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ABSTRACT

Motivation: The next generation sequencing technologies are
generating billions of short reads daily. Resequencing and
personalized medicine need much faster software to map these deep
sequencing reads to a reference genome, to identify SNPs or rare
transcripts.
Results: We present a framework for how full sensitivity mapping
can be done in the most efficient way, via spaced seeds. Using
the framework, we have developed software called ZOOM, which is
able to map the Illumina/Solexa reads of 15× coverage of a human
genome to the reference human genome in one CPU-day, allowing
two mismatches, at full sensitivity.
Availability: ZOOM is freely available to non-commercial users at
http://www.bioinfor.com/zoom
Contact: bma@csd.uwo.ca, mli@uwaterloo.ca

1 INTRODUCTION
The next generation sequencing technologies provide researchers
with the opportunity to sequence a mammalian genome in
a matter of weeks at very low cost. These technologies
are promoting many exciting biological applications, such as
genome resequencing (Bentley, 2006) for SNP detection, histone
methylation status (Barski et al., 2007), whole-genome expression
profiling (Robertson et al., 2007), small RNA discovery and
analysis (Markus et al., 2008), and eventually, personalized
medicine.

Inevitable to all these exciting applications is the ‘reads mapping’
process—mapping all reads produced to a reference genome.
Mismatches and indel errors are present because of sequencing
errors, as well as variations between the sampled genome and the
reference genome. This approximate string matching problem can
be formulized as: given a query string P of length m, a text string
T , and a distance k, find all substrings t of T that are within the
distance k from P. The distance measurement could be edit distance
or Hamming distance. Many research works have been conducted
on this problem, and some earlier ones are reviewed in (Navarro,
2001). In particular, in the context of large-scale DNA sequence
search, researchers have exploited the seed method (Altschul et al.,
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1990; Kent, 2002) and spaced seed method (Ma et al., 2002) to trade
search sensitivity for search speed.

Today, the next generation sequencing technologies are producing
unprecedented huge amounts of short reads data for the mapping
task. For example, the Illumina/Solexa 1G sequencing system can
generate one billion bases in a single run, and each read has as
small as 25–50 base pairs. While the large data size requires much
faster searching speed, the short reads length requires much greater
searching sensitivity. The previously mentioned methods are facing
difficulties in handling the new situation.

To identify the correct positions for such high throughput reads,
filtering strategies are often used. A popular lossless filtering criteria
catches the fact that, if two strings of length m are at most k edit
distances away, then they share at least one consecutive subsequence
of length � m

k+1 �, called an l-mer. If either the genome or the reads
are indexed, the other can be scanned to filter out the candidates
with shared segment of length l=� m

k+1 �, followed by a verification
stage for these candidates only. Some mapping software recently
developed utilize this filtering criteria. RMAP (Smith et al., 2008)
partitions the read into k+1 segments and indexes the l-mers at the
start positions of each segment. SXOligoSearch (SynaMatix Co.,
2007) indexes the genome and stores exhaustive overlapping l-mers
covering whole genome sequences, requiring a 64 GB internal
memory machine. Mosaik (Marth Lab, 2007) indexes the reference
genome too, adopting a heuristic way to keep only the unique
genome l-mers and ignoring those occur more than once.

The filtering criterion using consecutive segments of length
� m

k+1 � has a disadvantage that, with short read length and reasonable
number of mismatches, the length of the segment becomes so small
that too many false positive hits are produced, resulting in low
specificity and efficiency. For example, for read length of 25 bp
and two mismatches, the segment length of 8 bp is too small for
genome-wide mapping. It can be proved that continuous seeds with
length larger than � m

k+1 � can never achieve 100% sensitivity, even
when every read position is indexed. Thus, if longer segment length
is adopted, the sensitivity will definitely be compromised.

Using certain desiganted positions as filter was shown to provide a
better trade-off between searching speed and sensitivity (Burkhardt
and Kärkkäinen, 2003; Ma et al., 2002; Pevzner and Waterman,
1995). The PatternHunter paper (Ma et al., 2002) for the first time
used the optimized spaced seed to speed up the homology search
while maintaining high sensitivity. To further increase the sensitivity,
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PatternHunter II (Li et al., 2004) proposed the multiple spaced seeds
idea, to use several optimally designed spaced seeds to detect the
similarities.

