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ABSTRACT

Motivation: Most genotyping technologies for single nucleotide
polymorphism (SNP) markers use standard clustering methods to
‘call’ the SNP genotypes. These methods are not always optimal in
distinguishing the genotype clusters of a SNP because they do not
take advantage of specific features of the genotype calling problem.
In particular, when family data are available, pedigree information
is ignored. Furthermore, prior information about the distribution of
the measurements for each cluster can be used to choose an
appropriate model-based clustering method and can significantly
improve the genotype calls. One special genotyping problem that
has never been discussed in the literature is that of genotyping of
trisomic individuals, such as individuals with Down syndrome. Calling
trisomic genotypes is a more complicated problem, and the addition
of external information becomes very important.
Results: In this article, we discuss the impact of incorporating
external information into clustering algorithms to call the genotypes
for both disomic and trisomic data. We also propose two new
methods to call genotypes using family data. One is a modification of
the K-means method and uses the pedigree information by updating
all members of a family together. The other is a likelihood-based
method that combines the Gaussian or beta-mixture model with
pedigree information. We compare the performance of these two
methods and some other existing methods using simulation studies.
We also compare the performance of these methods on a real dataset
generated by the Illumina platform (www.illumina.com).
Availability: The R code for the family-based genotype calling
methods (SNPCaller) is available to be downloaded from the
following website: http://watson.hgen.pitt.edu/register.
Contact: liny@upmc.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Single nucleotide polymorphisms (SNPs) are DNA sequence
variations that occur when a single nucleotide (A, T, C or G)
in the genome sequence is altered. They are becoming the most
popular type of marker in linkage and association studies to discover
genes relevant to diseases. The vast majority of SNPs are biallelic.
Consider a SNP marker with alleles A and B. There are three possible
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genotypes for a disomic individual, AA, AB and BB. Many low- and
high-throughput technologies have been developed to genotype the
SNPs efficiently, including the GeneChip Human Mapping Array
from Affymetrix, the Illumina platform, the Sequenom platform,
the Taqman platform and the Invader assay. Each platform uses
a different technology, and they give somewhat different forms of
data. In general, they all give certain quantitative measures of allelic
abundance for the two alleles, yA and yB. The abundance measures
can either be scalars or vectors. Individuals with genotype AA are
expected to have high yA value and low yB value. The opposite is
expected for individuals with genotype BB. Those with genotype
AB are expected to have similar yA and yB values. Figure 1A gives
an example of data generated for a SNP marker using the Illumina
platform. Each dot on the plot represents one individual. In SNP
genotyping, we seek to identify genotype clusters based on these
measurements and ‘call’ each person’s genotype by assigning them
to a cluster. Normally, we expect to find three clusters, but if one
allele is rare in the population, a particular dataset might only have
two clusters (genotypes). Once genotypes are called, they are used
in the analysis of linkage and genetic association studies. It is well
established that genotyping errors can cause significant problems in
both family-based and case-control type of genetic studies (Clayton
et al., 2005; Gordon and Finch, 2005; Pompanon et al., 2005). It can
lead to either an increased type I error (Clayton et al., 2005; Gordon
et al., 2001; Moskvina et al., 2006) or a decreased power (Gordon
et al., 2002; Mote and Anderson, 1965).

Different platforms generate data of different dimension. For
example, the Affymetrix SNP array generates high-dimensional raw
data in which each SNP is assessed by several probe pairs. The
Illumina platform generates data of two dimensions. For platforms
that produce high-dimensional data, the data are typically reduced to
two dimensions (Fig. 1A and C) or to one dimension (Fig. 1B and D)
before the genotype calling procedure is initiated. The method of
reduction is platform-specific. To reduce the data generated by the
Illumina platform from two dimensions to one dimension, we used
the following formula: (raw intensity of allele B)/(raw intensity of
allele A + intensity raw intensity of allele B). The second dimension
is the distance from the origin. This dimension primarily contains
information on data quality, and it is common to exclude data points
that are close to the origin prior to genotype calling.

Genotypes are typically assigned (‘called’) from raw data using
clustering methods. If the clusters are well defined (as is the case for
data shown in Fig. 1A and B), most clustering methods work well.
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Fig. 1. Plots of two-dimensional (A, C) and transformed one-dimensional
(B, D) data produced by different genotyping experiments. (A) and (B):
genomic DNA, Illumina data. (C) and (D): whole-genome amplified DNA,
Taqman data.

