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ABSTRACT

Motivation: Gene set analysis allows formal testing of subtle but
coordinated changes in a group of genes, such as those defined
by Gene Ontology (GO) or KEGG Pathway databases. We propose
a new method for gene set analysis that is based on principal
component analysis (PCA) of genes expression values in the gene
set. PCA is an effective method for reducing high dimensionality and
capture variations in gene expression values. However, one limitation
with PCA is that the latent variable identified by the first PC may be
unrelated to outcome.
Results: In the proposed supervised PCA (SPCA) model for gene
set analysis, the PCs are estimated from a selected subset of genes
that are associated with outcome. As outcome information is used
in the gene selection step, this method is supervised, thus called
the Supervised PCA model. Because of the gene selection step, test
statistic in SPCA model can no longer be approximated well using
t-distribution. We propose a two-component mixture distribution
based on Gumbel exteme value distributions to account for the gene
selection step. We show the proposed method compares favorably
to currently available gene set analysis methods using simulated and
real microarray data.
Software: The R code for the analysis used in this article are
available upon request, we are currently working on implementing
the proposed method in an R package.
Contact: chenx3@ccf.org.

1 INTRODUCTION
Microarray technology has been used extensively in biological and
medical studies to monitor thousands of genes at the expression
level across the genome. Typically, statistical analysis for microarray
calculates P-values for each gene based on a statistical test first, and
then applies multiple comparison methods to adjust the nominal
P-values. When many significant genes are selected, it is often
difficult to interpret the results in biological context. On the other
hand, due to the large number of genes tested, it may also be possible
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should be regarded as joint First Authors.

that too few significant genes are left after adjusting for multiple
comparisons.

Gene set analysis tests for expression changes in groups of related
genes in microarray data, such as those defined by gene annotation
databases Gene Ontology (GO) (Ashburner et al., 2000) and KEGG
Pathway (Kanehisa and Goto, 2000). In additional to facilitate
interpretation of results, gene set analysis also increases power by
combining weak signals from a number of individual genes in the
group.

Software packages such as GENMAPP (Dahlquist et al.,
2002), CHIPINFO, ONTO-TOOLS (Draghici et al., 2003), GOstat
(Beibbarth and Speed, 2004), DAVID (Dennis et al., 2003),
WebGestalt (Zhang et al., 2005), GOTM (Zhang et al., 2004), JMP
Genomics (http://www.jmp.com/genomics) and GeneTrail (Backes
et al., 2007) use various approaches to test for overrepresentation
of significant genes that belong to a gene set. A full discussion
of the methods and a detailed comparison of these tools can be
found in Khatri and Draghici (2005). Rivals et al. (2007) discussed
different sampling designs that can lead to the hypergeometric
null distribution and details on the implementation of the
methods. Despite its popularity, there are a number of limitations
with overrepresentation analysis: the assumption that genes are
independent may not hold for tightly co-regulated gene sets; the
selection of significant genes is often based on an arbitrary cutoff;
and information is lost by not using continuous information in
P-values.

One method that uses the continuous distribution of P-values is
the Gene Set Enrichment Analysis (GSEA) method (Mootha et al.,
2003; Subramanian et al., 2005). GSEA makes statistical inference
by permuting sample labels, thus preserving correlation structure
among genes. Some extensions of the GSEA method include GSA
(Efron and Tibshirani, 2007), SAM-GS (Dinu et al., 2007), GSEA
via dynamic programming (Keller et al., 2007), GSEAlm (Jiang and
Gentleman, 2007). Other permutation-based methods, include SAFE
(Barry et al., 2005), multivariate N-statistic (Klebanov et al., 2007)
and others. Some recently proposed parametric methods that do not
rely on permutation test, include PAGE (Kim and Volsky, 2005),
GlobalTest (Goeman et al., 2004, 2005), GlobalANCOVA (Hummel
et al., 2008), Mixed models (Wang et al., 2008) and others.

Most of the aforementioned algorithms had been presented as
tests for association of gene sets with binary outcomes. In practice,
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microarray experiments may also have continuous outcome for
quantitative traits such as lesion score or body weight. In the field
of cancer research, the outcome is often survival time or time
to death, to avoid arbitrary cutoff such as 10 years survival, the
analysis needs to account for censored observations. Censoring
occurs, for example, when the patients survived over the entire
study period or were lost to follow-up; in these cases, we only know
partial information on the outcome. One way to analyze microarray
dataset with survival outcome using Fisher’s exact test is to fit Cox
regression model for each gene (with its gene expression value as
predictor) and then use a predetermined cutoff (e.g. P-value < 0.05)
based on P-values from Cox model as threshold for declaring
differential gene expression. Similarly, GSEA can also be adapted
for microarray experiments with continuous or survival outcome by
using linear regression or Cox regression model instead of t-statistics
to obtain local statistics for each gene. However, the performance
and properties of these tests for continuous or survival outcomes had
not been adequately studied.