The spaced seed and multiple spaced seeds have also been used to
achieve 100% sensitivity for similarity detection. In this direction,
Kucherov et al. (2005) tried to minimize the number of multiple
spaced seed patterns used. Burkhardt and Kärkkäinen (2003) used
a single spaced seed with fixed number of occurrences between the
pattern and the text string.

In all of the previously mentioned spaced seed applications, the
same seed is used to index each position of the subject sequence
or the query sequence. This is largely due to the fact that we do
not know the boundaries of the similar regions between the two
sequences before conducting the search, and therefore have to treat
all the positions equally. However, in the read mapping application,
all the reads are short sequences with known boundaries. This allows
us to extend the multiple spaced seeds idea, and use different seeds to
index different positions of a read. This provides more flexibility to
the design of seeds that ‘collaborate’ with each other from different
positions, resulting greater hit probability with fewer indexes (and
therefore smaller memory consumption).

In this paper, we study the theoretical lower bound of the number
of indexes required for each read to gain 100% sensitivity in the
mapping process; and design seeds to achieve the theoretical lower
bound, for all practical cases.

Based on this framework, we present ZOOM, fast reads mapping
software for next generation sequencing, unparalleled in speed, at
full sensitivity. We also extend it to allow insertion and deletion
type errors, and utilize confidence score information and pair-end
sequencing data to enhance mapping accuracy.

2 METHODS

2.1 Theory: designing spaced seeds
In the simplest case, the reads mapping problem can be stated as: given a
set of reads R, for each read r ∈R, find its target regions on the reference
genome G, such that for each target region t there are at most k mismatches
between r and t, Figure 1.

For a read r of length m, the matching status between r and the target
region t can be represented by a 0–1 string of length m, where ‘1’ denotes
a match and ‘0’ denotes a mismatch. Let (m,k) denote all such regions of
length m with k mismatches.

Following Ma et al. (2002), a spaced seed can be denoted by a binary string
such as 111010010100110111. A ‘1’ in the spaced seed means it requires a
match at that position, and a ‘0’ means ‘don’t care’ position. The length of
the seed is the string length, and the weight of the seed is the number of 1s
in the string.

We extend the idea of spaced seed to use different spaced seeds at
several designated positions of the read. Thus, a spaced seed becomes the
combination of its pattern and the read position where it is applied. For
example, a seed 0001110100000000 is the seed ‘11101’ applied at the fourth
position of the read with length 16. In what follows, without specification, a
spaced seed has the same length as the read. Therefore, it is only used once
to index a read.

Given m and k, we try to design a minimum set of spaced seeds of weight
w to achieve full sensitivity for (m,k) regions. We have two competing design
goals:

• The seed weight w should not be too small to avoid too many false
positives that slow down the mapping process;

ACGAACGTATGT

ACGTACGTACGT

G: reference genome

R: reads set
t: target region

r 

Fig. 1. The goal is to map each short read to the reference genome, allowing
a few mismatches between the read and the target region.

Table 1. The exact number of spaced seeds required and sufficient to detect
up to two mismatches for each read length, at full sensitivity

Weight Read Length

25 26 27 28 29 30 31 32 33 34 35 36

9 4 4 3 3 3 3 3 3 3 3 3 3
10 4 4 4 4 4 3 3 3 3 3 3 3
11 5 5 5 4 4 4 4 4 3 3 3 3
12 6 6 5 5 5 4 4 4 4 4 4 3
13 7 6 6 6 6 5 5 5 4 4 4 4
14 7 6 6 6 6 5 5 5 4 4
15 7 6 6 6 6 5 5 5
16 7 6 6 6 6 5

Empty entries are considered as impractical cases and we didn’t give their exact values.

• The higher the seed weight, the more seeds would be needed to achieve
full sensitivity. This requires more memory, and eventually also slows
down the mapping process.

To maximize the performance, for the fixed seed weight, we wish to design
as few spaced seeds as possible under the full sensitivity constraint. In another
word, we are expecting a tight lower bound on the number of spaced seeds
used.