But if the clusters are less well defined (as is the case for data
shown in Fig. 1C and D, in which the DNA was prepared using
genomic amplification from a small amount of template), it is
much harder to determine the genotypes. However, there are several
features of the genotyping problem that could potentially facilitate
the process. First, the number of clusters is limited (to one, two
or three for standard disomic data). Second, the distribution of the
data points is typically known from previous use of the technology.
The distribution is platform-specific and depends on the data quality
and the transformation used. For example, the homozygote clusters
of the Illumina sample shown in Figure 1B are skewed, while all
three genotype clusters for the genome-amplified Taqman sample
shown in Figure 1D are fairly symmetric. In general, however,
in the datasets we have seen, the heterozygote cluster almost
always has higher variation than the homozygote clusters (Fig. 1).
Third, when family data are used, constraints on the genotypes
are known because the transmission of alleles from parents to
offspring must follow Mendelian rules. Proper use of these various
types of prior knowledge can greatly increase the accuracy of the
genotype calls. One somewhat non-standard genotyping problem is
that of genotyping trisomic individuals—those with an extra copy
of one of the chromosomes. Trisomic genotype calling has not been
discussed in any published literature to date that we are aware of.
Trisomic individuals have four possible genotypes for a biallelic
marker AAA, AAB, ABB and BBB. This makes the genotype calling
procedure more difficult, since the two heterozygous groups can
be close together (Fig. 2A and B). It is not clear which, if any,
standard genotyping methods have the ability to distinguish the
two heterozygous genotype clusters. However, when family data are
available, we typically know which parent donated one copy of the
chromosome (i.e. which parent is the correctly disjoining parent, or
CDJP), which parent is the source of the extra chromosome (the non-
disjoining parent, or NDJP) and whether the NDJP gave the child
two different chromosomes (not reduced to homozygosity) or two
identical chromosomes (reduced to homozygosity) at the location
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Fig. 2. Plots of two-dimensional (A) and transformed one-dimensional
(B) Illumina data of trisomic individuals.

of that SNP (Xu et al., 2004). Our simulation results show that by
incorporating this family information into the genotyping methods,
we can significantly improve the genotype calls in trisomic data.

Both supervised and unsupervised methods have been used for
genotype calling. If training datasets are available, a supervised
clustering algorithm can be used (Liu et al., 2003; Rabbee and
Speed, 2006). However, training datasets are usually not available.
If they are unavailable, genotype calling requires an unsupervised
clustering algorithm, such as the K-means clustering algorithm
(Hartigan and Wong, 1979) or the dynamic model (DM)-based
algorithm, which is an ad hoc method developed for the Affymetrix
100K array (Di et al., 2005). The K-means algorithm can provide
satisfactory results when the clusters are reasonably separated, but
it is not always effective, especially when the clusters have different
variances (Fujisawa et al., 2004). Although the DM algorithm is
generally accurate, it exhibits higher error rates for heterozygous
bases than for homozygous bases (Rabbee and Speed, 2006).

To improve the genotype calls made by this algorithm, several
newer methods have been developed (e.g. BRLMM—Affymetrix,
2006; CRLMM—Carvalho et al., 2007) for high-dimensional
Affymetrix data. The genotype calling using empirical likelihood
(GEL) algorithm (Nicolae et al., 2006) and the multi-array multi-
SNP (MAMS) algorithm (Xiao et al., 2007) are two other genotyping
technologies developed specifically for Affymetrix GeneChip data.

Mixture models are also popular approaches to the genotyping
problem. Fujisawa et al. (2004) proposed a Gaussian-mixture model
for data generated with the Invader assay. Unlike the K-means
clustering algorithm that requires investigators to know the number
of clusters beforehand, this model uses a penalized likelihood
method to select the number of clusters. More importantly, unlike the
K-means clustering algorithm, which assumes equal variances for all
clusters (Celeux and Govaert, 1992), the Gaussian-mixture model
estimates variances for each cluster separately. Because different
genotype clusters usually have dramatically different variances, the
Gaussian-mixture model appears to be better suited for genotyping.
For similar reasons, Teo et al. (2007) used a mixture of truncated
t-distributions with higher degrees of freedom for the heterozygote
group, though the degrees of freedom are specified ahead of time
rather than estimated from the data.