In this article, we propose a new gene set analysis method
for testing association between sets of genes with continuous or
survival outcomes. We evaluate its performance and compare it to
performance of tests in currently available tools, such as Fisher’s
exact test, GSEA and extensions of GSEA. In addition, we illustrate
this new method using data from two microarray experiments with
lesion score and survival outcomes. This new method extends
methods in Tomfohr et al. (2005), Bair and co-workers (2004, 2006).
Tomfohr et al. (2005) performed principal component analysis
(PCA) on gene expression values from an a priori defined gene
set, estimated correlation statistic between continuous outcome and
the first PC, and then tested association between gene sets and
outcome using a permutation test. Although PCA is an effective
method for reducing high dimensionality and capture variations in
gene expression values (Alter et al., 2000), one limitation is that
the latent variable identified by the first PC may be unrelated to
outcome.

Instead of performing PCA on all genes, Bair and co-
workers (2004, 2006) proposed supervised PCA (SPCA) method,
which estimated PCs from a selected subset of genes. Because
outcome values were used to select the subset of genes, this
procedure is supervised, and thus called SPCA. The SPCA method
was shown to be an effective algorithm for classification of
survival and continuous outcomes using gene expression data. The
estimation of PCs from a selected subset of genes significantly
improved prediction accuracy in SPCA algorithm compared to
the PCA algorithm without the gene screening step. Similarly, in
the classification of biological samples setting, Dai et al. (2006)
showed partial least squares and sliced inverse regression, which
uses outcome information to construct predictors, performed better
than unsupervised PCA in terms of prediction accuracy.

In this article, we extend the SPCA method to gene set analysis
setting to test for significant association of a gene set with outcome.
In Bair and Tibshirani (2004), the subset of genes used to estimate
latent variable was selected from all the genes on a microarray. In
contrast, here we select subset of genes from an a priori defined
group of genes, for example, those with the same Gene Ontology
(GO) term. A linear model with PC score constructed with the
selected genes as predictor (see details in Section 2.2) is then used
to test for association between gene set and outcome. Because
of the step to select subset of genes, the resulting test statistics

for regression coefficient in the proposed linear model can no
longer be approximated well using t-distribution, to account for
this, we propose a mixture model of extreme values to approximate
distributions of the test statistic. The details of the proposed mixture
model and SPCA for testing association between gene set and
outcome are discussed in Section 2. In Section 3.1, we show that
this method performs favorably compared to the unsupervised PCA
model, Fisher’s test, GSEA and its extension GSEAlm for gene set
analysis using simulated data. The proposed SPCA model provides
the ability to model and borrow strength across genes that are both
up and down in a gene set. In addition, it operates in a well-
established statistical framework and can handle design information,
such as covariate adjustment, matching information and testing
for interaction of effects. In Sections 3.2 and 3.3, we illustrate
the SPCA model using real microarray datasets with continuous
outcome lesion score and survival outcome time to metastasis of
cancer. In Section 4, we provide some concluding comments.

2 METHODS

2.1 Principal component analysis
Consider a gene set with p genes, let x= (x1 x2 ... xp)t be a p×1 vector, where
xi is random variable for gene expression values of the i-th gene, t denotes
transpose of a vector. Let � be covariance matrix of x with dimension p×p,
the eigenvectors and eigenvalues of � are defined as vectors αι and scalars
λi such that �αι =λiαι, i = 1, …, p.

The first PC score (PC1) is a scalar defined as the linear function αt
1x=

α11x1 +α12x2 +···+α1pxp of elements of xhaving the maximum variance
among all linear functions of x (Jolliffe, 2002). Without loss of generality,
assuming λ1 ≥λ2 ≥···≥λp, then it can be shown the vector of coefficients α1

for the first PC score is the eigenvector corresponding to largest eigenvalue
of � and var

(
αt

1x
)=λ1. The set of coefficients {α11,...,α1p} are sometimes

called the loadings of the first PC.
The estimation of coefficients {αι;i=1,...,p} (eigenvectors) for PC scores

on a set of genes can be computed using singular value decomposition (SVD)
(Jolliffe, 2002). Briefly, let X be a N ×p matrix with columns corresponding
to standardized gene expression values (with mean 0 and variance 1) of a
group of genes, so there are N samples and p genes. The k-th PC score
is zk =Xαk where αk is unit length eigenvector of covariance matrix S=
XtX/(N−1) corresponding to k-th largest eigenvalue λk , and var