Let LIN(m,k,w) denote the minimum number of weight-w seeds needed
to detect all (m,k) regions. We have extensively proved the existence of such
tight lower bounds for a wide spectrum of problem settings (the combination
of read length m, allowed mismatches k and seed weight w), and constructed
corresponding spaced seed sets. The proof and seeds construction procedure
is related to problem parameters, and is done case by case. Due to space
limitation, we only present the case of LIN(33,2,15) and list other results in
Table 1, where each single entry involves a proof similar to that of Theorem 1.

Theorem 1. LIN(33, 2, 15) ≥ 6

Proof. Let binary string m be the matching status of the read and its target
region and S be a set of spaced seeds. Consider s∈S, if for some position
p, s[p]=1∧m[p]=0, then m escapes the detection of s, or m[p] rejects s.
Denote the set of spaced seeds rejected by m[p]=0 as F(p), so m is detected
by S, if and only if there exists at least one seed not rejected by all the
mismatch positions of m. That is,

⋃
p=1,···,|m|F(p)⊂S.

We will use Figure 2 to show that, if only five spaced seeds of weigth
15 are used, then there exists a string with two zeroes out of length 33
that escapes the detection of any combination of these five spaced seeds,
formulized as:

∀s1,...,s5,
∣
∣{k|si[k]=1}∣∣=15,

∃m,
∣
∣{k|m[k]=0}∣∣=2,

s.t., ∀si, ∃p, si ∈F(p).

By simple observation, we know that the above formula holds in either
of the following two cases:

∃p, |F(p)|≥4; (1)

∃p,q, |F(p)\F(q)|=3∧|F(q)\F(p)|=2; (2)
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Fig. 2. The graph is used to aid the proof of Theorem 1. A solid cell means
that a ‘1’ is placed at that seed position, and a crossed cell means that the
seed must have a ‘0’ at that position.

Define Ns(p)= ∣
∣{k|sk[p]=1}∣∣ as the number of seeds having ‘1’at position

p, and Np(s,P)= ∣
∣{p|s[p]=1, p∈P}∣∣ as the number of ‘1’s s having inside

position set P. Because 
 15×5
33 �=3, so ∃a, Ns(a)≥3. W.l.o.g, let s1[a]=

s2[a]=s3[a]=1, as Figure 2 indicates. Also we know that, s4[a]=s5[a]=0,
otherwise resorting to case (1).

Due to the failure of case (2), it holds that ∀p, s4[p]=0∨s5[p]=0. W.l.o.g,
let s4[X]=1, s5[Y ]=1, |X|=|Y |=15, X ∩Y =∅, shown in Figure 2. So,
considering two extra positions b and c, we know that,

Np(s1,X ∪Y )≥15−3=12;
Np(s2,X ∪Y )≥12;
Np(s3,X ∪Y )≥12;

Because 
 12×3
15+15 �=2, so ∃d ∈X ∪Y , Ns(d)≥2+1=3, w.l.o.g, let s1[d]=

s2[d]=1. We know that s3[d]=0, otherwise resorting to case (1).
Now let’s consider the pattern combination of s3. It has at least 12 ‘1’s

inside X ∪Y . But none of they can resident inside Y , otherwise resorting to
case (2). So, w.l.o.g, let s3[Z]=1, Z ⊂X, |Z|=12.

Let’s divide the pattern combination of s1 and s2 into two types:

• type I: if Np(s1,Z)=0∧Np(s2,Z)=0, then Np(s1,Y )+Np(s2,Y )≥
9+9=18. But |Y |=15, so ∃p∈Y , s1[p]=1∧s2[p]=1, resorting to
case (2);

• type II: otherwise, w.l.o.g, let s1[e]=1, and we get that Np(s2,Y )=0,
otherwise resorting to case (2). So Np(s2,Z)≥1. Again we get that
Np(s1,Y )=0. Now inside position set X, it holds simultaneously that
Np(s1,X)≥12, Np(s2,X)≥12 and Np(s3,X)≥12. Because 
 12×3

15 �=3,
so ∃p∈X, s1[p]=s2[p]=s3[p]=1, and that finally resorts to case (1);

