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ABSTRACT

Motivation: A mass spectrum produced via tandem mass
spectrometry can be tentatively matched to a peptide sequence
via database search. Here, we address the problem of assigning a
posterior error probability (PEP) to a given peptide-spectrum match
(PSM). This problem is considerably more difficult than the related
problem of estimating the error rate associated with a large collection
of PSMs. Existing methods for estimating PEPs rely on a parametric
or semiparametric model of the underlying score distribution.
Results: We demonstrate how to apply non-parametric logistic
regression to this problem. The method makes no explicit
assumptions about the form of the underlying score distribution;
instead, the method relies upon decoy PSMs, produced by searching
the spectra against a decoy sequence database, to provide a model
of the null score distribution. We show that our non-parametric
logistic regression method produces accurate PEP estimates for
six different commonly used PSM score functions. In particular, the
estimates produced by our method are comparable in accuracy to
those of PeptideProphet, which uses a parametric or semiparametric
model designed specifically to work with SEQUEST. The advantage
of the non-parametric approach is applicability and robustness to
new score functions and new types of data.
Availability: C++ code implementing the method as well
as supplementary information is available at http://noble.gs.
washington.edu/proj/qvality
Contact: noble@gs.washington.edu

1 INTRODUCTION
The core problem in the analysis of tandem mass spectra is to
identify the peptide that gave rise to an observed fragmentation
spectrum. The most commonly used tools for solving this problem,
such as SEQUEST (Eng et al., 1994), Mascot (Perkins et al., 1999),
X!Tandem (Craig and Beavis, 2004), Inspect (Tanner et al., 2005)
and Lookup Peaks (Bern et al., 2007), search a given sequence
database for the peptide whose theoretical spectrum best matches
the observed spectrum. The output of this stage of the analysis
is a collection of peptide-spectrum matches (PSMs), each with
an associated score. The natural subsequent question is, ‘Which
of these PSMs are correct?’ This question can be framed as a
classification problem, and machine learning methods can be used
to solve it (Anderson et al., 2003; Elias et al., 2004; Käll et al.,
2007; Nesvizhskii et al., 2003; Zhang et al., 2008). However, the
predictions produced by any such classification method immediately

∗
To whom correspondence should be addressed.

raise a related question, namely, ‘How confident can we be that
the classifier has accurately identified this PSM as correct (or
incorrect)?’ This second question is the focus of the current work.

Precisely how we answer this second question depends strongly
upon the purpose of the investigation. Let us consider two types of
scenarios. In the first, a biologist is interested in determining, for
example, which proteins are expressed in a certain cell type under
a certain set of conditions. In experiments of this type, follow-up
analysis will involve looking at groups of PSMs, e.g. considering
all proteins in a known pathway, evaluating enrichment with respect
to Gene Ontology categories or performing experimental validation
on a group of proteins. Accordingly, an appropriate confidence
metric should measure a property of a group of PSMs. Say that
our classifier produces a ranking of PSMs and a threshold, and
that we define PSMs above the threshold as significant and PSMs
below the threshold as not significant. In this setting, the false
discovery rate (FDR) is the percentage of significant PSMs that
are incorrect (Benjamini and Hochberg, 1995; Soric, 1989). If we
use a decoy database search strategy, in which the observed spectra
are searched once against a real (target) protein database and once
against a decoy database comprised of reversed (Moore et al.,
2002), shuffled (Klammer and MacCoss, 2006) or Markov chain-
generated sequences (Colinge et al., 2003), then we can apply
standard FDR estimation procedures (Benjamini and Hochberg,
1995; Storey, 2002; Storey and Tibshirani, 2003) to obtain accurate
FDRs for PSMs (Käll et al., 2008). Critically, these FDR estimation
procedures make no assumptions about the form of the underlying
score distributions.