(
zk

)=λk .
Let r = rank(X). The SVD of X is

X =ULAT (1)

where U =[
u1, u2,... ,ur

]
is an N ×r matrix, where uk = l−1/2

k Xαk is
scaled k-th PC score, these are linear combinations of gene expression

values corresponding to columns of matrix X. L=diag
{

l1/2
1 ,l1/2

2 , ... ,l1/2
r

}
is an r × r diagonal matrix where lk is k-th eigenvalue of XtX, A=[
α1, α2, ... , αr

]
is a p× r matrix where αk is eigenvector of covariance

matrix S, which are also coefficients for defining PC scores. Note that
since k-th eigenvalue of covariance matrix S is λk = lk/(N −1), we have
var(uk)=1/(N −1).

Therefore, SVD provides not only the coefficients and SDs for the PCs
with L and A matrices, but also the PC scores of each observation with
matrix UL. For simple models, it can be shown that the PCs provide an
optimal approximation to the original variables (Jolliffe, 2002).

2.2 SPCA model
The assumption behind the SPCA model is that given an a priori defined
group of genes, only a subset of these genes is associated with a latent
variable, which then varies with outcome. This assumption is based on the
fact that because gene sets are defined a priori and are biological context
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free, when they are put into a specific biological context such as those in a
microarray study (e.g. a specific tissue type or a specific disease), typically
only a subset of genes from the gene set is responsible for the corresponding
cellular process.

Because the subset of genes is selected using outcome information (see
details below), SPCA is a supervised procedure. Biologically, a subset of
genes from an a priori defined gene set, each contributing a different amount,
work together to bring about changes in a cellular process, and this cellular
process then relates to variations in phenotype. Therefore, our objective is to
select the subset of relevant genes, estimate latent variable associated with
underlying cellular process, and assess statistical significance of association
between latent variable and outcome. To this end, we propose the following
SPCA model:

Model 1 :Yj =β0 +β1PC1j +εj (2)

Here, Yj is outcome value for j-th sample, PC1 is the first PC score estimated
from selected subset of genes in a predefined gene set G, it represents the
latent variable for the underlying biological process associated with this
group of genes. Magnitude of loadings for the first PC score can be viewed
as an estimate of the amount of contributions from different genes. In the
literature, the first PC score has also been called ‘eigengene’ (Alter et al.,
2000). With Model 1, statistical significance of β̂1 would indicate significant
association between gene set G and outcome.

Given a set of gene expression values G={
x1,x2,...,xp

}
for an a priori

defined gene set, the selection for the subset of relevant genes can be
accomplished in several steps:

(1) For each gene, compute an association measure ρi with outcome
by fitting linear or proportional hazard models for continuous or survival
outcomes, with values for the gene as predictor. For example, for linear
regression, let xij be gene value for i-th gene and j-th sample, we fit model
Yj =βi0 +βi1xij +εij and use ρi = β̂i1/s.e.(β̂i1) (s.e. denotes standard error)
as the association measure.

(2) Predetermine a set of n threshold values {t1,t2,...,tn}.
(2) For a given threshold value tk , let �k ={xi ⊆G : |ρi|> tk,i=1,..,p}

be the subset of genes with magnitude of association measures
above it. Compute first PC score PC1 using only genes in �k and fit
Model 1.

(3) Let Tk = β̂1/s.e.(β̂1) be the t-statistic, or the standardized regression
coefficient. So for the n threshold values, we have n t-statistics

{T1,T2,...,Tn}. Let M =
{

Tk : |Tk |= max
1≤k≤n

|Tk |
}

and we choose the subset

of genes corresponding to threshold M.

2.3 Significance testing
Without the gene selection process, when all the genes in an a priori defined
gene set are included in analysis, the test statistic T = β̂1/s.e.(β̂1) in Model 1
follows t-distribution. However, for SPCA model, after gene selection step

in Section 2.2, the test statistic M =
{

Tk : |Tk |= max
1≤k≤n

|Tk |
}

can no longer

be approximated well using t-distribution. We next show the distribution of
M follows a two-component mixture distribution based on Gumbel extreme
value distributions.

The Gumbel extreme value distributions model maximum or
minimum of a set of random variables. More specifically, given a set
of random variables {T1, ... ,Tn}, under regularity conditions (Leadbetter
et al., 1982), it can be shown that the maximum M1 = max

1≤k≤n
Tk follows

the Gumbel max distribution with distribution function F(t)=exp(−e−z1 )
and probability density function f (t)= (1/σ1)exp(−z1 −e−z1 ) where
z1 = (t−µ1)/σ1. Similarly, it can be shown that the minimum
M2 = min

1≤k≤n
Tk follows the Gumbel min distribution with distribution

function F(t)=1−exp(−ez2 ) and density function f (t) = (1/σ2)exp
(z2 −ez2 ) where z2 = (t−µ2)/σ2.