So, under any possible pattern combination of these five spaced seeds of
weight 15, there always exists a string with two zeros that can not be detected
by them. This completes the proof. �

By manually constructing the spaced seeds, we have obtained the
tight lower bounds of the number of spaced seeds required to achieve
100% sensitivity for reads of length ranging from 15 to 64, allowing two
mismatches. Table 1 lists part of the results. For example, the following four
weight-13 seeds can detect up to two mismatches for read length 33:

111111111111100000000000000000000
000000011111111111110000000000000
000000000000000000001111111111111
111111100000011111100000000000000

As read length increases, so should the number of errors allowed, such as
four mismatches for reads of 50 bp. Similar strategies also apply to design
spaced seed patterns of 100% sensitivity for wider range of read lengths and
error bounds (for example, nine spaced seeds of weight 14 are sufficient to
detect four mismatches out of 50 bp). A set of spaced seeds designed for k
mismatches with 100% sensitivity can also be used in the case of more than
k mismatches, with slightly lower sensitivity.

2.2 The ZOOM system design
We have implemented ZOOM which maps reads of the Illumina/Solexa 1G
sequencing platform to the reference genome. ZOOM utilizes the extended
spaced seeds technology which is the key to its mapping efficiency and
accuracy.

We will describe the basic model of ZOOM first considering only
mismatches between reads and the reference genome. In Sections 2.2.1, 2.2.2
and 2.2.3, we will extend the basic model to allow insertions and deletions,
and utilize the sequencing quality scores and pair-end information to enhance
mapping accuracy.

To consider the input reads set as a whole, instead of mapping them
one by one, ZOOM builds hash tables for the reads set using the spaced
seeds designed. For a given seed, the reads sharing the same letters at the
1-positions of the seed are grouped into the same entry of the hash table. Then
ZOOM scans the reference genome, and for each genome position finds read
candidates from the hash table that have hits with current genome position.
These candidates are then further verified. Using appropriate spaced seeds
we designed, this filtering strategy of finding read candidates will not miss
any true mappings within the mismatch threshold.

For the clarity of presentation, assume that the input reads all have the
same length m and we ignore the confidence scores. In general, reads of
similar lengths can be grouped or trimmed to a uniform length. ZOOM
starts by hashing the reads set using the spaced seeds set, one hash table
for a seed. Each read is indexed and stored according to the hash keys
generated by these seeds. A hash key is translated from the nucleotide letters
picked at positions that correspond to 1-positions in a spaced seed. For
example, a read ACGTACGTAC indexed by the weight-3 seed 0001101000
will generate hash key TAG, according to which the read is stored in the read
list entry of the hash table for seed 0001101000.

After hashing the input reads set, the reference genome is scanned through,
using a sliding window of size m. The same set of spaced seeds are applied
to the current window. For each hash key generated, the corresponding
hash table entry is fetched and each read inside is checked against the
genome segment. In our implementation, each read or genome segment is
encoded as two machine words, and bitwise operations are used to calculate
the mismatches between them. Finally the number of mismatches can be
calculated by counting the number of one bits similar as in (Warren, 2002).

Let N be the size of the reads set, n be total number of spaced seeds
used, and w be the maximum weight of the seeds. The space complexity is
bounded by O(n∗(4w +N)). The hash tables can be merged to reduce the
space complexity to O(4w +n∗N).

2.2.1 ZOOM-C: Mapping with sequencing confidence scores The
Illumina/Solexa 1G sequencing system produces tens of millions of reads
of the sampled genome per run, and supplies a confidence score on each
read position, based on its base-calling value for four different types of
nucleotides. The confidence score shows the sequencing quality of the
associated base of an Illumina/Solexa read. Low confidence score hints
low sequencing quality at that position. Thus mismatches occurring at high
quality positions are less acceptable than those at low quality positions.
We extend the ZOOM model to ZOOM-C which allows k mismatches on
positions with high quality score. Following the idea in RMAP, with provided
confidence threshold, ZOOM-C will ignore mismatches at low quality bases
on the basis of ZOOM, without sacrificing much program efficiency.