In this work, we focus on a second type of scenario. In this setting,
the goal of the experiments is to determine the presence of a specific
peptide or protein. For example, imagine that you are interested in
determining whether a certain protein is expressed in a certain cell
type under a certain set of conditions. Alternatively, imagine that
you have identified a large set of PSMs with a low FDR and, among
them, you identify a single PSM that is intriguing. Before deciding
to dedicate significant resources to investigating a single result, you
would like to know that the posterior error probability (PEP) for
this single PSM is low, where PEP is defined as the probability that
a PSM called significant is actually incorrect. Computing the PEP is
important, in this type of scenario, because even if the FDR of the
entire set of PSMs is quite low, the PEP of a single PSM within the
set can be considerably larger. Note that the two types of scenarios
are not mutually exclusive; an ideal peptide identification algorithm
will return both types of scores.

However, computing accurate PEPs is considerably more difficult
than computing accurate FDRs. Indeed, given accurate PEPs,
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computing the FDR is trivial: the FDR is simply the sum of PEPs of
the significant PSMs divided by the number of significant PSMs
(Storey et al., 2005). The converse is not true. The PEP is the
derivative of the estimated number of false predictions and is hence
related to the derivative of the FDR. Computing this derivative is
difficult.

The first and probably the most widely used method for assigning
PEPs to PSMs is PeptideProphet (Keller et al., 2002). This method
uses an unsupervised scheme to fit parametric distributions to
the observed PSM score distribution. The resulting parameters
allow for the analytical calculation of PEPs for any observed
PSM score. Recent improvements to PeptideProphet allow the
inclusion of decoy PSMs (Choi and Nesvizhskii, 2008) and relax
the modeling assumptions from parametric to semiparametric (Choi
et al., 2008). In the latter case, semiparametric models are fitted to
the distributions of correct and incorrect PSMs.

In this work, we demonstrate how to calculate PEPs for PSMs in
a non-parametric fashion. A model is non-parametric if it does not
make assumptions a priori about the number and type of parameters
required to characterize the underlying score distribution; rather, the
complexity of the model is determined by the data. Our method
builds upon a previously described non-parametric regression
procedure (Anderson and Blair, 1982), modifying it to fit the
task at hand. Similar methods have been used in the analysis
of microarray gene expression data (Efron et al., 2001; Storey
et al., 2005). Because the non-parametric approach allows us to
make fewer assumptions about the form of the underlying score
distribution, this approach is more flexible than a parametric or
semiparametric approach. Moreover, we demonstrate for a number
of scoring schemes—SEQUEST, Mascot, X!Tandem, InsPecT,
SEQUEST followed by Percolator (Käll et al., 2007), and SEQUEST
followed by PeptideProphet—that the PEPs estimated by the non-
parametric method are accurate, producing FDRs that closely match
directly inferred FDRs. In particular, the PEPs estimated by our non-
parametric method are comparable in accuracy to the PEPs estimated
parametrically or semiparametrically by PeptideProphet. Thus, the
proposed method provides a robust method for calculating PEPs for
any PSM score distribution.

2 APPROACH
Our problem can be stated as follows. As input we are given two
sets of PSM scores: target PSM scores and decoy PSM scores. Our
goal is to find the PEP for each target PSM, i.e. the probability that
the PSM is incorrectly assigned, given its score. More formally, we
can formulate two hypotheses for a given target PSM: either the
target peptide is correctly matched or it is incorrectly matched. We
call an incorrect match the null hypothesis H0 and a correct match
the alternative hypothesis H1. We assume that all our decoy PSMs
are incorrect matches and hence conforming to H0. We wish to
compute, for each target PSM with score x, the corresponding PEP
P(H0|X=x).

An example of this estimation problem is portrayed in Figure 1.
Here, we have analyzed a collection of 69 705 2+ charged spectra
from a yeast whole-cell lysate. For each spectrum, we identify one
top-scoring target and one top-scoring decoy peptide by searching
with SEQUEST (Eng et al., 1994) against a database of all yeast
open reading frames (ORFs). We score the resulting PSMs using
Percolator (Käll et al., 2007), which is a semisupervised machine
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Fig. 1. Target and decoy score distributions from Percolator. The figure plots
a histogram of 69 705 Percolator target and decoy PSMs. To avoid bias
incurred during Percolator training, the decoy scores are the result of a search
against a second decoy database.

learning method that iteratively trains a support vector machine
(SVM) classifier to discriminate between target and decoy PSMs.
Figure 1 shows the resulting distribution of target and decoy PSM
scores. Canonically, an SVM classifier assigns negative examples
negative scores, and positive examples positive scores. In the figure,
we see that the decoy PSMs receive scores that are almost entirely
negative; however, the target PSM distribution is bimodal, with a
large set of negative scores and a smaller set of positive scores. This
observation is consistent with a model in which the set of target
PSMs is comprised of a mixture of correct and incorrect PSMs.