Now, for a given gene set, let M =
{

Tk : |Tk |= max
1≤k≤n

|Tk |
}

(the test statistic

in Step 4 of Section 2.2), and let p=Pr(M >0), then the distribution function
for M can then be approximated as

FM (t)=Pr(M < t)
=Pr(M < t|M >0)Pr(M >0)+Pr(M < t|M <0)Pr(M <0)
=pPr(M1 < t|M1 >0)+(1−p)Pr(M2 < t|M2 <0)
=p

{
exp(−e−z1 )

}+(1−p){1−exp(−ez2 )}
(3)

The conditioning argument in the third line above follows because if M
is positive, then M must be the maximum of all standardized regression
coefficients {Tk;k =1,...,n}, so M =M1 and it can be approximated with
Gumbel max distribution. Similarly, if M is negative, then M must be the
minimum of all {Tk;k =1,...,n}, so M =M2 and it can be approximated with
Gumbel min distribution.

The corresponding density function for M is then

f (t)= d

dt
FM (t)= p

σ1
exp(−z1 −e−z1 ) + 1−p

σ2
exp(z2 −ez2 ) (4)

Given null distribution of M (values of M corresponding to null gene sets) and
formula f (t), one can easily estimate parameters p,µ1,µ2,σ1,σ2 using any
non-linear optimization routine. We used R function optim for the analysis
in this study. These estimated parameters can then be substituted into the
formula for distribution function to calculate P-values.

For real microarray datasets, one does not know which gene set is null.
One way to deal with this issue is for each gene set from microarray dataset,
randomly generate phenotype values from the same assumed distribution as
observed phenotype and then fit Model 1. Pooling M values corresponding
to all gene sets, we then have null distribution for M. Because the phenotype
values were generated randomly, without looking at the gene expression
values, the resulting test statistics for M represent null distributions of M.
The parameters for mixture model p,µ1,µ2,σ1,σ2 can then be estimated
from this null distribution. We illustrate this procedure with two examples in
Section 3.2 for microarray datasets with continuous and survival outcomes.

Once we obtain nominal P-values, we next calculate adjusted P-values
using the R multtest package to control for false discovery rate (FDR)

using the method of Benjamini and Hochberg (1995). An adjusted P-value
of 0.05 for a gene set indicates that among all significant gene sets selected
at this threshold, 5 out 100 of them are expected to be false leads.

3 RESULTS

3.1 Simulation study
We performed a simulation study to assess the sensitivity and
specificity of the SPCA model compared with PCA, Fisher’s exact
test, GSEA and GSEAlm methods. For each scenario in Table 1, we
first generated 50 phenotype scores, corresponding to 50 samples,
from normal distribution with mean 1 and SD 1. Next, for each
sample, we generated 2500 gene expression values from the standard
normal distribution. These gene values were then assigned to 50 gene
sets, each with 50 genes.

For gene set 1, treatment effects for a subset of genes (n_genes in
Table 1) were added according to parameter ri ∼N(µr ,σ

2
r ), which

corresponds to association between expression values of i-th gene
with phenotype score. Let xj represent the phenotype score for
sample j, the gene expression value yij for i-th treated gene from
gene set 1 for sample j were generated as yij =rixj +εij where εij ∼
N(0,τ2). Under this setup, genes in the first gene set can be either
positively correlated with phenotype (up-regulated with ri >0) or
negatively correlated with phenotype (down-regulated with ri <0).
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Table 1. Simulation study results comparing SPCA, PCA, GSEA, GSEAlm, and Fisher’s Exact Test

Scene N_Genes r_mean r_variance Area Under Curve Av. P-value for Gene Set 1

SPCA PCA GSEA GSEAlm Fisher
(0.05)

Fisher
(0.1)

SPCA PCA GSEA GSEAlm Fisher
(0.05)

Fisher
(0.1)