2.2.2 ZOOM-I: Mapping allowing insertion and deletion Besides the
mismatches, indels (insertion and deletion errors) are another important
type of mutation. Although Illumina/Solexa platform is less affected by
homopolymers than the 454 sequencing platform, the SNPs can cause indels
too. We extend the ZOOM basic model to ZOOM-I allowing insertion
and deletion at the verification stage. To detect indels between a genome
segment and a read, straightforward but costly dynamic programming can
be employed. ZOOM-I chooses a simpler way by enumerating possible indels
on the genome segment and compares the mutated segments with each read
candidate. Because our encoding of reads enables the use of bit-parallelism
in read comparison, this approach is faster than the dynamic programming
when the number of indels is limited.

2.2.3 ZOOM-P: Mapping with pair-end information Several next
generation sequencing technologies can also produce paired end reads output

2433



H.Lin et al.

to enhance mapping accuracy and help to find genome rearrangement and
structure variation (Ng et al., 2005; Shendure et al., 2005; Wei et al.,
2006). By sequencing both ends of a sample sequence segment, the reads
produced are paired together. Paired reads should be located on the same
direction of the reference genome and within a distance range which is
related to the sequencing technology. The pairing restriction greatly reduces
the possibility of a read mapping to random positions, thus helps to identify
their correct positions on the reference genome. ZOOM is extended to
ZOOM-P, supporting the mapping of paired end reads by checking the
mapping information of each read’s counterpart, when this read is mapped to
current reference genome position. Only when the mapping distance between
two paired reads is within the range limit, their mapping information is
reported and collected. Indels are also allowed on both reads, adopting similar
strategy as in ZOOM.

3 RESULTS
The efficiency and accuracy of ZOOM are assessed on real
experimental data first, then on three larger sets of simulated data to
show its speed advantage. The following experiments are all carried
out on one core of a AMD Opteron 275 processor, with 8G memory.

3.1 Experiments on real data
Two real data sets were used in our experiments: the
BAC data set and the ChIP-Seq transcription factor data set
from (Robertson et al., 2007).

The BAC experimental data set was generated using an
Illumina/Solexa 1G sequencer at the CSHL genome center. The
samples used are two BACs covering a 162 kb sequence segment
inside the MHC region, which is an A1-B8-DR3 alternate haplotype
assembly of the human chromosome 6 based on the sequence data
from the COX library (Stewart et al., 2004). Totally there are
3 415 291 reads of length 36 each, forming an approximately 700×
coverage of this 162 kb region. Three target regions are used as the
reference genomes:

• MHC-162k: the 162 kb sequence segment with offset from
1878000 to 2040753 inside the MHC region, where the BAC
data was sampled;

• chr6: the human chromosome 6 (version hg18), total size
170 Mb, not repeat-masked;

• all: all human chromosomes (version hg18), total size 2.86 Gb,
not repeat-masked;

The ChIP-Seq transcription factor data set (Robertson et al.,
2007) was generated with STAT1 ChIPs using Hela S3 cells
that were stimulated/unstimulated with IFN gama (denoted
as STAT1-stimulated and STAT1-unstimulated respectively).
The method used was ChIP-sequencing combining chromatin
immunoprecipitation and massively parallel sequencing. STAT1-
stimulated has 23 980 365 reads of length 27 each and STAT1-
unstimulated has 22 175 585 reads of the same length. We used all
hg18 human chromosomes as their reference genomes.

Unless stated otherwise, the spaced seeds we used are four weight-
13 spaced seeds described in the Section 2.1, and we let the program
report all the reads that are uniquely mapped to the reference genome
with at most two mismatches.

3.1.1 Efficiency For the comparison in this section, ELAND,
RMAP and ZOOM guarantee 100% sensitivity when there are at
most two mismatches, while BLAST, BLAT and Mosaik do not.

Table 2. Mapping efficiency compared to BLAST, BLAT, RMAP and
Mosaik on BAC data

Program BAC on MHC-162k BAC on chr6 BAC on all

BLAST 06:56:11 (51M) >5 days >8 days
BLAT 00:04:06 (32M) 06:33:03 (32M) 7 days+22:47:16(32M)
RMAP 00:00:51 (1.9G) 00:27:54 (1.9G) 10:09:03 (1.9G)
Mosaik 00:05:33 (214M) 00:07:41 (3.4G) 02:11:15 (3.5G)
ZOOM 00:00:37 (1.1G) 00:06:09 (1.1G) 01:33:03 (1.1G)

Time is represented as hh:mm:ss.