All of the methods described above are designed for independent
samples. When family data are available, the Mendelian constraints
on the genotype can play an important role in genotype calling.
Sabatti and Lange (2008) developed a method for family data
collected for linkage studies. They combined a Gaussian-mixture
penetrance model with the pedigree likelihood and they used
the empirical Bayesian method so that information across all
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SNPs could be borrowed in parameter estimation. The general
idea of this method could be applied to any platform. However,
they developed this method for the high-dimensional data of the
Affymetrix GeneChip Human Mapping Array. In addition, this
method is designed for data collected from linkage studies, and
makes assumptions about allele and genotype frequencies [e.g.
Hardy–Weinberg Equilibrium (HWE)] that may not be appropriate
for all applications.

Many of the methods discussed above were developed for
standard ‘clean’ data of different genotyping platforms. However,
not all data are clean or of good quality. When DNAis amplified prior
to genotyping, clusters will often be less well defined. Furthermore,
in a typical genome-wide study, many SNPs are thrown out because
the clusters are poor. In general that does not cause problems,
because there are so many SNPs on a genome-wide panel, but it
is not uncommon to find that one of these ‘questionable’ SNPs lies
close to a significant association result, in which case it may be
desirable to take a more aggressive approach to calling the genotypes
for that SNP. In this article, we illustrate that genotype calling can be
improved by taking better advantage of external information, such
as prior information about cluster distributions and family genotype
constraints, particularly when the data quality is low. Specifically,
we propose two family-based genotype calling methods, and we
apply our methods to both simulated and real data. We also discuss
the problem of genotyping of trisomic individuals as a special
example of how to use external information to improve genotype
calls. We demonstrate our methods on a real dataset consisting of
genotypes of 160 parent/child trios in which the child is trisomic
for chromosome 21 (Down syndrome). The data were generated
by the Illumina platform (Shen et al., 2005, www.illumina.com).
Subjects were recruited from the Down Syndrome Clinic at Kennedy
Kreiger Institute in Baltimore, Maryland, as described in detail by
Kerstann et al. (2004). Additional subjects were from the Atlanta,
Georgia, metropolitan area and were recruited from Sibley Heart
Center Cardiology, which is part of Children’s Healthcare of Atlanta.

2 METHODS

2.1 K-means methods for trio data
The K-means clustering algorithm (Hartigan and Wong, 1979) is a popular,
unsupervised clustering method that is fast, straightforward and fairly
effective. Here, we propose to modify the K-means algorithm so that family
information can be used to improve the accuracy of the genotypes called
in trios. Basically, we consider all the genotype combinations of a family
trio that agree with Mendelian rules (Table 1), and we calculate the sum
of the distance of each family member to the center of the corresponding
genotype cluster. At each iteration step, we update the genotypes of all three
family members based on this sum. We refer to our modified method as the
trio K-means method. Details of this method for disomic and trisomic data
are provided in the Supplementary Material 1 and 3, respectively.

2.2 Model-based methods for trio data
To incorporate the pedigree information into the model-based clustering
methods, we propose a genotype-calling method that combines the pedigree
likelihood and a parametric mixture-model approach. This method is easily
applicable to pedigrees of almost any size and configuration. Our likelihood
is similar to that of Sabatti and Lange (2008), but we do not use it in
a Bayesian context, so we do not make any assumptions about allele or
genotype frequencies. Moreover, we work only with one-dimensional data,
so our likelihood is applicable to data from any platform.

Table 1. Fifteen family types of a SNP marker for a nu-clear family with
one disomic offspring

Family type Parent 1 Parent 2 Child

1 AA AA AA
2 AA AB AA
3 AB
4 AA BB AB
5 AB AA AA
6 AB
7 AB AB AA
8 AB
9 BB

10 AB BB AB
11 BB
12 BB AA AB
13 BB AA AB
14 BB
15 BB BB BB

2.2.1 Likelihood Let y be the observed one-dimensional value for an
individual. We assume the following parametric penetrance model:

y|g = λ∼ f
(
ξλ

)
, (1)

where λ∈� = {AA,AB,BB}, and ξλ is the parameter vector for genotype λ.
f
(
ξλ

)
could be any parametric model that fits the data well. In this article, we

illustrate the use of the Gaussian-mixture model and the beta-mixture model.
We will refer these two methods as the trio Gaussian-mixture model and the
trio beta-mixture model, respectively. Let Yi =