1 5 0.1 0.5 0.898 0.758 0.740 0.567 0.674 0.699 0.059 0.410 0.259 0.428 0.656 0.606
2 5 0.1 1 0.956 0.716 0.780 0.566 0.825 0.849 0.028 0.271 0.219 0.427 0.358 0.308
3 5 0.1 1.5 0.973 0.850 0.799 0.557 0.900 0.899 0.018 0.146 0.203 0.436 0.205 0.206
4 5 0.2 0.5 0.895 0.572 0.727 0.614 0.749 0.774 0.060 0.417 0.275 0.380 0.508 0.459
5 5 0.2 1 0.947 0.740 0.781 0.604 0.875 0.874 0.032 0.250 0.219 0.389 0.260 0.259
6 5 0.2 1.5 0.963 0.848 0.758 0.604 0.890 0.899 0.022 0.147 0.219 0.387 0.205 0.206
7 10 0.1 0.5 0.962 0.707 0.788 0.613 0.775 0.774 0.025 0.283 0.211 0.383 0.458 0.458
8 10 0.1 1 0.993 0.902 0.840 0.612 0.925 0.924 0.006 0.092 0.158 0.384 0.157 0.154
9 10 0.1 1.5 0.999 0.980 0.908 0.600 0.975 0.975 0.001 0.019 0.087 0.394 0.054 0.053
10 10 0.2 0.5 0.965 0.714 0.857 0.710 0.850 0.874 0.023 0.277 0.140 0.282 0.311 0.262
11 10 0.2 1 0.995 0.887 0.868 0.700 0.925 0.924 0.006 0.110 0.129 0.294 0.156 0.153
12 10 0.2 1.5 0.999 0.995 0.887 0.678 0.975 0.999 0.001 0.005 0.113 0.316 0.053 0.004

Fisher(0.05) = Fisher’s exact test using 0.05 FDR level as significance level cutoff; Fisher(0.1) = Fisher’s exact test using 0.1 FDR level as significance level cutoff; r_mean = mean
of association measure r; r_variance = variance of association measure r; see text for details of simulation experiments.

The remaining genes in gene set 1 and other gene sets are control
genes, they were generated from N(0,τ2).

Therefore, for each scenario in Table 1, by design of the
experiment, only the first gene set was associated with phenotype
and the other gene sets were null gene sets. There were 12 (=2×2×3)
scenarios: the numbers of genes in gene set 1 with treatment effects
added were 5 or 10 genes; µr (mean for ri) = 0.1, 0.2; σ 2

r (variance
for ri) = 0.5, 1, 1.5; and the SD for noise εij was set to be τ =3.

To compare the performances of SPCA, PCA, Fisher’s exact
test, GSEA, GSEAlm algorithms, for each scenario, we generated
20 datasets, each with 2500 gene expression values and 50
phenotype scores as described above. For each method, using
gene sets from all 20 datasets (49×20 = 980 control gene sets,
and 1×20 = 20 gene sets associated with outcome), we computed
receiver operator characteristics (ROC) curves which show the
tradeoff between sensitivity and 1 - specificity as the threshold for
declaring significant gene set was varied. To compare the overall
discriminative abilities of the methods over all possible cutoffs,
we calculated the area under the ROC curve (AUC). In addition,
to compare sensitivity of the methods, we calculated the mean of
P-values for gene set 1.

The javaGSEA implementation was used for GSEA analysis,
we chose ‘Pearson correlation’ (between expression values and
phenotype scores) as the metric for ranking genes and 200
permutations were applied to phenotype labels. For SPCA,
unsupervised PCA, GSEAlm and Fisher’s exact test methods,
we used R packages (http://www.r-project.org/) superpc (with
modification), lm, GSEAlm, and fisher.test.

In terms of AUC, the results in Table 1 show that the SPCA model
outperformed the PCA and GSEA models consistently

across all scenarios, especially when the variance of ri is small.
P-values for gene set 1 from the SPCA model were smaller than
the other methods for all scenarios indicating higher sensitivity for
this method. GSEAlm which tested mean shift of ri from zero for
genes from each gene set did not perform well, probably because
signals from up-regulated genes with positive ri canceled signals
from down-regulated genes with negative ri. In contrast, the good

performance from SPCA method shows this method can be used
to effectively model reverse regulations in gene sets where both
up- and down-regulated genes are expected. Figure 1 shows the
ROC curves for the six methods for scene 4 in Table 1. Fisher’s
exact tests showed very good specificity: for example, when FDR
0.05 was used as threshold for selecting significant genes, for 980
null gene sets, Fisher’s exact test estimated gene set P-values to be
1 for all gene sets except one gene set with P-value 0.04. Therefore,
the probability of false positive, or 1 - specificity, based on null
gene sets, had only three values: 0, 1/980 and 1. The points with false
positive rate 1/980 and 1 were connected using a straight dotted line.
Similar behavior was observed for Fisher’s exact test with FDR 0.1
as threshold. On the other hand, because of this conservativeness,
sensitivity for Fisher’s exact test is also compromised. Figure 1
shows among all methods, SPCA method had the best sensitivities
across all levels of specificity.