0

1000

2000

3000

4000

5000

6000

7000

14 16 18 20 22 24 26 28 30 32
tim

e 
(s

ec
)

read length (bp)

ELAND
ZOOM

Fig. 3. Speed comparison of ELAND and ZOOM mapping the BAC data
set to chr6, allowing two mismatches on reads length from 15 bp to 32 bp.

• Efficiency compared to BLAST, BLAT, RMAP and Mosaik:
On the BAC data set, we compare the speed of our
program with BLAST (Altschul et al., 1990) (version 2.2.9),
BLAT (Kent, 2002) (version 31x1) which is capable of aligning
high similar sequence segments quickly, RMAP (Smith et al.,
2008) which has been developed recently, and Mosaik (beta
version). Table 2 lists the time used to map the BAC data
set onto the reference genomes, allowing two mismatches,
together with the memory usage. The table shows the speed
advantage of ZOOM. For Mosaik, since it failed to index all
chromosomes, we let it map to each chromosome separately.
On the two reference genomes MHC-162k and chr6, Mosaik
mapped 54.6% and 45.3% of reads, respectively. This is
noticeably lower than the full-sensitive RMAP and ZOOM.
They both mapped 56.68% and 57.77% of the reads onto the
two reference genomes. The remaining unmapped reads are
due to various reasons, including more than two mismatches
and/or the existence of indels.

• Efficiency compared to ELAND: ELAND (version 0.2.2.5),
which is shipped with Illumina/Solexa platform, is only capable
of mapping reads of 15–32 bp, with at most two mismatches.
When reads of length 15–25 bp are concerned, ELAND is
the most efficient software as we know. To compare the
performance of ELAND with ZOOM, we cut each read in the
BAC data set to fixed length and map them to chr6. Figure 3
displays the time usage of both programs for various reads
length. Clearly, ZOOM is more efficient than ELAND.
ChIP-Seq data is another important output stream of next
generation sequencing technology, and we also compared two
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Table 3. Mapping efficiency on ChIP-Seq data. Six spaced seeds with weight
13 were used in ZOOM

Data set Reads cnt ZOOM ELAND

STAT1-stimulated on hg18
Part1 12 471 522 03:24:13 (2.9G) 04:29:57
Part2 11 508 843 03:19:59 (2.9G) 03:41:53
All 23 980 365 04:49:29 (5.1G) −

STAT1-unstimulated on hg18
Part1 7 667 108 02:48:03 (1.9G) 03:21:10
Part2 14 508 477 03:29:27 (3.4G) 04:28:34
All 22 175 585 04:21:01 (4.8G) −

programs using two ChIP-Seq data sets of length 17 bp from
(Robertson et al., 2007). Both ChIP-Seq data sets are too
large for ELAND, so we split the data set into two parts and
use ELAND to map them separately. ZOOM can handle both
complete ChIP-Seq data sets, so we also include the time and
memory usage for ZOOM on the unsplit data sets, listed in
Table 3. The results show that mapping reads together can save
a lot of time.

• SXOligoSearch: We do not have access to the SXOligoSearch
software. In addition, the software requires a special hardware
of 64G memory. For these reasons, we did not compare it with
ZOOM.

3.1.2 Accuracy

• Seed sensitivity: We have proved that ZOOM’s approach has
100% sensitivity for up to two mismatches. To examine the
sensitivity of ZOOM on reads with more than two mismatches
and containing indels, we use the SSearch program (Smith-
Waterman algorithm implementation)(Lipman and Pearson,
1985) to align each read in the real BAC experimental data set
to the MHC-162k reference region, and use the best alignment
result with the highest score for each read as the control sets,
grouped by edit distances. The sensitivity using different sets
of spaced seeds is evaluated as the percentage of alignment
results inside the control set successfully found by ZOOM.

