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Abstract

As the use of effective connectivity as become more popular, it is important to understand how the
results from different analyses compare with each other, as the results from studies employing
differing methods for determining connectivity may not reach the same conclusion. Simulated fMRI
time series data were used to compare the results from four of the more commonly used computational
methods, structural equation modeling, autoregressive analysis, Granger causality, and dynamic
causal modeling to determine which may be better suited to the task. The results show that all three
methods are able to detect changes in system dynamics. Structural equation modeling appeared to
be the least sensitive to changes in TR or source of variance, and Granger causality the most sensitive.
The results also suggest that improved reporting on data analyses is necessary, and employing an
effect statistic to depict results may remove some of the ambiguity in comparing results across studies
using differing methods to determine connectivity.
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Introduction

The use of effective connectivity has become more popular, with no single method being used
to the exclusion of others. This poses problems when attempting to compare results across
studies, as the multiple ways in which connectivity can be determined will not necessarily lead
to the same conclusion about whether two or more neural units are strongly interacting or not
(Horwitz 2003). Several different models including structural equation modeling (Mclntosh
and Gonzalez-Lima 1994; Buchel and Friston 1997), nonlinear system identification
techniques (Friston and Buchel 2000), autoregressive techniques (Harrison et al. 2003; Goebel
et al. 2003; Roebroeck et al. 2005), and dynamic causal modeling (Friston et al. 2003) have
been introduced as valid methods for estimating effective connectivity from fMRI time series
data. Additionally, several methods for correlating the data have been introduced including
across (Bullmore et al. 2000) or within (Hampson et al. 2002) conditions, across (Bokde et al.
2001) or within (Goncalves et al. 2001) subjects, or some combination of these. As these
computational methods and data modeling techniques can be combined in many ways, it is
important to understand how the results from these different pairings compare with each other

Correspondence to: M. Elizabeth Meyerand.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Witt and Meyerand

Page 2

and if any of the pairings may be better suited to calculating effective connectivity from fMRI
data than the others.

Structural equation modeling (SEM) has been applied to fMRI data from a wide variety of
neural systems (Buchel and Friston 1997; Grafton et al. 1994; Maguire 2001; Mclntosh and
Gonzalez-Lima 1994; Zhuang et al. 2005). However, several papers have outlined drawbacks
of applying SEM to fMRI data (Buchel and Friston 1997; Penny et al. 2004; Harrison et al.
2003; Yamashita 2005; Ramnani 2004), with two of the more commonly cited being its
requirement of an a priori anatomical model of regions and directed paths and its assumption
of instantaneous connections. Autoregressive analysis (AR) has been proposed as an alternative
method for calculating effective connectivity, as it does not share the same drawbacks as SEM
(Harrison et al. 2003). Namely, it does not require an a priori anatomical model, and it is able
to take in account the rich temporal information inherent in fMRI data. More recently, Granger
causality has been used as a summary measure of the results obtained from AR analyses,
growing in popularity in part because it allows the results to be mapped on to the brain much
like TMRI results (Goebel et al. 2003; Roebroeck et al. 2005). One potential drawback of
Granger causality may be that the temporal resolution of the standard fMRI experiment may
be too low for it to provide a complete picture of the dynamics of the neural system of interest.
While the use of Granger causality is increasing, neither it nor AR analysis have enjoyed the
same popularity as SEM, having been applied to only a handful of neural systems (Harrison
et al. 2003; Goebel et al. 2003; Roebroeck et al. 2005).

Dynamic causal modeling (DCM) can be distinguished from the three methods described above
in that it was designed specifically to accommodate fMRI time series data. DCM aims to treat
the brain as a deterministic nonlinear system that is subject to inputs and produces outputs.
Connectivity is described in terms of the coupling among unobserved brain states, or the
neuronal activity within different brain regions. Connectivity can be determined by perturbing
the system, such as through the presentation of a stimulus, and measuring the response. In
addition to its inclusion of the Balloon model, DCM can be distinguished from the above three
computational methods by accommaodating the nonlinear and dynamic aspects of neuronal
interactions, as well as allowing the estimation process to include experimentally designed
inputs (Friston et al. 2003).

