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ABSTRACT

Motivation: Microarray experiments can be used to help study the
role of chromosomal translocation in cancer development through
cancer outlier detection. The aim is to identify genes that are up-
or down-regulated in a subset of cancer samples in comparison to
normal samples.
Results: We propose a likelihood-based approach which targets
detecting the change of point in mean expression intensity in the
group of cancer samples. A desirable property of the proposed
approach is the availability of theoretical significance-level results.
Simulation studies showed that the performance of the proposed
approach is appealing in terms of both detection power and false
discovery rate. And the real data example also favored the likelihood-
based approach in terms of the biological relevance of the results.
Availability: R code to implement the proposed method in the
statistical package R is available at: http://odin.mdacc.tmc.edu/
∼jhhu/cod-analysis/.
Contact: jhu@mdanderson.org
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
A chromosomal translocation in genomic study is defined as a
chromosome abnormality caused by the rearrangement of parts
between non-homologous chromosomes. It has been known to
play an important role in the development of some diseases
including cancer [i.e. leukemia, Boehm et al. (1988)]. Tomlins
et al. (2005) suggested that the expression pattern of an oncogene
activation resulted from chromosomal rearrangements should be
heterogeneous rather than commonly activated across a class of
cancer samples that can be identified by the ordinary two-sample
t-test. To detect the abnormal expression pattern in only a subset
of cancer samples, Tomlins et al. (2005) proposed ‘Cancer Outlier
Profile Analysis’ (COPA) that defines the summary statistic as a
certain percentile (typically, 75%) of expression intensities of the
cancer samples using the centered and scaled data by the median
and median of absolute deviations (MAD). Later on, COPA has been
improved by MacDonald and Ghosh (2006) and implemented in the
R package ‘COPA’ available at www.bioconductor.org. Instead of
using a specific value as the summary statistic, Tibshirani and Hastie
(2007) proposed ‘Outlier-Sum Statistic’ (OS) which is summation
of expression intensities of the outlier cancer samples identified by
some ad hoc criterion involving the quantiles. Wu (2007) proposed
‘Outlier Robust T-statistic’ (ORT) which is also a summation of

the outlier cancer samples identified in a similar fashion as OS.
The difference between OS and ORT is that the latter centers the
gene expression data using only control samples and then scales the
data in the normal and cancer group separately, while the former
uses all the data together [see the details in Wu (2007)].

It is also known that gene fusion or chromosomal translocation can
occur between the activating gene and multiple oncogenes (Fonseca,
2004; MacDonald and Ghosh, 2006; Tomlins et al., 2005) where a
translocation is only likely to occur once per sample. It inspires an
alternative way of targeting individual genes which is to search for
gene pairs that are up- or down-regulated in two mutually exclusive
subsets of cancer samples.

We proposed a likelihood-based approach to search for the change
point in gene expression intensities of cancer samples. Its advantage
in false discovery rate (FDR) and power in detecting cancer outliers
over the existing non-parametric approaches will be illustrated by
simulation studies. Furthermore, the proposed approach can obtain
theoretical significance-level results, while the existing methods can
only obtain the empirical P-value through permutation, which is
typically computationally inefficient and lower bounded by the ratio
of 1 to the total number of permutations.

The rest of the article is constructed as follows. The proposed
approach will be described in Section 2. Simulation studies in
Section 3 will show the overall superior performance of the proposed
approach in terms of detection power and FDR. The real data
example in Section 4 will also support the proposed method in terms
of biological relevance of the results. The summary will be presented
in Section 5.

2 MOTIVATION AND METHODOLOGY
The goal is to detect over- or under-expression pattern in a subset
of cancer samples. The existing methods intended to identify the
outliers based on the quantiles of the gene expression profile across
all the samples. This problem can be pursued from a different
perspective which is to detect a change point in the distribution
of gene expression intensities in the cancer group. In this regard,
cancer outlier samples can be viewed as coming from a distribution
with higher mean expression intensity than all the normal and other
cancer samples.

We first introduce some notations. Let x11, ...,x1n1
, and

x21, ...,x2n2
denote expression intensities of a gene in normal and

cancer groups, respectively. For a single gene, we assume that the
gene expression estimates (perhaps after suitable transformation)
are normally distributed in each group. A growing literature
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Fig. 1. ROC plot when n = 10.

supports this assumption for estimates derived from two-color arrays
(Chen et al., 1997) and oligonucleotide arrays (Giles and Kipling,
2003). The hypothesis test can be written as H0 : µ11 = ··· =
µ1n1

=µ21 ··· =µ2n2
, versus H1 : for some j (1 ≤ j<n2), µ11 =

···=µ1n1
=µ21 = ··· =µ2(j−1) �=µ2j = ··· =µ2n2

.