3.2 Breast cancer dataset
We applied the SPCA, GSEA and Fisher’s exact test to data from
a breast cancer microarray experiment (Wang et al., 2005). In this
experiment, tumor samples from 286 patients with lymph-
node-negative breast cancer were collected. These patients were
treated with surgery or radiotherapy over an 11 years period. The
outcome of this study is time to metastasis, and our objective was
to identify gene sets associated with this survival outcome. To
avoid arbitrary cutoff, such as 5-year relapse-free, and to account
for patients who were lost to follow-up, we used Cox regression
models from survival analysis instead of logistic regression to
obtain local statistics for SPCA, GSEA and Fisher’s exact methods,
see details below.

The expression data with 22 283 transcripts were obtained
from Affymetrix U133a GeneChip platform (GEO Accession No.
GSE2034). We first mapped these transcripts to EntrezGene ID
and then associated them with GO biological process categories.
In order to reduce the redundancy in GO, we further removed all
child categories if corresponding parent category was within the size
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Fig. 1. Comparison of performances of SPCA, PCA, GSEA and Fisher’s
exact test using simulated data. This figure shows the ROC for the methods
SPCA, PCA, GSEA and Fisher’s exact test for scene 4 in Table 1. Fisher
(0.05) = Fisher’s exact test, using FDR 0.05 as significance cutoff for
differential expression of single genes. Fisher (0.1) = Fisher’s exact, using
FDR 0.1 as significance cutoff for differential expression of single genes.
There were 20 simulated datasets, each dataset has 2500 genes assigned to
50 gene sets, among them only the first gene set include genes associated
with outcome by design. See text for details of simulation experiment.

limitation between 5 and 300. After these steps we were left with
11 609 genes and 372 GO categories.

For GSEA method, we first applied Cox proportional hazards
regression model to each gene, with time to metastasis as outcome
and gene expression value as predictor. Next, all genes were ranked
according to standardized regression coefficient from this Cox
model, and this ranked gene list was then used for GSEA ‘Pre-
ranked’ algorithm. Finally, 200 permutations were applied to sample
labels to test if genes from each a priori defined GO gene sets
were randomly distributed along the ranked gene list. Similarly,
for Fisher’s exact test, we applied Cox model to each gene, used
FDR 0.1 as significance level cutoff to set up the two by two tables,
and calculated P-values for each gene set based on hypergeometric
distribution.

For the SPCA method, to generate null distribution for

M =
{

Tk : |Tk |= max
1≤k≤n

|Tk |
}

, where Tk is standardized regression

coefficient using the selected subset of genes (See Section 2 for
details), we assumed Weibull distribution for the survival outcome
time to metastasis and estimated shape and scale parameters by
fitting observed outcomes from 286 patients with censoring status
to intercept only Weibull survival regression model. Based on
these estimated shape and scale parameters, for each gene set, we
next generated a set of pseudo survival outcomes from Weibull
distribution. To account for censoring, each patient was randomly
chosen to have censored outcome according to the estimated
censoring proportion from observed outcomes. Next, with these
generated pseudo outcomes, we applied Steps 1–4 in Section 2.2
to each gene set. The resulting test statistics for M were then pooled
from all gene sets to obtain null distributions of M. The parameters
for mixture model p,µ1,µ2,σ1,σ2 were then estimated from this
null distribution. Finally, using observed outcomes, for each gene
set, we estimated P-values for test statistics in Model 1 based on
this null distribution, as discussed in Section 2.3.

Table 2. Ten most significant GO terms by SPCA analysis of breast cancer
dataset

GO term Size Description Adj P-value

0006915 281 Apoptosis 0.0198
0006412 188 Translation 0.0934
0045786 89 Regulation of cell cycle 0.0934
0000079 34 Regulation of cyclin-dependent protein

kinase activity
0.0934

0019538 22 Protein metabolic process 0.0934
0006959 33 Humoral immune response 0.0934
0000075 11 Cell-cycle checkpoint 0.0934
0007126 29 Meiosis 0.0934
0030521 33 Androgen receptor signaling pathway 0.0934
0008283 272 Cell proliferation 0.0934

Table 3. Ten most significant GO terms by GSEA analysis of breast cancer
dataset

GO term Size Description Adj P-value

0006412 188 Translation 0.0037
0045086 9 Positive regulation of interleukin-2

biosynthetic process
0.1300

0050772 8 Positive regulation of axonogenesis 0.1300
0045885 5 Positive regulation of survival gene

product activity
0.1799

0007242 266 Intracellular signaling cascade 0.1942
0006100 5 Tricarboxylic acid cycle intermediate

metabolic process
0.1942

0006044 11 N-acetylglucosamine metabolic process 0.2557
0006809 11 Nitric oxide biosynthetic process 0.3636
0019953 7 Sexual reproduction 0.3636
0042994 5 Cytoplasmic sequestering of transcription

factor
0.3636

For all methods, once nominal P-values were calculated, the
adjusted P-values were then computed using R multtest procedure
to control FDR using the method of Benjamini and Hochberg (1995).