Structural equation modeling (SEM) (Mcintosh and Gonzalez-Lima 1994), autoregressive
analysis (AR) (Harrison et al. 2003), Granger causality (Goebel et al. 2003; Roebroeck et al.
2005), and dynamic causal modeling (DCM) (Friston et al. 2003) have emerged as four of the
more popular methods from which to calculate effective connectivity from fMRI time series
data. The common feature among these four methods is their estimation of correlation and
covariance matrices, meaning the results will, in part, depend on the sources of variance used
(Caclin and Fonlupt 2006; Horwitz et al. 2005). For fMRI-based experiments, this underlying
variance is more often temporal in nature—a function of the deviation of a repeated
measurement with a subject across time. This temporal variance, additionally, can be task-
related or intrinsic in nature (Rogers et al. 2007).

For a standard block-design involving more than one experimental condition, within-subject
task-related variance takes into account the complete, undoctored time series, assuming that
the connectivity is constant across all experimental conditions. The effective connectivity
measured, then, is the average connectivity during all conditions. In contrast to task-related
variance that takes advantage of changes in the fMRI signal that are directly related to changes
in experimental stimuli across acquisitions, intrinsic variance is not the result of any specific
stimulus. Rather, fluctuations in the BOLD signal act as the neurophysiological index reflecting
common neural activity across different brain regions (Rogers et al. 2007). The ideal method
to measure connectivity from the intrinsic variance in the BOLD signal would be to have the
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task of interest performed in a steady-state manner—performed constantly and consistently
throughout the data acquisition window. The use of steady-state task performance attempts to
minimize the variance introduced by individual trial-to-trial performance of the task itself.
Practically, however, for a standard block design, intrinsic variance may be utilized by either
trimming the time series to keep only those volumes scanned during the condition of interest
(Honey et al. 2002; Bokde et al. 2001; Homae et al. 2003), to create what will be referred to
as a trimmed time series, or by using the entire time series after removing any task-related
components by some means such as independent component analysis (Arfanakis et al. 2000)
or linear regression (Rogers et al. 2007).

As stated above, Horwitz (2003) pointed out that there is still no consensus as to a single
computational method for estimating effective connectivity from fMRI data, posing problems
when comparing results across studies using differing computational methods and sources of
variance. To this end, the results from the above mentioned methods—structural equation
modeling, autoregressive analysis, Granger causality, and dynamic causal modeling—have
been compared using simulated fMRI time series data with known, modeled connectivity to
determine if any of these methods holds a distinct advantage over the others.

This section is not meant to be a comprehensive review of the theories underlying the various
computational methods being considered in this investigation. Rather, it is meant to provide a
brief overview of the equations involved. The authors refer the readers to the respective papers
for further discussion of the specific methods.

Structural equation modeling

Structural equation modeling works by extracting information about neural interactions
through the decomposition of interregional covariances of activity. The measure of covariance
between two neural elements represents the degree to which the activity of these two elements
is related to one another, or how they vary together (MclIntosh and Gonzalez-Lima 1994). The
relationship between brain regions can be described using a simple linear mathematical of the
variance of a region as influenced by the variance of another.

Y=« +B_\'~,x‘ X-Hﬂ (1)

In the above equation, Y and X are the regional time series, with the beta term being the path
weight. Alpha represents the y-intercept, which can easily be set to zero. Psi is the residual
term.