An extensive research on this change-point problem has been
conducted through numerical/Monte Carlo methods (Hawkins,
1977; Sen and Srivastava, 1975; Worsley, 1979, 1983). In addition,
James et al. (1987) derived analytic results based on the methods of
solving boundary-crossing problems in sequential analysis, which
will be used in solving this cancer outlier detection problem. Here,
we focus on the one-side alternative where up-regulation occurs in
some cancer samples. We organize all the samples in the order of
x11, ...,x1n1

,x21′ , ...,x2n
′
2
. So the non-cancer samples are arranged

before the cancer samples, and the cancer samples are sorted by
their expression intensities in the ascending order, denoted by

x21′ , ...,x22′ , ...,x2n
′
2
. Let n = n1 +n2, and the summation of the

expression intensities of all the samples Sn = x11 +··· +x1n1
+

x21′ + ···+x2n
′
2
. The likelihood ratio statistic (LRS) testing unequal

mean is as follows,

λ= max
m0≤i≤m1

iSn/n−Si

[i(1−i/n)]1/2
(n1 +1≤ m0 <m1 <n).

We set the lower bound m0 to be n1 +1 and the upper bound m1 to
be n−1 because our empirical interest only focuses on the change
point of expression intensities among cancer samples.

To introduce the approximate significance-level results, we first
describe the function

ν(x)=2x−2exp

{
−2

∞∑
n=1

n−1�

(
−1

2
xn1/2

)}
(x>0)
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Fig. 2. ROC plot when n = 30.

where � denotes the standard normal distribution function. The
function ν is easily evaluated numerically. Let x1, ...,xn be
independent standard normal random variables. Then for 0 ≤ m0 <

m1 < n and b>0,

pr

(
maxm0≤i≤m1

[
iSn/n−Si

{i(1−i/n)}1/2

]
≥b

)

�1−�(b)+bφ(b)
∫ b(m−1

0 −n−1)1/2

b(m−1
1 −n−1)1/2

x−1ν(x+b2/(nx))dx.

It is straightforward to apply the LRS approach to the opposite case
where the down-regulation in cancer samples is of interest.

We note that the analytic results are derived under the normality
assumption of the data that is reasonable for gene expression
data. Nevertheless, less model-dependent but more coarse result of
so-called recursive residual statistic proposed by Brown et al. (1975)

is also available. In contrast, the significance of the other approaches
are assessed through permutation that is computationally expensive
and of a lower bound of the ratio of 1 to the total number of available
permutations.

3 SIMULATION STUDIES
Simulation studies are conducted to assess the performance of
LRS, COPA, ORT and OS in terms of detection power and FDR
(Benjamini and Hochberg, 1995). We considered n is equal to 10 and
30 for representing the small and large sample cases, respectively.
In each case, expression intensities of G=1000 genes are initially
generated from standard normal distribution.

First, the detection power is studied through the receiver operation
curve (ROC). We assume there are five genes up-regulated with
mean expression intensity 2. When n=10, up-regulation occurs in a
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Fig. 3. FDR results with n = 10.

sample subset of size k = 2, 4, 6 and 8, respectively. We implemented
1000 simulations. In each simulation, we estimated the power
defined as Pr(detected |up-regulated genes). The detection threshold
is determined by false positive rate Pr(rejected |null genes) that is
based on a range of percentiles of the summary statistics of 995 null
genes. The average power obtained from the simulations is displayed
in Figure 1. Figure 2 shows the results when n=30 with k equal to 2,
5, 10 and 15, respectively. The advantage of detection power using
LRS is clearly observed as the number of cancer outlier samples k
increases. In fact, the only scenario where the power obtained by
LRS is quite lower than ORT and OS is when false positive rate is
larger than 50% at k =2. Although the difference between the power
of 0.8 and 1 seems fairly large, it is caused by missing only one true
up-regulated genes given that five genes are up-regulated in reality.
Furthermore, the interest of researchers would be focused on the list
of genes with fairly low false positive rate that is much less than 0.5

in real life. It is noticed that the power of OS decreased dramatically
as k increased. The performance of COPA is always inferior to LRS
and ORT, and superior to OS as k increases.

In the second set of simulations, we generated 200 genes
up-regulated in some cancer samples, with the same sets of k as
considered earlier. We estimated FDR as Pr(null genes |detected),
for which the detection thresholds were set as a range of percentiles
of the summary statistics obtained for all the genes. The average
FDR estimates over 1000 simulations are exhibited in Figures 3
and 4, where n is equal to 10 and 30, respectively. It is clear that
LRS yields the lowest FDRs in almost every case. The performance
of OS decreased as k increased.