The 10 most significant GO terms found by SPCA and GSEA
are listed in Table 2 and 3. At FDR 0.1 level, GSEA identified
‘translation’ as the only significant GO term. For Fisher’s exact
test, the lowest adjusted P-value was 0.2337 for ‘cell motility’. In
contrast, SPCA identified additional 39 significant GO terms at FDR
0.1 level besides ‘translation’. In agreement with our simulation
study, these results show that power for gene set analysis can be
improved for GSEA and Fisher’s exact test using SPCA method.

We next examined overlap of our analysis results with previous
published results. Wang et al. (2005) identified a 76-gene signature
for predicting tumor metastasis. These genes were selected by fitting
Cox’s proportional hazard models on bootstrap samples to construct
multiple gene signatures that maximize area under the ROC curve
(AUC) on test samples. We mapped these 76 prognostic genes to
GO categories to examine their overlap with the selected gene sets
from our analysis. Among the top 20 GO terms selected by SPCA, 9
of them contained genes from the 76-gene signature. However, only
one of the top 20 GO terms from GSEA included genes from the
76-gene signature. The most significant GO term selected by SPCA
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Fig. 2. Gene plot for genes in GO category apoptosis from breast cancer
dataset. The values on the horizontal axis are gene symbols of genes from
apoptosis GO term, values on vertical axis refer to importance score for the
genes, or the loadings of first PC score for a given gene. The magnitude
and directions of the coefficients represent contributions of each gene to the
estimated PC score or the underlying cellular process approximated by the
first PC score. Genes playing more important roles in the association between
apoptosis and survival outcome have larger magnitude (absolute value) for
importance scores.

is ‘Apoptosis’, which is known to play an important role in cancer.
Two genes from this gene set, TNFSF10 and GAS2, were from the
76-gene signature of Wang et al. (2005).

To help interpret results from SPCA model, in Figure 2, for the
GO term ‘apoptosis’, we plot loadings {α11,α12,...,α1p} for the first
PC score (Section 2.1) using a bar chart. We call these ‘Important
Scores’for the genes: the magnitude and directions of the coefficients
represents contributions of each gene to the estimated PC score or
the underlying cellular process approximated by the first PC score.

3.3 Mouse lesion score data
We next applied the proposed SPCA model to an eQTL study. In this
section, we illustrate the proposed method for a microarray dataset
with continuous outcome lesion scores, and we show this method
can efficiently account for the design of experiment, by testing for
interaction effects and accounting for covariate information.

To identify genetic factors associated with atherosclerosis, Bhasin
et al. (2008) conducted eQTL analysis using bone marrow-derived
macrophages from F2 mice obtained by a strain intercross between
aopE-deficient mice on the AKR and DBA/2 backgrounds. The
apoE-deficient mouse model was created by gene targeting through
homologous recombination in embryonic stem cells. These mice
spontaneously develop aortic lesions on a low-fat chow diet. The
continuous outcome for this study was lesion score, which was used
as a measure of severity for atherosclerosis. Our main objective was
to identify gene sets associated with variations in lesion scores.

Affymetrix 430v2 expression data from 93 female and 114
male mice were used for this experiment (GEO Accession No.
GSE8512). Each sample had 22 174 expressed transcripts. After
mapping these transcripts to EntrezGene ID and associating them
with GO biological process categories, there were 9744 genes,
mapped to 255 GO categories.

It has been shown that mouse atherosclerotic lesion areas QTLs
are sexually dimorphic (Smith et al., 2006). In this eQTL analysis

Table 4. Three most significant gene sets identified by SPCA method for
females and males, among gene sets with significant Sex×PC1 interaction

GO term Size Description Adj P-value

Females
0007242 265 intracellular signaling cascade 0.0999
0006511 105 ubiquitin-dependent protein catabolic process 0.0999
0009117 24 nucleotide metabolic process 0.0999
Males
0019882 29 antigen processing and presentation 0.0802
0006811 161 ion transport 0.0802
0045449 219 regulation of transcription 0.0802

only 1% trans-eQTLs were shared by both sexes, and 31% of
expressed transcripts were expressed at different levels in males
versus females (Bhasin et al., 2008). Therefore, for methods such
as GSEA or Fisher’s exact test, gene sets can only be analyzed
separately using samples from each sex. In contrast, for the proposed
method, we can test whether the association between first PC of
the gene set with lesion score is similar for the two groups by
testing interaction effect Sex × PC1(supervised first PC score of
the gene set, see Section 2.2). In particular, for each gene set, we
fit linear model with outcome log(lesion score), fixed effects Sex,
PC1, Sex × PC1. In addition, we specify separate residual variances
for each sex to allow for different variations in lesion scores for the
two groups. When Sex × PC1 interaction was not significant for a
gene set, samples from male and female were pooled to gain more
power, otherwise we conducted test for the gene set separately for
males and females using Model 1 in Section 2.2.