(
yfi,ymi,yki

)
be the observed

data for the father, mother and child of the i-th trio. Let Gi =
(
gfi,gmi,gki

)
be

the corresponding genotype vector. First, let us assume that we can observe
the genotype vector. Then the likelihood for the i-th trio is:

Li
(
Yi,Gi,θ

) = Pr
(
gfi

)
Pr

(
gmi

)
Pr

(
gki|gfi,gmi

)

× Pr
(
yfi|gfi

)
Pr

(
ymi|gmi

)
Pr

(
yki|gki

)

= ∏
λ∈�

p
1{gfi =λ}
λ p1{gmi =λ}

λ Pr
(
gki|gfi,gmi

)

× f
(
yfi,ξλ

)1{gfi =λ} f
(
ymi,ξλ

)1{gmi =λ}
f
(
yki,ξλ

)1{gki =λ}
,

(2)

where θ = (
pλ

′s, ξλ
′s
)T

.
If we have a total of n trios, the full likelihood is

L
(
Y ,θ

) =
n∏

i=1

Li
(
Yi,Gi,θ

)
. (3)

2.2.2 Genotype determination using Bayes rule If the parameters are
known, then we can determine the genotypes of all three members of a
family using Bayes’ rule. The posterior probability of the family genotype
vector Gi =

(
gfi,gmi,gki

)
given the observed values Yi =

(
yfi,ymi,yki

)
is

p
(
G|Y) = E/F. (4)

where

E = pλ=gf pλ=gm Pr
(
gk |gf ,gm

)
f
(
yf ,ξλ=gf

)
f
(
ym,ξλ=gm

)
f
(
yk,ξλ=gk

)

and
F = ∑

j=1:15
pλ=gfj pλ=gmj Pr

(
gkj|gfj,gmj

)

×f
(

yfj,ξλ=gfj

)
f
(
ymj,ξλ=gmj

)
f
(

ykj,ξλ=gkj

)
.

In this case, gfi, gmi and gki are the genotypes of the father, mother and child
for the j-th family type listed in Table 1.

2667



Y.Lin et al.

2.2.3 Estimation method If the Gaussian-mixture model is assumed for
the penetrance term of the model, p

(
y|g = λ

)
, a convenient expectation

maximization (EM) algorithm can be constructed to estimate the parameters.
Here the parameter vector is

θλ =
(

pλ
′s, µλ

′s, σ 2
λ

′s
)T

.

The update algorithm is:

p(t+1)
λ = E

(
S1,λ|Y ,θ (t)

)

2n

µ
(t+1)
λ = E

(
S2,λ|Y ,θ (t)

)

E
(
S1,λ|Y ,θ (t)

)+E
(
S4,λ|Y ,θ (t)

)

σ
2

(
t+1

)
λ = E

(
S3,λ|Y ,θ (t)

)

E
(
S1,λ|Y ,θ (t)

)+E
(
S4,λ|Y ,θ (t)

) −
(
µ

(t+1)
λ

)2
,

where S1,λ =
n∑

i=1

(
1
{
gfi = λ

}+1{gmi = λ}),

S2,λ =
n∑

i=1

(
1
{
gfi = λ

}
yfi +1{gmi = λ}ymi +1{gki = λ}yki

)
,

S3,λ =
n∑

i=1

(
1
{
gfi = λ

}
y2

fi +1{gmi = λ}y2
mi +1{gki = λ}y2

ki

)
,

S4,λ =
n∑

i=1
1{gki = λ}.

If we assume a beta-mixture model for the penetrance term, the parameter
vector becomes θ = (

pλ
′s, αλ

′s, βλ
′s
)T

. We can still use the same update
algorithm for pλ. For the estimation of αλ

′s and βλ
′s we use the nlm package

in R to maximize the E
(
log

(
L
(
Y ,θ

)))
at the M-step. The nlm algorithm

converges fairly quickly; however, it is sensitive to the initial values. In our
case, we started with some initial calls (by K-means or some other simple
methods) to facilitate the procedure of selecting initial values.

2.2.4 Determination of the cluster number Fujisawa et al. (2004)
proposed a Gaussian-mixture approach in combination with the penalized
likelihood for genotype calling of SNP array data. Their approach performs
well in selecting of the number of clusters. Here, we took advantage of the fact
that the number of clusters is limited and that the number of configurations
for missing clusters is also limited (e.g. we do not expect to have a missing
middle cluster). We modified the EM algorithm so that when p(t)

λ is smaller
than a preset small number x, we can consider the cluster empty from step
t and up.