To estimate the PEPs for a given dataset, we use a procedure
that has been employed previously in microarray analysis (Storey
et al., 2005). We decompose the PEP into two terms, which we then
estimate separately. Bayes Rule gives us that

Pr(H0|X=x)= Pr(H0)Pr(X=x|H0)

Pr(X=x)

Note that the prior probability Pr(H0) for the null model can be
interpreted as the fraction π0 of incorrect target PSMs. If we denote
the probability densities Pr(X=x|H0)= f0(x) and Pr(X=x)= f (x),
then our goal is to compute

Pr(H0|X=x)=π0
f0(x)

f (x)
.

We estimate the percentage π0 of incorrect target PSMs in the
given set using a bootstrap estimation procedure described in
Storey (2002). Finally, we estimate the ratio f0(x)/f (x) using non-
parametric logistic regression (Green and Silverman, 1994), as
described in Section 3.1. The resulting regression estimate takes
the form of a spline g̃(x), yielding the desired estimated PEP:

P̂r(H0|X=x)= π̂0exp(g̃(x)). (1)

3 METHODS
The non-parametric PEP estimation procedure is outlined in Algorithm 1. For
simplicity, the pseudocode leaves out two preprocessing steps. If the given
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scores lie in the range [0,1], then they are logit-transformed. Alternatively,
if the scores are all positive, then they are log-transformed. As described in
Section 2, we separately estimate f0(x)/f (x) and π0. These two estimations
occur on Lines 11 and 12, respectively, and are described in Section 3.1 and
in Storey (2002).

Algorithm 1 Pseudocode description of the non-parametric PEP estimation
procedure. Given a set T of target PSM scores and a set D of decoy PSM
scores, the algorithm returns the estimated PEP associated with the observed
target score x. The parameter N specifies the number of bins. The function
pi0.bootstrap reimplements the bootstrap π0 estimation procedure
(Storey, 2002) from the R-functionqvalue. The functionirls is described
in an on-line appendix.

1: procedure nonparametricPEP(T ,D,x,N)
2: A← sort(T :D) � Sort target and decoy scores together.
3: b1,...,bN← divideIntoBins(A,N)
4: G←{} � Initialize set of spline knots and observed data
5: for i←1...N do
6: mi←|bi|
7: x̂i← computeMedian(bi)
8: yi← numDecoyScores(bi)
9: G←G+{(x̂i,yi,mi)} � Add to set of spline knots

10: end for
11: ĝ← irls(G) � Estimate f0(x)/f (x)
12: π̂0← pi0.bootstrap(A)
13: return π̂0exp(ĝ(x))
14: end procedure

3.1 Estimating f0(x)/f (x)
As described in Section 2, we wish to estimate the ratio f0(x)/f (x), where
f0(x)=Pr(X=x|H0) and f (x)=Pr(X=x). Because there is no clear way to
separate the correct from the incorrect target PSM scores, we cannot directly
estimate PEPs from the observations at hand. Instead, we reformulate the
desired ratio as

f0(x)

f (x)
= p(x)

1−p(x)
where p(x) is the decoy probability. If all target and decoy PSMs are pooled
together and we randomly select a PSM with score x, then the decoy
probability p(x) is the probability that we have selected a decoy PSM.
This probability can be estimated using logistic regression directly from
the distributions of target and decoy PSMs.