Autoregressive analysis

For linear autoregressive models, given a multivariate system, one can model the current value
of a regional time series as a weighted linear sum of the previous value of another regional
time series (Harrison et al. 2003).

p
Yo=) Xu iAl)+e,
i=1 (2)

Y and X represent the regional time series in the above equation. The path weights are contained
in the vector A and the residuals in the vector e. Finally, p represents the order of the model.
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Granger causality

Granger causality quantifies the usefulness of unique information in one time series in
predicting the values of a second time series. Given two time series, X[n] and Y[n], if
incorporating past values of X improves the prediction of the current value of Y, then one can
say that X Granger causes Y (Goebel et al. 2003; Roebroeck et al. 2005). Geweke (1982,
1984) proposed a measure of linear dependence, which implements Granger causality in terms
of vector autoregressive models. In this framework, Geweke defined this measure of linear
dependence as

Fry=Fyy+Fy+Fyy @)

In the above equation, the term to the left of the equal sign is the total linear dependence of
regional time series X and Y. The path weight information is contained in the directed linear
dependence terms between X and Y, the first two terms to the right of the equal sign. The final
term in the above equation represents the instantaneous influence between X and Y and, for
the purposes of fMRI-based connectivity studies, contains any linear dependence between the
two time series that occurs on a time scale to small for fMRI to measure (Roebroeck et al.
2005).

The dependence measures shown above can be defined using the autocorrelation matrices of

the residuals of the following three vector autoregressive models, where the autocorrelation
matrices of the residuals are given by Sigma, Tau, and Upsilon.

)4
x[n]= — ZAx[i]x[n — il+u[n] var(u[n])zZ1
i-1

(4.A)
p
yinl== > Alilyln - il+v[n] var(v[n])=T;
i=1 (4.B)
14
dlnl= = S Alilgln - ilwin]
2y C ]
ar(w[n])=Y=
e ¢ (4.0)

The residual correlation matrices, in turn, quantify how well one is able to predict current values
of regional time series from their past values. From these residual correlation matrices, one
can define Geweke’s linear dependence terms as

Foy=1n( ) 1-IT11/1¥D 50

Fon=1n(T\|/IT2) 5.5)
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Dynamic causal modeling

Methods

Dynamic causal models (Friston et al. 2003) consist of a bilinear model, which includes both
neurodynamics and an extended Balloon model (Friston 2002; Buxton et al. 1998). The
neurodynamics can be described by a multivariate differential equation.

M
2= [A+Zu,(j)3j] z+Cuy

J=1 (6)

The variable t indexes continuous time, and the dot denotes a time derivative. The path weights,
or effective connectivity, are described by a set of intrinsic connections and contained within
the variable A. Modulatory and input connections are specified in B! and C, respectively.

Simulated data

Functional MRI time series were simulated using the dynamic causal modeling (DCM)
simulation code supplied with SPM2 (Wellcome Department of Cognitive Neurology, London,
UK). The DCM simulator was employed as a convenient way to create simulated fMRI time
series data with known, modeled connectivity that is, for the purposes of this investigation,
unbiased towards three of the methods under consideration. A simple, three-region DCM
system with three unidirectional intrinsic connections, as shown in Fig. 1, was modeled. The
intrinsic connection between Regions 1 and 2 was varied as 1={0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9}. An fMRI experiment was applied as an extrinsic connection to Region 1 with a
constant weight of 0.7. The remaining two connections between Regions 1 and 3 and Regions
3 and 2 were held at a constant value of 0.1.

In addition to varying the intrinsic path weight, two separate fMRI experiments were used to
take into consideration the two sources of variance described in the introduction, task-related
and intrinsic. For both the time series simulated to include task-related variance (Fig. 2a) and
intrinsic variance for the trimmed case (Fig. 2c), a standard block design consisting of
alternating 20-second blocks of ‘rest” and “activity’ was used as the fMRI experiment. The
design comprised six ‘rest” blocks and five “activity’ blocks for a total experiment time of 220
s. For the time series simulated to include intrinsic variance for steady-state task performance,
the fMRI experiment consisted of a single “activity’ block beginning at t=0 s and lasting the
entire 220 s. For all intrinsic path weights and sources of variance, the DCM systems were
modeled at TR’sof 1 sand 2 s.