Figure 4 shows the sensitivity under different edit distances
ranging from one to five. Three sets of spaced seeds were
tested: s33.w13.r2 is our default seed choice, the set of four
seeds designed for read length 33 with two mismatches;
s33.w11.r3 is the set of 13 seeds designed for read length
33 with three mismatches; and s36.opt, the optimized spaced
seed 1101111011111 slided to hash each position of a read.
Both s33.w11.r3 and s36.opt have 100% sensitivity for three
mismatches.

It can be seen that our default seed choice, s33.w13.r2,
achieves satisfactory sensitivity even if there are indels and
the edit distance is greater than 2. If higher sensitivity level
is desired, then s33.w11.r3 or even s36.opt is preferred. The
latter achieves more than 97% sensitivity even when the edit
distance is 5. The speeds of using s33.w11.r3 and s36.opt
are approximately six times slower than the default seed. The
ability to maintain high sensitivity on reads with indels and
more than two mismatches is a big advantage of ZOOM over
other software.
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Fig. 4. The sensitivity of different spaced seed strategies and random
projection. The benchmark is built using SSearch to align the BAC reads
onto the MHC-162k region. For each edit distance, the sensitivity reflects its
true positive ratio inside the corresponding control set.

On another aspect, spaced seed can be viewed as projection
with fixed pattern, such as s33.w13.r2 is four projections on
different read positions. An interesting question is whether
the same performance of s33.w13.r2 can be achieved by
four random projections as done in (Buhler J, Tompa M).
To answer this question, the sensitivity (averaged over
10 000 repeats) of four weight-13 random projections is
plotted in Figure 4 as rand.proj.13 × 4. Clearly the sensitivity
is much worse than s33.w13.r2. To achieve similar sensitivity,
the random projection strategy needs to use 15 projections
(rand.proj.13 × 15), almost quadrupling the number of
seeds needed. This clearly demonstrates the power of seed
optimization.

• Coverage: To evaluate the program coverage ratio, we mapped
the BAC data set onto human chromosome 6 (chr6), and picked
out only the reads that unambiguously mapped into the 162 kb
MHC reference region of chr6 (MHC-162k, where the BAC
data set was sampled). That is, a mapping into MHC-162k
is counted only if the map has fewer mismatches than all
the other mappings of the same read on chr6. The coverage
of each position on MHC-162k is defined as the number of
unambiguously mapped reads that cover this position. The
accumulated coverage is defined as the number of positions
with coverage no less than a certain coverage threshold.

We compared the coverage ratio of four models: ELAND.25
and ELAND.32 are mapping results of ELAND by considering
first 25–32 bp of each read during the mapping step (but the
full length of 36 bp are used in counting the coverage for fair
comparison); ZOOM.m4 is ZOOM’s result using s33.w13.r2
seed set, and allowing four mismatches; and ZOOM-C12.m4
is ZOOM-C’s result using s33.w13.r2 seed set, and allowing
four mismatches on positions with sequencing quality no less
than 12.

Figures 5 and 6 show the coverage curve and accumulated
coverage curve for four models. Clearly, ZOOM-C12.m4
has the highest average coverage (Fig. 5) and the highest
accumulated coverage curve (Fig. 6). This suggests that
allowing more mismatches with longer read length (ZOOM)
and incorporating sequencing quality scores (ZOOM-C)
indeed help to increase the quality of the reads mapping.
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Fig. 5. The 162 kb MHC reference region coverage curve of four models.
ELAND.25 and ELAND.32 considers different read lengths, and ZOOM-C
incorporating sequencing qualities. For each coverage value, the number of
positions having that coverage ratio is counted.
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having coverage ratio no less than that threshold is counted.

3.1.3 Seed weight versus efficiency For same mismatch threshold
on fixed read length, to achieve 100% sensitivity higher weight
requires more spaced seeds in the set, hence longer time to
construct the hash tables and scan the genome. However, higher
weighted seeds will produce much fewer false positive candidates.
We compared the performance of three sets of spaced seeds of
100% sensitivity on model of two mismatches out of 36 bp: four
weight-14 seeds, four weight-13 seeds and three weight-11 seeds.
The experimental results are listed in Table 4. Although consumed
more memory, higher weighted seeds contributed a lot to efficiency.