To derive a smooth estimate of p(x), we use non-parametric logistic
regression (Green and Silverman, 1994), following the approach of Anderson
and Blair (1982). Our target and decoy PSMs are divided into N bins of equal
size. For each bin i, we record the total number of scores mi, the median
score x̂i and the total number of decoy scores yi in the bin. We model our
observations of target and decoy PSMs as outcomes from binomial processes
with probability pi=p(x̂i) for a decoy PSM, so that Yi∼B(mi,pi). We use a
non-linear link function g(x), which provides a linkage to p(x) as

g(x̂i)= log

(
pi

1−pi

)
We can then form a penalized log-likelihood function (Green and Silverman,
1994) for our observed PSMs as follows:

log(Lp)=
N∑

i=1

[
yig(x̂i)−mi log

(
1+exp(g(x̂i))

)−log

(
mi

yi

)]
− 1

2
α

∫
g′′(x′)2dx′ (2)

We model the link function g(x) with a cubic spline, because such splines
have the capability to capture the optimal maximum for this kind of penalized

likelihood function (Green and Silverman, 1994). We select g(x) such that
it maximizes the penalized log-likelihood function in Equation (2). The
term (1/2)α

∫
g′′(x′)2dx′ is a roughness penalty that is introduced to assure

smoothness of g(x). The smoothing factor α is assigned by generalized cross-
validation (Gu, 1992). In Algorithm 1, the preceding steps are carried out on
Line 11 by the function irls, which is described in an on-line supplement
available at http://noble.gs.washington.edu/proj/qvality. The resulting spline
estimate g(x) is used in Equation (1).

3.2 The q-value estimation
In this work we use two different methods for estimating q-values: PEP-
derived q-values and FDR-derived q-values. PEP-derived q-values are
computed as follows. For a given score threshold xt , we sum the PEPs above
the score threshold, and then divide the resulting sum by the total number of
PSMs (Keller et al., 2002; Storey et al., 2005):

qPEP(xt)=min
x′≥xt

∑
x∈{y|y≥x′,y∈T}P(H0|X=x)

|{y|y≥xt,y∈T}|

The FDR-derived q-value estimation procedure does not rely on PEPs at
all. Instead, we multiply the percentage of incorrect target PSMs (π0) by
the number of decoy PSMs, and then divide by the number of target PSMs
above a score threshold (Käll et al., 2008; Storey and Tibshirani, 2003). To
assure monotonicity we use the minimum value over thresholds above the
current threshold:

qD(xt)=min
x≥xt

π̂0
|{y|y≥x,y∈D}|
|{y|y≥x,y∈T}|

4 RESULTS
We validated our method on a previously described dataset from a
microcapillary liquid chromatography MS/MS analysis of a yeast
whole cell lysate (Käll et al., 2007). The charge state of each
spectrum was estimated by a simple heuristic that distinguishes
between singly charged and multiply charged peptides using the
fraction of the measured signal above and below the precursor m/z
(Klammer et al., 2005). No attempt to distinguish between 2+ or 3+
spectra were made other than limiting the database search to peptides
with a calculated M+H mass of 700 to 4000 Da. The spectra were
matched to a database of yeast ORFs using four different search
engines: SEQUEST version 2.7 (Eng et al., 1994), Mascot version
2.2.03 (Perkins et al., 1999), InsPecT version 20070523 (Tanner
et al., 2005) and X!Tandem version 2007.07.01.2 (Craig and Beavis,
2004). For each search, decoy PSMs were derived by searching
the spectra a second time against a shuffled version of the yeast
proteome. In this manner, we obtained 69 705 target and 69 705
decoy PSMs for each search engine. Because SEQUEST’s primary
score XCorr is known to vary significantly with different charge
states (Washburn et al., 2001), we only considered the 34 499 PSMs
with a precursor charge 2+. For the SEQUEST PSMs, in addition to
ranking by Xcorr, we re-ranked the PSMs using Percolator version
1.03 (Käll et al., 2007) and using a semisupervised version of
PeptideProphet (Choi and Nesvizhskii, 2008; Keller et al., 2002)
downloaded February 5, 2008, from http://sashimi.sourceforge.net.

