
ð19Þ

Every model reaches the same steady state, and the reversibil-

ities R
ref
k (which represents the vector composed of the

reversibilities for each elementary step) and enzyme fractions

e
ref
k (which represents the vector composed of the enzyme fractions

for each free enzyme and enzyme complex) are reassigned for each

subsequent model. This allows for the formation of an ensemble of

models that span the range of kinetics allowable by thermody-

namics.

Screening of the Models by Perturbation
The entire ensemble can be perturbed to determine each

individual model’s response to the enzyme expression perturbation

with which we would like to screen the ensemble. In order to

perturb the concentration of an enzyme for an individual model in

the ensemble, Eq. (4) is modified:

vi,1~ ~KKref
i,1
:Ei,r

: ~XXi
:~eei,1 ð20Þ

The additional variable Ei,r represents the fold change in total

enzyme concentration relative to the reference state. Each enzyme

of interest is overexpressed n-fold (Ei,r = n) to determine its effect on

production. Here we use n = 2. If the metabolic network contains

any moiety conservation relationships [37], the initial conditions

are set such that the sum of these metabolite remain unchanged.

For example, the sum of cofactors and their intermediates in the

new perturbed condition must be equal to those in reference

steady state.
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