2.2.5 Extension to trisomic data To apply similar model-based methods
to trisomic trio data, we need to rewrite the likelihood. The overall likelihood
is quite similar to the likelihood function shown above. Denote the parent that
contributes two chromosomes as the NDJP and the parent that contributes one
chromosome as the CDJP. Denote the genotypes of the NJPD, CJPD and child
as gNi, gCi and gki respectively and yNi, yCi and yki as the corresponding
values observed. The likelihood for the i-th trio is

Li
(
Yi,Gi,θ

)
(5)

= Pr
(
gNi

)
Pr

(
gCi

)
Pr

(
gki|gNi,gCi

)

×Pr
(
yNi|gNi

)
Pr

(
yCi|gCi

)
Pr

(
yki|gki

)
.

In the disomic model, the transmission probability Pr
(
gk |gf ,gm

)
is 1,

0.5, 0.25 or 0 according to Mendelian rules. In the trisomic model, the
transmission probability Pr

(
gk |gN ,gC

)
is a function of the population

genotype frequencies and of whether the two alleles from the NDJP are
reduced to homozygosity (i.e. whether they are replicates of the same allele of
the NDJP). The model for these probabilities is described in Xu et al. (2004),
and briefly in the Supplementary Material 2. In addition to considering
the three genotypes for disomic individuals (the parents), we also need
to consider four additional genotype clusters for trisomic individuals (the
offspring). That is, we need to consider two mixture models at the same
time. Further details of the genotype-calling methods for trisomic trios and
the estimation procedures are included in the Supplementary Material 4.
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Fig. 3. Disomic Simulation Study. (A) Histogram of an example of simulated
data.(B) Boxplots of the simulation results.

3 RESULTS

3.1 Simulation studies
We conducted two simulation studies to compare the performance of
our methods and other related clustering algorithms. We simulated
disomic trio data in one study, and we simulated trisomic trio data
in the other. For each study, we simulated 1000 datasets, each
consisting of 150 trios. We used a beta distribution in simulating
the observations in different genotype groups because our previous
experience indicated that the distribution of the homozygote clusters
is highly skewed in several platforms, including the Illumina
platform.

3.1.1 Simulation studies of disomic trios In this simulation study,
the parents and children were all disomic, and the datasets that we
simulated represented poor-quality data. We applied six different
clustering methods to the datasets. Three family-based methods
treated the family trio as a group and are therefore referred
to as ‘trio’ methods: the trio K-means clustering method, the
trio Gaussian-mixture model and the trio beta-mixture model. In
contrast, three corresponding methods treated each member of
the family trio independently: the K-means clustering method, the
regular Gaussian-mixture model and the regular beta-mixture model.

Figure 3A provides an example of a simulated dataset, and
Figure 3B provides an example of the simulation results (for detailed
results, see Supplementary Material 5). As expected, when the data
were of poor quality, the methods that incorporated the family
information consistently performed better than their counterpart
methods that ignored the family information. On average, there were
one-third to one-half fewer errors when the family information was
used in the genotype calling process. In general, we would expect
model-based methods to perform better than the K-means related
methods, since the model-based methods allow different variances to
be estimated for each genotype cluster. In this simulation study, data
for the homozygous clusters were less skewed than the good-quality
data shown in Figure 1B. Nevertheless, the beta-mixture models still
performed better than the Gaussian-mixture models. The use of a
beta-mixture model as the penetrance term in the likelihood therefore
seems to be more appropriate. It may in some sense seem obvious
that the beta-mixture model would perform better, since we used the
beta distribution to generate our data. However, to our knowledge,
the beta-mixture model has not been used previously for clustering
of genotype data, despite the fact that most genotyping technologies
produce skewed intensity distributions for homozygotes.
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In this study, we also found that the K-means methods had a
higher error rate in heterozygotes than in homozygotes (that is,
they had a greater tendency to categorize true heterozygotes as
homozygotes). The Gaussian-mixture models had a higher error rate
in homozygotes than in heterozygotes. In contrast, the beta-mixture
models had similar error rates in heterozygotes and homozygotes
(see the Supplementary Material 5). We saw a similar pattern in the
analysis of a real dataset generated by the Illumina platform (data
not shown).

