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ABSTRACT

Summary: The web server MetalDetector classifies histidine
residues in proteins into one of two states (free or metal bound)
and cysteines into one of three states (free, metal bound or disulfide
bridged). A decision tree integrates predictions from two previously
developed methods (DISULFIND and Metal Ligand Predictor). Cross-
validated performance assessment indicates that our server predicts
disulfide bonding state at 88.6% precision and 85.1% recall, while
it identifies cysteines and histidines in transition metal-binding sites
at 79.9% precision and 76.8% recall, and at 60.8% precision and
40.7% recall, respectively.

Availability: Freely available at http://metaldetector.dsi.unifi.it.
Contact: metaldetector@dsi.unifi.it

Supplementary Information: Details and data can be found at
http://metaldetector.dsi.unifi.it/help.php

1 INTRODUCTION

Metal-binding proteins play critical catalytic, regulatory and
structural roles in the cell. They are implicated in heavy metal
toxicity, in processes such as apoptosis (Formigari et al., 2007) and
aging (Mocchegiani et al., 2006), as well as in numerous diseases,
including Alzheimer (Crouch et al., 2007), Parkinson (Santamaria
et al., 2007) and AIDS (Diamond and Bushman, 2006). Their
identification and characterization can contribute toward a better
understanding of these phenomena. Here, we introduce a web server
that takes the protein sequence as input and outputs predictions
of transition-metal binding for cysteine and histidine residues; for
cysteines it also predicts disulfide bonding bridges.

2 METALDETECTOR: INTEGRATING METAL
LIGAND PREDICTOR AND DISULFIND
We previously developed a method, Metal Ligand Predictor (MLP;

Passerini et al., 2006), which predicts transition-metal binding for
cysteines and histidines from sequence information alone. The
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method classifies cysteines into one of three states: free (F), disulfide
bridged (D) metal bound (M) and histidines into one of two states
(F or M). The main purpose of MetalDetector is to make the
predictor available online as a web application. When in the process
of developing a server for MLP, however, we observed some
inconsistencies with DISULFIND (Ceroni et al., 2006), a server
we previously made available for predicting the disulfide bonding
state of cysteines and their disulfide connectivity. In particular,
on the same test set used in (Passerini et al. 2006), conflicting
cysteine classifications by the two predictors involved 761 out
of 9187 cases (i.e. 8.3%). Two types of inconsistency may arise:
(1) MLP predicts D and DISULFIND predicts F (554 cases), and (2)
MLP predicts F or M and DISULFIND predicts D (207 cases).
MetalDetector integrates MLP and DISULFIND and tries to resolve
their inconsistencies.

3 CONCEPT

When a protein sequence is submitted to MetalDetector, both
constituent methods, MLP and DISULFIND, are queried. For
histidines, the results are just read off MLP. For cysteines, the
output of MetalDetector is determined by a decision tree architecture
(Fig. 1). We start with the output of DISULFIND that classifies all
cysteines as either F or D. For the same residues, MLP provides
probabilities for classes F, D and M (P, Pp, Pm). For a given
cysteine, if DISULFIND predicts class F, we apply a simple
threshold Tp to the Pp output of MLP. If Pp > Tp, MetalDetector
will predict class D, else the cysteine will be predicted to be either
in class F (if Pp>P)\), or M (if Pp<Ppp). We apply a similar
threshold 7); when DISULFIND predicts D. If the output Py of
MLP exceeds Ty, the cysteine will be assigned to class M, otherwise
to class D. Changing the thresholds 7 and T enables the user to
decide how much trust to put in each of the constituent predictors.
For example, if Tp =Ty =1, disulfide bridges are only predicted by
DISULFIND, while lowering both thresholds increases the weight
for MLP. Prior knowledge about the protein may therefore help users
to find a metal bound/disulfide bound/free cysteine. At the end of
the decision process, a finite state automation (Passerini et al., 2006)
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Fig. 1. Decision-tree architecture for cysteine bonding state predictions.

PDB entry 1ajy_A

......... b1 PPN | NNPIRS: | PP | PR | PP | R L
I LEPSEEIVVSTEY KALLLER

M F

] D

F

Fig. 2. Sample predictions, inconsistencies highlighted in boldface. Top:
MetalDetector (MD) corrects the first wrong D assignment of DISULFIND
thanks to MLP prediction, but cannot correct MLP’s missed metal. Bottom:
MD corrects the wrong D assignments of MLP thanks to DISULFIND
predictions. In all cases, where MLP predicts M and DISULFIND predicts
F (highlighted in lowercase), MD picks the right choice from MLP.

constrains the number of disulfide predictions to be even (inter-
chain bridges are ignored). In case of an odd number of disulfide
predictions, it relabels a single cysteine from free or metal bonded
to disulfide bonded or vice versa, depending on which relabeling
produces the least reduction in likelihood. The probabilities used
by the automaton come either from DISULFIND, or from MLP,
depending on which predictor has made the final prediction on each
residue. MetalDetector also outputs predicted disulfide connectivity
by calling the second stage of DISULFIND.

The new method deals efficiently with inconsistencies: at the
default thresholds Tp=0.76 and Tp;=0.65, there are 274 non-
consistent predictions, 191 of type (1) and 83 of type (2) (a reduction
from 8.3% inconsistencies to 3.0%). For these 274 residues, the
predictions of MetalDetector are identical to those of MLP in 256
cases and better than those of DISULFIND 56 and 75% of these
cases, for inconsistencies of type (1) and type (2), respectively.
A paired ¢-test revealed that MetalDetector is significantly better
than MLP in terms of accuracy (P <0.01). MetalDetector also
significantly outperforms both DISULFIND and MLP on the two-
classes problem D versus M/F (P <0.01), while there is no
significant difference between MLP and DISULFIND. Thus, the
new method provides better performance and succeeds in achieving
our stated goal, which was to make available a metal-binding state
predictor that would largely agree with DISULFIND on disulfide
bonding state. In Tables 1 and 2, we report the best results achieved
by MetalDetector considering both cysteine and histidine predictions
using default thresholds. The corresponding protein-level accuracy
Qp is 77% as in Passerini et al. (2006). Sample predictions are shown
in Figure 2.

4 SERVER

Three preset working points can be chosen from the web interface.
They correspond to high metal accuracy (default, 7p=0.76 and

Table 1. Comparison of precision (P), recall (R) and disulfide bonding state
accuracy (A) on the test set used in (Passerini et al., 2006)

MLP MetalDetector DISULFIND

Cys His All Cys His Al Cys

Metal P 797 60.8 733 799 60.8 735 -
R 749 40.7 60.5 76.8 40.7 61.6 -
Disulfide P 864 - 86.4 88.6 - 88.6 88.4
R 870 - 87.0 851 - 85.1 827
Dversus M/F A 88.8 - 88.8 90.0 - 90.0 89.1

All values are in percentage.

Table 2. Contingency matrix of MetalDetector for T and T default values,
including histidine predictions

Metal Disulfide Free
Metal 993 117 501
Disulfide 77 3024 451
Free 281 273 17130
Precision (%) 73.5 88.6 94.7
Recall (%) 61.6 85.1 96.9

Tnv =0.65), high metal-precision (Tp =0.5, Ty = 1), and high metal
recall (Tp =1, Ty =0.5) for the metal class. In the case of histidines,
the decision threshold is 0.5. Precision/recall for the disulfide class
are 83.1/88.7 and 90.1/82.0 at the high metal precision and high
metal recall working points, respectively.
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