Examples of the simulated time series for Region 1 for all three variance casesata TR of 2 s
are shown in Fig. 2. For the case of the intrinsic variance derived from a trimmed time series
(Fig. 2c), the time points corresponding to the ‘rest’ blocks were trimmed and the remaining
time points corresponding to the “activity’ blocks (highlighted with solid black line) were
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concatenated into a single vector prior to estimating the path weights, following the
methodology described by Honey et al. (2002). The noise spectrum of the steady-state time
series, for this particular simulation, was Gaussian in nature and not designed to mimic actual
physiological noise, so no additional filtering was necessary. However, in the case of actual
subject fMRI time series data collected for steady-state performance of a task, the use of a low-
pass filter to remove contributions from physiological noise should be considered, so that the
resulting path weight estimates are based on the correlations of the low frequency BOLD
fluctuations, rather than the correlations of higher frequency cardiac and respiratory cycles.

Path weight estimation

A total of nine DCM systems were modeled for each variance case at each TR. Each modeled
system was estimated 1,000 times to produce 1,000 separate sets of regional time series, with
which path weights were estimated using the three computational connectivity methods under
consideration. These path weight estimates were then averaged to yield a single path weight
for each of the three paths for each method for each DCM system. All computations were
completed using Matlab (The Math-works, Natick, MA, USA).

The SEM path weights were estimated using the linear regression algorithm supplied with the
Matlab software. This particular algorithm calculates the least squares solution to a system of
linear equations in the presence of known covariance. Pair-wise autoregressive analyses were
run using the Matlab-based package, arfit, provided by Neumaier and Schneider (2001).
Granger causality linear dependence terms were estimated following the work done by Geweke
(1982, 1984) and Goebel et al. (2003). Finally, the DCM path weights were estimated using
the DCM estimation module supplied with SPM2.

For the case of the Granger causality linear dependence terms, both the appropriate directional
term and the residual term were estimated to determine whether increasing the temporal
resolution or changing the source of the variance would decrease the proportion of the linear
dependence assigned to this residual term (Goebel et al. 2003; Roebroeck et al. 2005).

Sensitivity and specificity of methods

Results

ROC analyses were performed on each pairing of computational method and data modeling
technique for both TR’s to assess the overall performance of the computational methods in
detecting system dynamics in the case when they are previously known to exist. The same
DCM systems were used, except that path weights were averaged from only two sets of
estimated time series, and this was repeated 50 times. This was done to mimic a more realistic
experimental set up, where one might enroll 50 subjects and have them each perform a given
task twice. Two sided t-tests were performed on each path weight to determine significance
from zero (P<0.05), as the paths were modeled to have values greater than zero. Path weight
values passing significance were counted as true positives, all others as false positives.

Estimated path weights vs. modeled path weights

Figure 3a—d show graphs of the estimated path weights versus the modeled path weights, I, for
structural equation modeling, autoregressive analysis, Granger causality, and dynamic causal
modeling, respectively. None of the methods reproduce the modeled path weight values
exactly, and each method appears to exist on its own unique scale, with SEM and DCM
exhibiting the largest dynamic ranges, Granger causality the smallest, and AR intermediate to
these. In all cases except employing DCM with the trimmed time series, increasing the
sampling rate by decreasing the TR from 2 s to 1 s does not appear to significantly change the
path weight estimates, regardless of the computational method or data modeling technique.
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The SEM results (Fig. 3a) show no significant difference (0.6<P <0.999), regardless of TR or
source of variance. The results from the pair-wise autoregression (Fig. 3b), Granger causality
(Fig. 3c), and DCM (Fig. 3d) exhibit similar trends, except, in all cases, the estimated path
weights from the time series modeled to include intrinsic variance from the trimmed time series
are statistically smaller (P<0.3) than the estimates from the other simulated time series for all
but the smallest modeled path weights, regardless of TR and data modeling technique.
Additionally, the results from the trimmed time series exhibit a much smaller dynamic range
than either the un-doctored or steady-state time series.

Both the results from the pair-wise AR and Granger causality appear to exhibit a saturation
effect at modeled path weights greater than 0.6. This effect appears to be much more severe in
the case of Granger causality, such that there is no apparent difference among the estimated
path weights for modeled path weights greater than 0.6. For the case of AR, the path weights
estimated from the trimmed time series do not appear to share this saturation effect. A similar
observation is difficult to draw for Granger causality, as the path weight estimates from the
trimmed time series are not significantly different from zero (P<1x1075).