3.1.2 Simulation studies of trisomic trios In this simulation study,
the parents were disomic and the children were trisomic. To apply the
K-means clustering method and the beta-mixture model to trisomic
trio data, we needed to separate the dataset into two subsets, one for
the disomic parents and the other for the trisomic offspring. Because
we simulated data that represented typical trisomic data that we
had seen in the Down syndrome study (Kerstann et al., 2004), the
homozygous genotype clusters were fairly skewed. Therefore, we
omitted the Gaussian-mixture model from our trisomic simulation
study and compared the remaining four methods: the trio K-means
clustering method, the trio beta-mixture model, the regular K-means
clustering method and the regular beta-mixture model.

Figure 4A and B provides examples of simulated datasets for
disomic parents and trisomic offspring, and Figure 4C provides
boxplots of the simulation results (for detailed results, see the
Supplementary Material 6). As in the study of disomic trios, the
genotype calls were improved when the family information was
incorporated and the variance structure was controlled. However,
in the study of trisomic trios, the family information appeared to

A B

C D

K-means

Trio K-means

Beta-mixture Model

Trio Beta-mixture Model

Fig. 5. Reconstructed clustering results for parents in the real dataset.
Genotype cluster 1 = AA genotype group, genotype cluster 2 = AB genotype
group, genotype cluster 3 = BB genotype group. The apparently misclassified
individuals are circled.

make a larger contribution to the genotype-calling procedure than
did the control of the variance structure. This was especially obvious
when the results of the two model-based methods were compared.
We found that, on average, there were two-thirds fewer errors when
the trio beta-mixture model was used than when the regular beta-
mixture model was used. There were one-third fewer errors when
the trio K-means method was used than when the regular K-means
method was used. We also found that the performance of the regular
beta-mixture model was quite unstable. Although it performed better
on average than the K-means method, there were numerous cases
in which it made more errors than the K-means method. The trio
beta-mixture model, on the other hand, was much more stable
(Figure 4C).

3.2 Real data example
We applied the regular K-means clustering algorithm, the regular
beta-mixture model, and their corresponding family-based methods,
the trio K-means algorithm and the trio beta-mixture model to a real
dataset generated by the Down sydrome study. The subjects were
genotyped using the BeadStation from Illumina Inc., San Diego,
California, USA (www.illumina.com). Data points that were very
close to the origin were considered failed reactions. These subjects
were not included in the analysis.

Figures 5 and 6 show the reconstructed two-dimensional results
of one SNP for parents and children, respectively. In these figures,
the presumed misclassified individuals are circled. Because the
variances for the heterozygote clusters are much larger than those for
the homozygote clusters, the K-means methods tend to mistakenly
assign some of the heterozygotes to the homozygote genotype cluster
(Figs 5A, 5C, 6A and C). The impact of family information is
obvious when we compare the results of the regular beta-mixture
model and those of the trio beta-mixture model (Figs 5B, 5D, 6B
and 6D). Our simulation study showed that the performance of the
regular beta-mixture model was not stable. In our real data example,
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K-means

Trio K-means

Beta-mixture Model

Trio Beta-mixture Model

Fig. 6. Reconstructed clustering results for children in the real dataset.
Genotype cluster 4 = AAA genotype group, genotype cluster 5 = AAB
genotype group, genotype cluster 6 = ABB genotype group, genotype cluster
7 = BBB genotype group. The apparently misclassified individuals are circled.

the regular beta-mixture model fails the task of distinguishing the
heterozygous and the homozygous individuals with relatively low
intensities. The trio beta-mixture model, on the other hand, appears
to yield the most reasonable results (Figs 5D and 6D).

There is no gold standard for the genotypes called for this data.
However, in our experience calling 219 SNPs in this dataset, for
206 SNPs, family-based calling changed 1 or fewer calls. But for 13
SNPs, clusters were not even correctly identified using independent
calls, and only family-based calls generated acceptable data.

