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ABSTRACT

Summary: Gaussian processes (GPs) are flexible statistical models
commonly used for predicting output from complex computer codes.
As such, GPs are well suited for the analysis of computer models of
biological systems, which have been traditionally difficult to analyze
due to their high-dimensional, non-linear and resource-intensive
nature. We describe an R package, mlegp, that fits GPs to computer
model outputs and performs sensitivity analysis to identify and
characterize the effects of important model inputs.
Availability: http://www.biomath.org/mlegp
Contact: kdorman@iastate.edu
Supplementary information: See http://www.biomath.org/mlegp
for a user manual and examples.

1 INTRODUCTION
Gaussian processes (GPs) commonly facilitate analysis of computer
models that are high-dimensional, non-linear and resource-intensive
(Santner et al., 2003) by serving as fast and accurate emulators
of these models. GPs play a prominent role in computer model
calibration and validation (Bayarri et al., 2007; Kennedy and
O’Hagan, 2001), as well as sensitivity analysis (SA) to rank inputs
in order of importance [based on functional analysis of variance
(FANOVA) decomposition] and to characterize their effects (through
visual plots of main and two-way factor interactions) (Schonlau and
Welch, 2006).

We describe an R package, mlegp, that implements GP modeling
with power exponential correlation structure (Santner et al., 2003),
the SA methods described in Schonlau and Welch (2006) and
the modeling of functional computer model output described in
Heitmann et al. (2006). In addition, mlegp extends previous GP
models to handle stochastic computer output with non-constant
(heteroscedastic) variance by no longer requiring a constant nugget
term across observations.

The package is appropriate for what Kitano (2002) describes
as simulation-based research in systems biology. In this context,
computer models have been used to simulate gene expression and
signal transduction pathways, e.g. in Escherichia coli (Dobrzyński
et al., 2007); and infectious disease at the cellular level, e.g.
Mycobacterium tuberculosis infection (Segovia-Juarez et al., 2004).
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We demonstrate the capabilities of mlegp by analyzing a computer
model of parasitic infection.

2 STATISTICAL METHODS

2.1 The Gaussian process
Let zobs = [z(x(1)), ...,z(x(m))] be a vector of observed computer model

outputs for m choices of the input vector x(i) =[x(i)
1 ,...,x(i)

p ]. We are interested
in predicting output z(t) at untried input t. The correlation between any two
computer model outputs is assumed to have the form

Cij ≡cor(z(x(i)),z(x(j)))=e−∑p
k=1 βk (x(i)

k −x(j)
k )2

(1)

Let µ(x) be the unconditional mean E[z(x)]. Define the mean matrix

M ≡E[zobs]=[µ(x(1)), ...,µ(x(m))].
Under the GP model, computer output follows a multivariate normal
distribution

zobs ∼MVNm (M,σ 2
GPC+σ 2

e I), (2)

where I is the m ×m identity matrix, C ≡{Cij} from Equation (1), σ 2
GP is

the unconditional variance of mean computer model output and the nugget
σ 2

e accounts for computer model stochasticity. For convenience, denote the
variance–covariance matrix as V . Then, the GP predictive distribution of z(t)
is normal with mean and variance

E[z(t)|zobs]=µ(t)+σ 2
GPr′V−1(zobs −M)

Var[z(t)|zobs]=σ 2
GP +σ 2

e −σ 4
GPr′V−1r,

where r = [r1,...,rm]′, with ri =cor(z(t),z(x(i))) following Equation (1).
For more details, see Santner et al. (2003).

2.2 Sensitivity analysis
Schonlau and Welch (2006) describe SA of computer models using GPs.
For independent marginal priors on the components of x, the total variance
of the GP predictor can be decomposed into contributions from single and
interacting inputs, a technique called FANOVA decomposition. The percent-
age of total functional variance attributed to the main effect of an input or
the interaction effect among inputs provides a measure of the importance
of that effect. The main effect E[z(x)|zobs,xk] of the k-th input variable
predicts output, given xk and known results zobs, by integrating against a
prior π (x−k) on all remaining variables in x. The two-way interaction effect
E[z(x)|zobs,xk,xl] is similarly defined. Main effects plots and contour plots
conveniently illustrate main effects and two-factor interactions as functions
of the model inputs xk and (xk,xl).
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Fig. 1. Sensitivity analysis of a computer model of parasitic infection using the R package mlegp. (a) Computer model output, consisting of pathogen load
over time, for 100 simulations obtained by varying inputs x1 through x5, (b) main effects for all inputs on pathogen load at 5 dpi, along with the percentage
contribution of each effect to the total functional variance of the GP predictor and (c) main effect of x1 on pathogen load over time.

3 SOFTWARE
The package mlegp, available in R (R Development Core Team,
2007), finds maximum likelihood estimates of Gaussian process
parameters using the likelihood that follows from Equation (2).
The package extends previous GP models by allowing the user to
replace the identity matrix I in (2) with a user-defined diagonal
matrix N . This extension leads to more accurate GP emulators of
heteroscedastic computer models when the variance is known or
well estimated. Another approach to this problem is implemented
in the R package tgp, which fits separate GPs to a partitioned input
space using a fully Bayesian approach (Gramacy, 2007). Not all
non-constant variance can be partitioned in this way. On the other
hand, our model requires knowledge of the nugget matrix up to
a multiplicative constant.

GPs with constant mean functions (i.e. µ(x)≡µ0) or linear
functions in x are supported. For high-dimensional or functional
output such as time-series data, the user can opt to fit independent
GPs to individual outputs or, instead, to the most important principle
component weights following singular value decomposition of the
output (Heitmann et al., 2006). For each GP, the R package provides
cross-validated diagnostics, performs FANOVA decomposition, and
produces plots for all main and two-way factor interaction effects.
Main effects for functional output can also be produced.

4 EXAMPLE APPLICATION: ANALYSIS OF
A COMPUTER MODEL OF DISEASE

The SA methods we describe have been used to analyze computer
models with up to 40 input variables (Schonlau and Welch, 2006).
For demonstration purposes, we use mlegp to analyze the effects
of five input variables (x=[x1,...,x5]) in a computer model of
Leishmania major infection (Dancik et al., 2006). Inputs are scaled
between 0 and 1 and are described in Supplementary Material.
Computer model output consists of pathogen load over time
(Fig. 1a). Using mlegp, we fit a GP to 100 observations of pathogen
load at 5 days post infection (dpi). Main effects for all inputs and
their FANOVA contributions are provided in Figure 1b. Lastly, we
use mlegp to calculate the main effect of x1 (pathogen growth rate)
on the temporal evolution of pathogen load by fitting independent
GPs to the six most important principle component weights (Fig. 1c).
The SA shows that the input variable x1 is the most important input
for determining pathogen load at 5 dpi and has a positive relationship

with this response (Fig. 1b). Low values of x1 result in a gradual
increase in pathogen load and a relatively longer infection, whereas
high values of x1 result in a sharp increase in pathogen load and a
higher peak, but a fast resolution of the infection (Fig. 1c).

In Supplementary Material, we report additional output from
mlegp, including GP diagnostic plots, the FANOVA decomposition,
and two-way interaction contour plots, for pathogen load at both 5
and 18 dpi. We also illustrate the advantage of using a non-constant
nugget term for heteroscedastic computer model output.
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