Figure 4a—d show similar graphs to those in Fig. 3a—d, except considering the path from Region
1 to Region 3, to determine if any of the computational method/data modeling technique pairs
found changes in connectivity where none were modeled. As can be seen from the results, with
the exception of a few outliers (indicated by asterisks for TR=2 s and plus signs for TR=1s),
all of the path weight estimates, regardless of computational method, data modeling technique,
or TR, lie within the 95% confidence interval of the median path weight estimate. The results
for the path from Region 3 to Region 2 exhibit similar trends to those seen for the two paths
described above.

One outstanding aspect of employing Granger causality mentioned in the introduction is
whether the temporal resolution of the average fMRI experiment is small enough for this
computational method to yield the system dynamics in the directional linear dependence term,
or whether the bulk of the linear dependence would be assigned to the residual term. Figure
5a—c show graphs of the percentage of total linear dependence that is made up of the directional
term and residual term for TR’s of 2 s and 1 s, respectively. For both the time series modeled
to include task-related variance and intrinsic variance from a steady-state task, the percentage
of linear dependence assigned to the directional term is significantly larger than that assigned
to the residual term and improves with the reduced TR of 1 s. For the time series modeled to
include intrinsic variance from trimming the time series, the percentage of total linear
dependence that is assigned to the residual term is, for all modeled path weight values, greater
than that assigned to the directional term for a TR of 2 s. Reducing the TR to 1 s results in only
a slight improvement.

Figure 6a—d show the ROC curves for structural equation modeling, autoregressive analysis,
Granger causality, and dynamic causal modeling, for each TR and data modeling technique,
respectively. For the case of SEM (Fig. 6a), there appears to be an advantage to decreasing the
TR from 2 sto 1 s, especially in the cases of task-related variance the intrinsic variance from
a steady-state task, despite there being no discernable differences in path weight estimates
between the two TR’s (Fig. 3a). Specifically, the use of a time series at a TR of 1 s modeled
to include task-related variance appears to strike the best balance between sensitivity and
specificity. However, the time series modeled to include intrinsic variance from a steady-state
task at a TR of 1 s performs about as well.

The results from the pair-wise autoregressive analysis (Fig. 6b) are less clear-cut, with no single
TR/data modeling technigue appearing more advantageous than the others. There appears to
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be some benefit in decreasing the TR to 1 s, particularly when using a time series modeled to
include intrinsic variance, either from through a trimmed time series or steady-state
performance of a task.

The Granger causality results (Fig. 6¢) are somewhat similar to those for AR, in that for time
series modeled to include intrinsic variance, there are clear benefits of reducing the TR to 1 s,
as these time series modeled at a TR of 2 s do not appear to perform much better than chance.
Employing a time series modeled to include task-related variance at a TR of 2 s appears to
strike the best balance between sensitivity and specificity.

The results from using dynamic causal modeling (Fig. 6d) are a mix between what is observed
for SEM (Fig. 6a) and autoregressive analysis (Fig. 6b). Employing either task-related variance
or intrinsic variance from steady-state performance of a task at a TR 1 yields the best balance
between sensitivity and specificity, however the benefit of decreasing the TR from2sto1s
for either of these two data modeling techniques is moderate. Using DCM with the trimmed
time series results in performance that is only slightly better than chance.

Discussion

An investigation was done to assess the role of the choice of computational method paired with
data modeling technique can have on the results of effective connectivity analyses. The results
indicate that all methods considered—structural equation modeling, autoregressive analysis,
Granger causality, and dynamic causal modeling—were able to detect the modeled system
dynamics, indicating that all are valid methods for calculating effective connectivity from fMRI
time series data. However, as described in the results, some pairings of computational methods
and data modeling techniques performed better than others.

Our results indicate that SEM has the potential advantage of being relatively immune to the
effects of differing TR’s and sources of variance. The results from the ROC analyses, however,
suggest that modeling data in to include either task-related variance or intrinsic variance from
steady-state performance of a task, particularly at a TR smaller than the standard 2 s, may
provide a better balance between the sensitivity and specificity of this computational method.
Its large dynamic range also indicates that this method should, additionally, be sensitive to
small changes in path weight values.