3.2 Experiments on large-scale simulated data
To demonstrate that ZOOM can handle large scale data, we have
generated three simulated data sets and mapped them to large
reference genomes. Table 5 summarizes the performance.

• chr6.2X.e2: Human genome chromosome 6 (version hg18) was
randomly sampled with length of 36 bp. In each read, two
random bases were chosen, and mutated to one of the 4 bases
with equal probability. Totally 9 494 444 reads were generated,
forming 2X coverage of chr6.

• chr6.5X.e2: Similar to the chr6.2X.e2 data set, 23 736 110 reads
were generated to simulate 5X coverage of chr6.

Table 4. time and memory usage to map BAC data set to three reference
genomes, for different seed weights

Run Weight-14 × 4 Weight-13 × 4 Weight-11 × 3

BAC on MHC-162k 00:00:40 (3.0G) 00:00:37 (1.1G) 00:00:38 (796M)
BAC on chr6 00:04:06 (3.0G) 00:06:09 (1.1G) 00:06:14 (796M)
BAC on all 01:11:55 (3.0G) 01:33:03 (1.1G) 01:45:04 (796M)

Higher weighted spaced seeds used more time to construct the hash tables, but consumed
less total time on larger reference genome.

Table 5. Mapping efficiency evaluation on simulated data sets

Experiment run ZOOM

Chr6.2X.e2 on chr6 00:09:48 (2.9G)
Chr6.2X.e2 on the human genome 02:37:04 (2.9G)
Chr6.5X.e2 on chr6 00:17:17 (6.5G)
Chr6.5X.e2 on the human genome 04:48:05 (6.5G)
All.0.2X.e2 on the human genome 04:25:40 (4.5G)

Higher weighted spaced seeds used more time to construct the hash tables, but consumed
less total time on larger reference genome.

• all.0.2X.e2: Similar to above, 15 931 849 reads with two
mismatches were randomly sampled on human chromosome
1–22, forming 0.2X coverage of the human genome.

Table 5 demonstrated that ZOOM scales well. The time
complexity increases approximately linearly with respect to the
genome size and the number of reads, respectively. Note that the
5X coverage reads of chromosome 6 can be mapped back to
chromosome 6 in <18 min. Considering the fact that chromosome 6
is above the average chromosome size, if all human chromosomes
are sequenced separately with 15X coverage, ZOOM will map all
reads to the 23 human chromosomes separately in no more than
one day on a single CPU, allowing two mismatches, and with only
moderate memory requirement.

With the typical high coverage (100X) of Solexa sequencing
applications, ZOOM may also be used as a sequence assembler
when a close reference sequence is available (e.g. primate BAC
sequencing or population sampling).

4 CONCLUSION AND DISCUSSION
The analysis of next generation sequencing data requires the
mapping of short reads back to a reference genome, allowing a
few mismatches and indels. We extended the multiple spaced seeds
method to design different seeds on different positions of a read.
This significantly reduced the number of indexes per read required
to achieve 100% sensitivity, resulting less memory consumption and
fewer hits. Consequently, the mapping speed is greatly improved.
The seeds designed for only mismatches were demonstrated to also
have very high sensitivity when indels are present.

We studied the lower-bound for the number of indexes needed to
achieve 100% sensitivity, and designed optimal seeds that achieve
the lower-bound for all practical cases. In this paper, we deduce
such lower-bounds case by case, and to seek for a generalized way
to compute the tight lower-bound remains an open problem.
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Based on our theoretical studies, we have implemented ZOOM, a
short reads mapping program with high efficiency and accuracy.
With the extended spaced seed technology, our program can
achieve guaranteed sensitivity with low false positive rate. Both
real and large simulated data sets are used to benchmark ZOOM.
Compared to BLAST, BLAT, RMAP, Mosaik and ELAND, ZOOM
is unparalleled in its speed, at full sensitivity.

The ultimate goal of ZOOM is to help personalized
medicine, zooming through genome scale of reads to produce
SNPs (Hodges et al., 2007), while the patients await. The bottleneck
should not be, and will not be, on the computational side.
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