4 DISCUSSION
The goal of this article is to show that we can use some specific
features of the genotyping problem to improve clustering methods
for making genotype calls from SNP array data, particularly
when the data quality is low. The specific features we discussed
in this article include: (i) differences in the variance structures
and shapes of the distributions for different genotype clusters;
(ii) constraints on genotype calls based on family structure; and
(iii) limits on the number of clusters. We also proposed two
new genotype calling methods for family data (demonstrated for
trios). We studied the performance of the various methods by
simulation. We also compared the results of these methods on a
real dataset. We found that, when the data quality is low, those
methods that use additional information improved the genotype calls
significantly. When the quality of the data is good, most methods
can give satisfactory results, though improvement is still possible
(Supplementary Material 5). We also showed that our methods
can be used to obtain high-quality genotype calls for trisomic
individuals, and that the addition of the external information is
particularly important for that application. We demonstrated our
methods only on trios and not extended families, but our trio-mixture
models can be easily extended to incorporate larger pedigrees or

individuals not in families. However, the trio K-means method,
though very simple and straightforward, cannot be extended to
handle larger family data.

Our results emphasize four points. First, since the variances in
the heterozygous genotype clusters are typically much bigger than
those in the homozygous genotype clusters, it is important to control
for the variance structure. This makes the model-based methods
(beta-mixture model and Gaussian-mixture model) superior to the
K-means methods, in general. Second, the shapes of the clusters
for different genotype groups are often dramatically different. For
example, the distributions of heterozygous genotype clusters tend
to be symmetric, while those of homozygous genotype clusters
tend to be skewed for many or even most genotyping technologies.
Therefore, the beta-mixture model seems to fit the data better than
the Gaussian-mixture model does. Third, when pedigree information
is available, its inclusion in clustering techniques can substantially
reduce errors in genotype calling. This is particularly true if the data
quality is poor or if the dataset involves trisomic subjects. Fourth,
the impact of family information is greater in trisomic data than in
disomic data, since there are more genotype constraints affecting
trisomic trios.

In our study, we used data from the Illumina platform. We
found that the beta-mixture model fit this data better than the
Gaussian-mixture model did, since the homozygote clusters were
skewed. We also found that the Gaussian-mixture model-assigned
heterozygous genotypes to some of the homozygous individuals.
These findings might not necessarily be true for other platforms.
As was illustrated in Figure 1, the two-dimensional and one-
dimensional plots of the data in Figure 1A and B were quite
different from those of data in Figure 1C and D. Both different
platforms and different methods of DNA preparation can have an
impact on the quality and shape of the data. Unlike the Illumina
data shown in Figure 1A and B, the Taqman data shown in
Figure 1C and D were prepared using whole-genome amplification.
In the whole-genome amplified dataset, the distributions of all three
genotype clusters are flatter and more symmetric. The Gaussian-
mixture model appeared to be a better fit for this dataset (data not
shown).

An important issue to keep in mind while using our family-
based (trio) approaches is that they force all genotypes to follow
Mendelian inheritance rules within each family. But genetic studies
often have a few errors in reported family structure, most often
due to sample swaps, non-paternity or unreported adoption. If the
genotypes are called using a family-based method without first
finding these family structure errors, there will be two problems.
The most obvious problem is that some genotypes will be mis-
called. The other problem, however, is that there will be outliers
in the clusters, which may distort all of the estimation. For example,
suppose a true AB is called as AA in order to enforce Mendelian rules.
Then the AA cluster will include a point that may be far beyond
its natural boundaries, which will affect both mean and variance
estimates for that cluster and thus potentially affect other genotype
calls. We recommend that genotype calling be done first with non-
family-based methods in order to identify families with an excess of
non-Mendelian calls. Then the family-based methods can be applied
after the reasons for the non-Mendelian calls have been identified.
Another way to deal with this problem (for the model-based methods
only) is to examine the posterior probabilities of the genotype calls
and set up a no-call cutoff value. This solution should also help
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maintain the stability of the genotype calls if there are true technical
outliers (e.g. a true AA point that falls in the AB cluster because of
pure technical aberration).

Genotyping of trisomic individuals is more complicated than
genotyping of disomic individuals. To date, we are the first group
who addresses this problem formally. The unique family structure
of the trisomic trios makes the family-based models more suitable
for the task. Our results showed that by incorporating the family
structure, we not only improved but also stablized the performance
of the likelihood-based clustering method.

As a final note, we would like to suggest (Sabatti and Lange, 2008)
that using posterior probabilities of genotypes rather than absolute
genotype calls might improve almost all statistical genetic analyses.
The model-based methods that we have proposed here are of course
easily adaptable to generate such probabilistic data.
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