In contrast, Granger causality appears to be the most sensitive to the choice of both the source
of variance and TR. While the estimated path weight values do not significantly improve in
terms of increasing the dynamic range or alleviating the observed saturation effect, decreasing
the TR provides some improvement in terms of the sensitivity and specificity as well as in a
concomitant increase in the value of the directed linear dependence term and decrease in that
of the residual linear dependence term. As both Granger causality and autoregressive analysis
are both based off of the same autoregression framework, it is not fully clear as to why the
results from these two methods were not more equivalent. Clearly, more investigation is
warranted in developing more optimal fMRI experimental design, data acquisition methods,
and data modeling techniques, if Granger causality is to be used successfully with fMRI data.

There appears to be little value in using Granger causality to estimate effective connectivity
from data modeled to include intrinsic variance from a trimmed time series, as none of the path
weights estimated from these time series were significantly different from zero. Additionally,
for both TR’s the amount of total linear dependence assigned to the residual term was, in most
cases, greater than or equal to that assigned to the directional term. The ROC analyses also
indicated that when used with data modeled to include intrinsic variance from a trimmed time
series, Granger causality performed little better than chance in terms of the sensitivity and
specificity. These results, paired with the almost nonexistent dynamic range indicates that
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effective connectivity estimated using this pairing of variance source and computational
method would, in all likelihood, fail to detect any meaningful system dynamics.

As the simulated time series were created using the DCM code supplied with SPM2, and this
same code was used to estimate the path weight values for the case of DCM, it was expected
that DCM would out perform the other three methods in terms of sensitivity to small changes
in path weights and exhibiting the best balance between sensitivity and specificity regardless
of TR and data modeling technique. The results from the path weight estimation and ROC
analyses suggest that this would be the case when it was employed with either task-related
variance or intrinsic variance from the steady-state performance of a task. However, for the
case of intrinsic variance from the trimmed time series, DCM did not perform any better than
either of the autoregressive-based methods. As the simulated time series used in this particular
investigation were biased towards DCM vyielding the correct answer, it is unclear whether the
benefits of using DCM over the other three methods would be as apparent in investigations
using different simulated time series or actual human subject data.

As stated in the introduction, several studies have outlined drawbacks of applying SEM to
fMRI data (Buchel and Friston 1997; Penny et al. 2004; Harrison et al. 2003; Yamashita et al.
2005; Ramnani et al. 2004), with two of the more commonly cited being its requirement of an
a priori anatomical model of regions and directed paths, or causal structure, along with its
assumption of instantaneous connections. In reference to the necessity of a causal structure,
Protzner and Mclintosh (2006) showed that it is possible to make inferences about changes in
effective connectivity using SEM even when the overall model does not fit the data, provided
that the causal structure is independent of the data. In cases where SEM results are used to
determine the causal structure, the interpretation of individual path weights may be ambiguous
for poorly fitting models. Thus, despite its inability to take into account the temporal
information inherent in fMRI time series data, in cases where the causal structure is well
specified, SEM is a reasonable choice from which to calculate effective connectivity from
fMRI data.

Kim et al. (2007) proposed a ‘unified” SEM approach designed to address both
contemporaneous pathways via conventional SEM and longitudinal pathways via MAR, thus
providing a way to include the rich temporal information of fMRI data into a conventional
SEM analysis. Our results suggest that the source of variance will have a noticeable effect on
whether the MAR component of this unified approach will add any significant information to
the estimated path weight value, or whether it will be dominated solely by the SEM component.
In cases in which the data is modeled to include intrinsic variance, either from steady-state
performance of a task or from trimming a standard block-design time series, the results from
this investigation seem to indicate the latter.