We also notice that both the detection power and FDR curves
of ORT and OS are not smooth with some discontinuous patterns
suddenly occurring at some values larger than 50% on the x-axis. We
conjecture that it is because these two summary statistics involve the
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Fig. 4. FDR results with n = 30.

Table 1. Information on the 10 genes selected by LRS that are associated with breast cancer

Gene Name GABRG2 FGFR2 ATM CHGB MGLL

Rank 6 7 10 11 13
P-value 3.5e-8 3.86e-8 7.07e-8 7.17e-8 1.23e-7
Reference Garib et al. (2005) Tozlu et al. (2006) Ye et al. (2007) Kimura et al. (2002) Gjerstorff et al. (2006)

Gene Name CSH1 CYP2C19 AGTR1 MAOA CASC3

Rank 15 18 19 22 25
P-value 1.61e-7 2.82e-7 3.17e-7 7.30e-7 8.41e-7
Reference Bertucci et al. (2000) Cribb et al. (2006) Ladd et al. (2007) Lizcano et al. (1991) Degot et al. (2004)
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Fig. 5. Confirmed 10 genes associated with breast cancer based on LRS.

summation of the expression intensities of cancer outliers relative
to the median intensity of the reference samples.

In summary, LRS performs the best in terms of both detection
power and FDR.

4 A REAL EXAMPLE
We use the breast cancer microarray data that has been analyzed
in Wu (2007) as an example to make direct comparisons to the
other methods. The experiment involves 7129 genes from 49 breast

tumor samples where 25 samples had no positive lymph nodes
(LN−) diagnosed and 24 with identified positive nodes (LN+).
West et al. (2001) can be referred for the detailed description. The
data were preprocessed in the same way as in Wu (2007). Note
that there are a lot of low gene expression intensities falling in
the background noise region in this experiment. We adopted the
same strategy of thresholding small expression intensities to 10 as
used in Wu (2007). For a gene with the threshold value showing
in multiple samples in a group (LN− or LN+), we only kept a
single sample with the thresholding value since the redundance did
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not provide any additional information on gene expression levels.
We also standardized the expression intensity of each gene before
implementing the analysis, for fair comparisons among all the genes
and satisfying the model assumption of the LRS approach.

We studied the top 25 genes selected separately by LRS, ORT,
OS and COPA. We used the Bioconductor package ‘hu6800’ to
match the Affymetrix identifiers of the 25 genes to the UniGene
cluster identifiers and searched for their biological functions online.
It appears that LRS identified 10 genes that have been shown to
be associated with the development of breast cancer, while ORT
identified 8, OS identified 4 and COPA identified 2 among their top
25 genes. So LRS identified the largest number of genes that are
biologically meaningful. Table 1 displays the information of the 10
genes selected by LRS including gene names, the ranks according to
LRS, P-values and the relevant references showing the association
between the genes and breast cancer. Figure 5 shows the scatter
plots of gene expression intensities of these 10 genes with the solid
dot in black indicating LN− and the circle in red indicating LN+.
We noticed that three genes were also ranked in the top 25 by the
other statistics: ATM were selected by ORT, AGTR1 and CASC3
were identified by ORT and OS.

Tomlins et al. (2005) and MacDonald and Ghosh (2006) described
the cancer outlier detection approach based on gene pairs instead
of individual genes. We identified the top 10 gene pairs ordered
by the summation of the P-values obtained by LRS over the two
genes that show overexpression in two mutually exclusive subsets
of cancer samples. All the top 10 gene pairs involve the gene IFI44L
(interferon-induced protein 44-like) which has been noticed in breast
cancer study. The gene pair ranked the first includes the gene
ZRSR2 which has been shown to be associated with renal carcinoma.
Another gene pair ranked the fourth involves the gene ETS1 which
has been known to be associated with interferon-inducible gene
in acute leukemia cells (Luster et al., 1987). However, whether
these genes have some interactive activities in breast cancer requires
further biological validation.

5 CONCLUSIONS
Cancer outlier detection is an important problem in medical research
that has begun to draw the attention of researchers in the recent
years. It targets detecting the genes of differential expression only
in a subset of cancer samples. Currently only few non-parametric
methods are available to tackle this problem. In contrast, we
propose a likelihood ratio statistic to detect the change point of
the mean expression intensities in the cancer group. It provides
asymptotic significance-level results, while the other methods
require computationally expensive permutation type of approaches
to obtain empirical P-values. The simulation study indicates that
the likelihood-based approach has superior performance over the
existing methods in terms of both the detection power and FDR.
The real data study provides the additional evidence to support the
proposed method from the aspect of biological importance.
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