For gene sets with significant Sex × PC1 interaction effect
(at FDR 0.1 level), we constructed separate null distributions for

M =
{

Tk : |Tk |= max
1≤k≤n

|Tk |
}

(Section 2.2) for male samples and

female samples. For example, for male samples, we estimated mean
and variance of log(lesion scores) using only male samples and then
generated pseudo lesion scores from normal distribution with this
estimated mean and variance. Next, with these pseudo outcomes,
the steps outlined in Sections 2.2 and 2.3 were followed to calculate
P-values for each gene set. Table 4 shows the three most significant
gene sets for females and males. These gene sets showed a different
expression pattern between females and males, and this sexually
dimorphic effect could be due to exposure to the different hormonal
milieu in female and male mice.

For gene sets with non-significant Sex × PC1 (at FDR 0.1 level),
P-values were estimated using null distributions constructed with
all samples. The 10 most significant gene sets are listed in Table 5.
Previous studies have implicated these gene sets to be related to
cardiovascular diseases. For example, the top one and three gene sets
are ‘electron transport’ and ‘apoptosis’. The mechanisms of mito-
chondrial dysfunction related to atherosclerosis had been proposed.
Reactive oxygen species (ROS) are produced by the mitochondrial
electron transport chain, and the increased production of ROS can
result in significant damage to lipids, proteins and mtDNA, which
will induce vascular smooth muscle cell apoptosis, leading to the
development of atherosclerosis (Liu et al., 2002; Madamanchi and
Runge, 2007). The second most significant gene set is ‘chloride
transport’, in which three genes, Slc12a5, Clcn4-2 and Clnsla were
among genes in the selected subset. The K–Cl cotransporter had
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Table 5. Ten most significant gene sets identified by SPCA method, among
gene sets with non-significant Sex×PC1 interaction

GO term Size Description Adj P-value

0006118 220 electron transport 0.0114
0006821 19 chloride transport 0.0114
0006915 259 apoptosis 0.0114
0046777 37 protein amino acid autophosphorylation 0.0114
0007275 291 multicellular organismal development 0.0114
0009887 61 organ morphogenesis 0.0114
0018107 6 peptidyl-threonine phosphorylation 0.0114
0030154 173 cell differentiation 0.0114
0007067 112 mitosis 0.0114
0006629 111 lipid metabolic process 0.0114

been identified as part of the SLC12 family and is directly related
to ROS generation and oxidative stress (Adragna and Lauf, 2007).

4 DISCUSSION
In this article, we have described a new strategy for testing
significant association of an a priori defined sets of genes with
continuous or survival outcomes. Typically, only a subset of genes in
the group is associated with a biological process. Therefore, without
a gene screening step, when all genes in an a priori defined gene
set are used to estimate PCs, performance of gene set analysis
method using Model 1 (Section 2.2) would be adversely affected
by noisy signals from irrelevant genes, especially when the gene set
size is large. This is because the estimated first PC is often driven
by sources of variation unrelated to outcome; in contrast, SPCA
removes irrelevant genes before extracting the desired PC.

We have shown the proposed method compares favorably
with currently available methods, with improved sensitivity and
specificity at discriminating gene set associated with outcome
from null gene sets, using both simulated and real microarray
data. The proposed method operates within well-defined statistical
framework so that the SPCA model can be easily extended to more
complicated designs, such as time course experiments and dose
response experiments with the use of linear mixed effect models in
place of general linear models. In addition, it can be further extended
by incorporating other forms of known biological knowledge
(Khatri and Draghici, 2005). For example, ScorePage (Rahnenfuhrer
et al., 2004) integrated information from co-regulation of genes
and topology of pathways to test for significance of metabolic
pathways; they constructed pathway scores based on co-regulation
between pairs of genes weighted by their distance on the pathway
graph. Similarly, Draghici et al. (2007) developed impact analysis
for signaling pathways that considered crucial factors, such as
the magnitude of each gene’s expression change, their type and
position in the given pathway and their interactions. Finally, SEGS
(Trajkovski et al., 2008) searched for enriched gene sets constructed
by integrating GO annotations with gene–gene interaction data from
ENTREZ.Although not within the scope of this article, future studies
based on these aforementioned ideas are being planned to further
extend the power and potential of the proposed method.
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