This investigation is not the first to address the issues with employing differing data modeling
techniques. Caclin and Fonlupt (2006) also pointed out the potential difficulties with comparing
connectivity results across studies using differing sources of variance. They found, using both
simulated and real fMRI data, that large differences between estimated correlations existed.
They concluded that clearer descriptions of the initial data modeling are necessary to avoid
misinterpretation of the cognitive significance of the results. Our results echo those of Caclin
and Fonlupt (2006), in that the choice of the initial data modeling technique can have a
significant impact on the results, especially in case of autoregressive analysis, Granger
causality, and dynamic causal modeling.
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Conclusions

As the results of this investigation have shown, the choice of computational method paired
with the choice of data modeling technique can have a significant impact on the value of the
estimated path weight. In addition to being aware of the effects of the choice of the source of
variance and computational method, paired with better reporting of said choices, we propose
that a measure of effect size, such as Cohen’s d (Cohen 1992), be used as a statistical summary
measure to report results as it removes some of the potential ambiguity arising from the results
of the structural equation modeling, autoregressive analysis, and Granger causality existing on
different scales. Effect statistics provide a quantitative measure of the size of experimental
effects, regardless of statistical significance. This may be advantageous for connectivity
studies, as due to the limitations in enrolling subjects, the connectivity analyses may be
performed under low power.
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Fig. 1.

Path model (causal structure) used to guide the time series simulations. The path from Region
1 to Region 2 was varied 1={0.1, 0.2,0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The strengths of the fMRI
experiment and the remaining two paths were held constant at the values indicated
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Page 13

Sample time series simulated at a TR of 2 s for Region 1 of the causal structure for data modeled
to include task related variance (a), intrinsic variance from steady-state performance of the

task (b), and intrinsic variance from a trimmed time series (c). For the case of the trimmed time
series (c), the sections of the time series corresponding to task performance are highlighted by

the solid black line and were concatenated into a single, continuous vector
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Fig. 3.

Graphs of the estimated path weight values versus modeled path weight values for the path
from Region 1 to Region 2 for each pairing of computational method and data modeling
technique for each TR (TR= 2 s: solid; TR=1 s: open). Figure a shows the result from SEM;
Figure b, autoregressive analysis; Figure c, Granger causality; and Figure d, dynamic causal
modeling. Task-related variance is represented by blue squares; steady-state task performance,
green circles; and trimmed time series, red triangles. In all cases, reducing the TR from 2 s to
1 s does not significantly change the value of the estimated path weights. Error bars indicate
the standard error at 99 %
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Fig. 4.

Graphs of the estimated path weight values versus modeled path weights for the path from
Region 1 to Region 3 for each pairing of computational method and data modeling technique
for each TR (TR=2 s: solid; TR=1 s: open). Figure a shows the results from SEM; Figure b,
autoregressive analysis; Figure ¢, Granger causality; and Figure d, dynamic causal modeling.
Task-related variance is depicted by blue squares; steady-state task performance, green circles;
and trimmed time series, red triangles. Those estimates lying outside the 95% confidence
interval of the median estimated path weight value are indicated by either asterisks (**; TR=2
s) or plus signs (++; TR=1s). In all cases, none of the pairings indicated system dynamics
where none were modeled
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Fig. 5.

Graphs of the percentage of total linear dependence estimated by Granger causality contained
in the directional term (solid) and residual term (open) for each TR (TR=2 s: triangle; TR=1
s: circle) for the path from Region 1 to Region 2. The results from the data modeled to include
task related variance are shown in (a), intrinsic variance from steady-state performance of the
task (b), and intrinsic variance from the trimmed time series (c)
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Fig. 6.

ROC curves for each pairing of computational method and data modeling technique for each
TR (TR=2 s: dashed line; TR=1 s: bold line) for the path from Region 1 to Region 2. Figure
a shows the results from SEM; Figure b, autoregressive analysis; Figure ¢, Granger causality;
and Figure d, dynamic causal modeling. Task-related variance is represented by the blue solid
lines; steady-state task performance, green dotted lines; and trimmed time series, red dashed
lines. The curves suggest that the performance of structural equation modeling, autoregressive
analysis, and dynamic causal modeling improves with a reduction of TR, regardless of the
source of variance. This improvement in performance is not as apparent for Granger causality
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