The left column of Figure 2 shows the empirical target and decoy
score distributions for each of the six scoring methods. For low
scoring PSMs, all six scores show little difference in shape between
the target and decoy distributions. However, we can generally see
an increasing separation between the target and decoy distributions
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Fig. 2. Estimating PEPs for six different methods. (Left column) Each panel shows the histogram of target and decoy PSM scores for a score function.
(Middle column) Each panel plots the estimated PEP as a function of the different score functions. (Right column) Each panel plots the PEP-derived q-value
as a function of the FDR-derived q-value. A constant 10−4 was added to all the q-values in order to make apparent the cases where any of the q-values were
zero.
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for higher PSM scores. The bimodal character of the Percolator
target scores, which was noted previously with respect to Figure 1,
does not appear for the corresponding SEQUEST distribution. This
is not surprising, because Percolator has been shown to improve
significantly the discrimination between correct and incorrect PSMs
(Käll et al., 2007). For PeptideProphet, the target score distribution is
also strongly bimodal. However, the Mascot, InsPecT and X!Tandem
scores all exhibit behavior similar to that of SEQUEST: a similarly
shaped bulk of low scoring target and decoy PSMs, and a tail of
high scoring target PSMs that stretch out further for the target PSMs
than for the decoy PSMs. Note that, unlike the other plots in the left
column of Figure 2, the PeptideProphet plot has a log-scaled y-axis,
because otherwise the results are very difficult to see: for many of
the PSMs—79% (55 113 out of 69 705) of the target PSMs and 96%
(66 773 out of 69 705) of the decoy PSMs—PeptideProphet assigns
a PEP of 99% or higher (corresponding to a probability ≤1% in the
figure).

We subsequently applied our logistic regression procedure to the
six sets of PSM scores. The middle column of panels in Figure 2 plots
the estimated PEP as a function of score—Xcorr for SEQUEST,
Mascot score for Mascot, MQScore for InsPecT, −log10(E-value)
for X!Tandem, SVM discriminant for Percolator, and correctness
probability for PeptideProphet. For five out of the six scores, we
observe a fairly abrupt transition from a PEP of 100% to a PEP of 0%.
The curve for PeptideProphet is more gradual, reflecting the fact that
PeptideProphet already attempts to calculate a posterior probability.
If our logistic regressor agreed completely with PeptideProphet’s
estimates, then this figure would show a straight line at y=−x+1.

Directly evaluating the performance of a PEP estimation
procedure is difficult because we do not know which PSMs are
correct and which are incorrect; therefore, we perform our evaluation
at the level of q-values (Higgs et al., 2007; Käll et al., 2008;
Storey and Tibshirani, 2003). Our validation strategy relies upon
the observation that estimating accurate q-values is considerably
easier than estimating accurate PEPs (Storey et al., 2005). Once we
have obtained our PEPs, we have two independent ways to compute
q-values, as described in Section 3.2: the PEP-derived q-values,
which are obtained from the sum of PEPs, and the FDR-derived
q-values, which are derived through the decoy-to-target ratio above
the threshold. A good PEP estimation procedure will achieve a close
correspondence between these two types of q-values.

The panels in the right column of Figure 2 plot the PEP-derived
q-values against FDR-derived q-values for all six score mechanisms.
In order to display the FDR-derived q-values that take values of 0
we added a constant of 10−4 to both PEP-derived and FDR-derived
q-values. This implies that the full range of q-values are depicted in
the figures, and no values are cut out.

In general, we see very little difference between the two types of
q-values for all the six types of score distributions. For two series,
Mascot and Inspect, our method estimates non-zero PEP-derived
q-values for a set of PSMs whose FDR-derived q-value is 0. This
results in a stack of points along the y-axis in the lower left corner
of the respective plots. This behavior is not surprising because the
spline smooths the transition to q=0. Furthermore, the plot implies
that the estimated PEPs are conservative.

In one case—X!Tandem—we observe a slight anti-conservative
trend. However, this occurs for q-values less than 10−3, and the two
estimated q-value are still within an order of magnitude difference.
This trend indicates a problem with the null model and might be

improved by generating more realistic decoy PSMs, for example, by
using more sophisticated database generation schemes (Feng et al.,
2007).

Among the six scoring methods that we considered, only
PeptideProphet attempts to estimate a probability akin to PEP.
The probability that PeptideProphet assigns to each PSM can
be interpreted as the complement of the PEP: Pr(H1|X=x)=
1−Pr(H0|X=x). We therefore evaluated the extent to which our
non-parametric PEP estimates agree with the estimate produced by
PeptideProphet. For comparison, we also re-scored our PSMs using
a semiparametric version of PeptideProphet (Choi et al., 2008).
We plotted the PEP-derived q-values versus the FDR-derived q-
value of our method, (‘non-param LR’), the parametric version
of PeptideProphet (‘PP parametric’) and the semiparametric version
of PeptideProphet (‘PP semiparam.’) in the lower right plot. None of
the three methods differ substantially from the x=y line: the worst
performing method (the semiparametric version of PeptideProphet)
exhibits only slightly greater than two-fold (conservative) error for
small q-values. Whether the small difference in performance among
the three methods is statistically significant is not clear; therefore,
we can only conclude that all three methods perform well.

The dataset examined in Figure 2 is a typical size for a proteomics
assay. However, it is not uncommon to analyze smaller datasets. We
therefore asked whether the good performance shown in Figure 2
extends to smaller datasets as well. We downsampled our dataset into
smaller subsets and performed the logistic regression procedure on
these smaller datasets. For each experiment, we used the root mean
squared deviation between the PEP-derived and the FDR-derived
q-value as a measure of the quality of our PEP estimation procedure:

�rms=
√

1

|T |
∑
x∈T

(
qPEP(x)−qFDR(x)

)2

We repeated our downsampling experiment ten times for each set
size. We plotted the average and SD of the obtained �rms values for
the XCorr and Percolator score in Figure 3 for a number of different
sample sizes. Not surprisingly, the plots show increased average
error for smaller datasets; however, it appears that on the order of
1000 PSM scores are sufficient to yield good PEP estimates.

5 DISCUSSION
We have described a non-parametric method for estimating PEPs
for a given collection of PSM scores. The method requires an
accompanying collection of decoy PSM scores, but otherwise makes
no assumptions about the form of the underlying score distribution.
Avoiding such assumptions naturally leads to an approach that is
robust across diverse score distributions. Our results show that the
procedure works well for six widely used PSM score functions, and
that the method achieves performance that is comparable to that of
a parametric and a semiparametric method designed specifically for
the SEQUEST Xcorr function.

This robustness is important in mass spectrometry, because of
the variety of available scoring algorithms, mass spectrometry plat-
forms, sample preparation protocols, chromatography conditions,
etc. As new methods are developed, a non-parametric approach has
the advantage of working out of the box. A parametric method, in
contrast, requires that we verify that the underlying assumptions
hold for new data.
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Fig. 3. Effect of size of examined set. The figure plots root mean square values of deviation between FDR-derived q-values and PEP-derived q-values when
using (A) SEQUEST’s XCorr and (B) Percolator’s discriminant values as scoring metric for different set sizes. Values were obtained by taking an average
over 10 different subsamples. Error bars represent on SD.

An important feature of the approach used here is the direct
estimation of the ratio f0(x)/f (x). An alternative approach would
separately estimate the numerator and denominator of this ratio, and
then derive the PEP estimate. This approach, however, has the effect
of doubling the estimation error, because each individual estimate is
associated with its own error. Directly estimating the ratio thus cuts
the effective error in half.

The roughness penalty approach to spline fitting is not extensively
used in the machine learning literature but is well established in
the statistics literature. It might therefore be interesting to note that
the roughness penalty term −(1/2)α

∫
g′′(x)2dx can be interpreted

as a Bayesian prior in the space of all smooth functions (Wahba,
1983).

Currently, our method does not make an assumption of
monotonicity. In general, it seems reasonable to assume that
any PSM score function should be related monotonically to the
underlying PEP. Therefore, a future improvement to the method
would be to use a monotonic cubic interpolating spline function,
rather than our current cubic spline function. This weak assumption
is presumably general enough to embrace any kind of PSM score
function and may lead to more accurate PEP estimates.
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